
PROPOSED FINAL DRAFT

PROPOSED FINAL DRAFT

Java™ Servlet Specification

Version 2.3
Please send technical comments to: servletapi-feedback@eng.sun.com
Please send business comments to: danny.coward@sun.com

Proposed Final Draft - October 20th 2000 Danny Coward (danny.coward@sun..com)

Java(TM) Servlet API Specification ("Specification")
Version: 2.3
Status: Pre-FCS
Release: October 20th, 2000

Copyright 2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information
described therein may be protected by one or more U.S. pat-
ents, foreign patents, or pending
applications. Except as provided under the following license, no
part of the Specification may be reproduced in any form by any
means without the prior
written authorization of Sun Microsystems, Inc. ("Sun") and its
licensors, if any. Any use of the Specification and the informa-
tion described therein will be
governed by the terms and conditions of this license and the
Export Control and General Terms as set forth in Sun’s website
Legal Terms. By viewing,
downloading or otherwise copying the Specification, you agree
that you have read, understood, and will comply with all of the
terms and conditions set forth
herein.

Subject to the terms and conditions of this license, Sun hereby
grants you a fully-paid, non-exclusive, non-transferable, world-
wide, limited license (without
the right to sublicense) under Sun’s intellectual property rights
to review the Specification internally for the purposes of evalua-
tion only. Other than this
limited license, you acquire no right, title or interest in or to the
Specification or any other Sun intellectual property. The Speci-
fication contains the
proprietary and confidential information of Sun and may only be
used in accordance with the license terms set forth herein. This
license will expire ninety
(90) days from the date of Release listed above and will termi-
nate immediately without notice from Sun if you fail to comply
with any provision of this
license. Upon termination, you must cease use of or destroy
the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks,
or trade names of Sun or Sun’s licensors is granted hereunder.
Sun, Sun Microsystems, the
Sun logo, Java, and the Java Coffee Cup logo, are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S.
and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERI-
MENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES
WHICH
CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN
MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER
EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, OR

NON-INFRINGEMENT THAT THE CONTENTS OF THE SPEC-
IFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT
ANY PRACTICE
OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any com-
mitment to release or implement any portion of the Specification
in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INAC-
CURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY
ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS
OF THE SPECIFICATION,
IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR
CHANGES TO THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THE
SPECIFICATION AT ANY TIME. Any use of such changes in
the Specification will be governed by the then-current license for
the applicable version of
the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAM-
AGES, INCLUDING
WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA,
OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDEN-
TAL OR
PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARD-
LESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF
THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICEN-
SORS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licen-
sors from any claims based on your use of the Specification for
any purposes other than those
of internal evaluation, and from any claims that later versions or
releases of any Specification furnished to you are incompatible
with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND
If this Software is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or sub-
contractor (at any tier), then the
Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for
Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD
acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inac-
curacies you may find in connection with your evaluation of the
Specification ("Feedback").
To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-pro-
prietary and non-confidential

basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide,
fully paid-up, irrevocable license, with the right to sublicense
through multiple levels of
sublicensees, to incorporate, disclose, and use without limita-
tion the Feedback for any purpose related to the Specification
and future versions,
implementations, and test suites thereof.

PROPOSED FINAL DRAFT
Contents

Status ...12

Changes in this document since v2.2... 12

Preface ...14

Who should read this document .. 14

API Reference ... 14

Other Java™ Platform Specifications.. 14

Other Important References .. 15

Providing Feedback... 16

Acknowledgements ... 16

Chapter 1: Overview.. 18

What is a Servlet?.. 18

What is a Servlet Container? ... 18

An Example... 19

Comparing Servlets with Other Technologies 19

Relationship to Java 2 Platform Enterprise Edition 20

Chapter 2: The Servlet Interface.. 22

Request Handling Methods ... 22

HTTP Specific Request Handling Methods........................ 22
Contents 4

PROPOSED FINAL DRAFT
Conditional GET Support ...23

Number of Instances ..23

Note about SingleThreadModel ..24

Servlet Life Cycle ..24

Loading and Instantiation ...24

Initialization..24

Request Handling ...25

End of Service ..27

Chapter 3: Servlet Context..28

Scope of a ServletContext..28

Initialization Parameters ..28

Context Attributes..29

Context Attributes in a Distributed Container.....................29

Resources...29

Multiple Hosts and Servlet Contexts..30

Reloading Considerations ..30

Temporary Working Directories ..31

Chapter 4: The Request...32

Parameters ...32

Attributes ...33

Headers ..33

Request Path Elements...34

Path Translation Methods ..35

Cookies ..36

SSL Attributes ...36

Internationalization ..37

Request data encoding ...37
5 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
Chapter 5: The Response.. 38

Buffering ... 38

Headers.. 39

Convenience Methods ... 40

Internationalization.. 40

Closure of Response Object .. 41

Chapter 6: Servlet Filtering .. 42

What is a filter ? .. 42

Examples of Filtering Components 43

Main Concepts... 43

Filter Lifecycle... 43

Filter environment .. 45

Configuration of Filters in a Web Application 45

Chapter 7: Sessions.. 48

Session Tracking Mechanisms .. 48

URL Rewriting... 48

Cookies .. 49

SSL Sessions.. 49

Session Integrity... 49

Creating a Session ... 49

Session Scope.. 50

Binding Attributes into a Session .. 50

Session Timeouts... 50

Last Accessed Times ... 51

Important Session Semantics... 51

Threading Issues .. 51

Distributed Environments... 51
Contents 6

PROPOSED FINAL DRAFT
Client Semantics ...52

Chapter 8: Dispatching Requests..54

Obtaining a RequestDispatcher..54

Query Strings in Request Dispatcher Paths.........................55

Using a Request Dispatcher ...55

Include ...56

Included Request Parameters ..56

Forward..56

Query String ...57

Error Handling ...57

Chapter 9: Web Applications...58

Relationship to ServletContext ..58

Elements of a Web Application ...58

Distinction Between Representations...59

Directory Structure ..59

Sample Web Application Directory Structure.....................60

Web Application Archive File ...60

Web Application Configuration Descriptor61

Dependencies on extensions: Library Files.........................61

Web Application Classloader..62

Replacing a Web Application ..62

Error Handling ...62

Welcome Files ...63

Web Application Environment ..64

Chapter 10: Application Lifecycle Events..66

Introduction ...66

Event Listeners ..66
7 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
Configuration of Listener Classes ... 68

Listener Instances and Threading .. 69

Distributed Containers... 69

Session Events- Invalidation vs Timeout..................................... 69

Chapter 11: Mapping Requests to Servlets...................................... 70

Use of URL Paths.. 70

Specification of Mappings... 71

Implicit Mappings .. 71

Example Mapping Set .. 71

Chapter 12: Security.. 74

Introduction ... 74

Declarative Security .. 75

Programmatic Security .. 75

Roles ... 76

Authentication ... 76

HTTP Basic Authentication ... 76

HTTP Digest Authentication.. 77

Form Based Authentication.. 77

HTTPS Client Authentication .. 78

Server Tracking of Authentication Information 79

Propogation of Security Identity.. 79

Specifying Security Constraints .. 80

Default Policies .. 80

Chapter 13: Deployment Descriptor... 82

Deployment Descriptor Elements.. 82

Deployment Descriptor DOCTYPE 82

DTD .. 83
Contents 8

PROPOSED FINAL DRAFT
Examples ...96

A Basic Example ..97

An Example of Security..98

Chapter 14: API Details...100

Config.. 104

Filter .. 106

FilterConfig... 108

GenericServlet... 110

RequestDispatcher .. 115

Servlet ... 117

ServletConfig .. 120

ServletContext... 121

ServletContextAttributeEvent ... 129

ServletContextAttributesListener.. 131

ServletContextEvent ... 133

ServletContextListener.. 135

ServletException ... 136

ServletInputStream.. 139

ServletOutputStream... 141

ServletRequest .. 146

ServletRequestWrapper .. 153

ServletResponse .. 159

ServletResponseWrapper .. 163

SingleThreadModel... 167

UnavailableException ... 168

Cookie ... 173

HttpServlet .. 179
9 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
HttpServletRequest ... 185

HttpServletRequestWrapper ... 193

HttpServletResponse... 200

HttpServletResponseWrapper ... 212

HttpSession ... 217

HttpSessionAttributesListener .. 222

HttpSessionBindingEvent ... 224

HttpSessionBindingListener ... 227

HttpSessionContext... 228

HttpSessionEvent .. 229

HttpSessionListener .. 231

HttpUtils.. 232

Appendix A: Deployment Descriptor Version 2.2............................ 236

Appendix B: Glossary .. 250
Contents 10

PROPOSED FINAL DRAFT
11 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

ent

draft
Status

This specification is being developed following the Java Community Process. This docum
is the Proposed Final Draft version of the Java Servlet 2.3 Specification.

Changes in this document since version 2.2
• Incorporation of Javadoc API definitions into the specification document

• Application Events

• Servlet Filtering

• Requirement of J2SE as the underlying platform for web containers

• Dependencies on installed extensions

• Internationalization fixes

• Incorporation of Servlet 2.2 errata and numerous other clarifications

Changes since Public Draft
Here is a summary of the main items that have changed in the specification since public
based on a large amount of feedback.

Specification document changes
• Added 2.2 deployment descriptor as appendix

• Added change list

• Many editorial changes
Status 12

PROPOSED FINAL DRAFT

see
Servlets - Chapter 2
• Added doHead() method back to HttpServlet (see API)

ServletContexts - Chapter 3
• added getServletContextName() (see API)

• added getResourcePaths() (see API)

Request - Chapter 4
• Add attributes for error processing

• Added UnsupportedCharacterEncoding to throws clause of setCharacterEncoding() (
API)

• getQueryString() - specify value is not decoded (see API)

• getParameterMap() - return value is immutable (see API)

• clarify getAuthType() javadoc, added statics for authentication types (see API)

• clarify default character encoding

• clarify behavior of getRealPath() (see API)

• clarification of HttpServletRequest.getHeaders() when name not found (see API)

Response - Chapter 5
• clarify status code on response when errors occur (see API)

• added resetBuffer() method to ServletResponse (see API)

• sendError clarifrications (see API))

• disallow container defaulting the content type of a response

• clarify behavior of flush() on PrintWriter and ServletOutputStream (see API)

• clarify default character encoding of response

• clarify what container does with headers on setStatus() (see API)

• sendRedirect() clarification for non-absolute URLs (API doc)

• sendError() clarifications (API doc)
13 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT • October 20, 2000

PROPOSED FINAL DRAFT

o

Filters - Chapter 6
• Scoping of filter instances

• Clarification of filters acting on static resources

• Added FilterChain interface and minor refactoring

• Removed Config interface

• Added set{Response,Request} methods to filter wrapper classes

Sessions - Chapter 7
• Addition of HttpSessionActivationListener interface used in distributed containers (als

see API)

• Clarification of semantics for persisting & migrating sessions in distributed containers

• many clarifications of session expiry and notification, order of notification (see API)

Application Event Listeners - Chapter 10
• Clarifying notifications on shutdown and ordering thereof

RequestMappings - Chapter 11
• clarified servlet mapped to /foo/* is called by a request for /foo

• Request matching is done by case-sensitive string match

Security - Chapter 12
• Specify a default behavior for isUserInRole() in absernce of role-refs

• Clarify interaction between RequestDispatcher and security model

• Clarify policy for processing multiple security constraints

• Added security attributes for SSL algorithm

• Specify status code for failed form login

• Specify allowed methods of return for form login error page
Status 14

PROPOSED FINAL DRAFT

king
Deployment Descriptor - Chapter 13
• corrected bad comment for ejb-ref-type

• clarifying web container policy for whitespace in the deployment descriptor

• clarifying paths in deployment descriptor are assumed decoded

• recommend validation of deployment descriptor documents and some semantic chec
by web containers as aid to developers

• policy for paths refering to resources in the WAR: must start with ’/’

• clarify policy for relativizing policy of paths in web.xml

• added display name to security-constraint for tool manipulation

• fix security example

• Use of "*" to mean ’all roles’ in the security-constraint element

• syntax for specifying sharing scope for connection factory connections

• syntax for declaring dependencies on administered objects in J2EE

• clarify <error-page> path usage

• clarify <jsp-file> path usage

• snyc with EJB and EE specs on allowed strings in res-auth element

• clarify 2.2 dtd must be supported for backwards compatibility
15 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT • October 20, 2000

PROPOSED FINAL DRAFT

ce

ility

ssues.

t

to

as

ces,
s the
Preface

This document, the Java™ Servlet Specification, v2.3 the Java Servlet API. The referen
implementation provides a behavioral benchmark. In the case of an area where the
specification leaves implementation of a particular feature open to interpretation,
implementors should look first to the reference implementation and then to the compatib
test suite. If further clarification is required, the working group for the Java Servlet API
under the Java Community Process should be consulted and is the final arbiter of such i

Who should read this document
This document is intended for consumption by:

• Web Server and Application Server vendors that want to provide Servlet Engines tha
conform with this specification.

• Web Authoring Tool developers that want to generate Web Applications that conform
this specification

• Sophisticated Servlet authors who want to understand the underlying mechanisms of
Servlet technology.

Please note that this specification is not a User’s Guide and is not intended to be used
such.

API Reference
The Java Servlet API Reference, v2.3 provides the complete description of all the interfa
classes, exceptions, and methods that compose the Servlet API. This document contain
full specification of class, interfaces, method signatures and accompanying javadoc that
defines the Servlet API.
Preface 14

PROPOSED FINAL DRAFT

d

P

Other Java™ Platform Specifications
The following Java API Specifications are referenced throughout this specification:

• Java2 Platform Enterprise Edition, v1.3 (J2EE)

• JavaServer Pages™, v1.2 (JSP)

• Java Naming and Directory Interface (JNDI)

These specifications may be found at the Java2 Enterprise Edition website:
http://java.sun.com/j2ee/

Other Important References
The following Internet Specifications provide relevant information to the development an
implementation of the Servlet API and engines which support the Servlet API:

• RFC 1630 Uniform Resource Identifiers (URI)

• RFC 1738 Uniform Resource Locators (URL)

• RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

• RFC 1808 Relative Uniform Resource Locators

• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

• RFC 2045 MIME Part One: Format of Internet Message Bodies

• RFC 2046 MIME Part Two: Media Types

• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text

• RFC 2048 MIME Part Four: Registration Procedures

• RFC 2049 MIME Part Five: Conformance Criteria and Examples

• RFC 2109 HTTP State Management Mechanism

• RFC 2145 Use and Interpretation of HTTP Version Numbers

• RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)1

• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

• RFC 2617 HTTP Authentication: Basic and Digest Authentication

You can locate the online versions of any of these RFCs at:

http://www.rfc-editor.org/

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of
HTTP related information that affects this specification and its implementations.

1. This reference is mostly tongue-in-cheek although most of the concepts described in the HTCPC
RFC are relevant to all well designed web servers.
15 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

g

unity.
s to:

eive
hived
The Extensible Markup Language (XML) is utilized by the Deployment Descriptors
described in this specification. More information about XML can be found at the followin
websites:

http://java.sun.com/

http://www.xml.org/

Providing Feedback
The success of the Java Community Process depends on your participation in the comm
We welcome any and all feedback about this specification. Please e-mail your comment

servletapi-feedback@eng.sun.com

Please note that due to the volume of feedback that we receive, you will not normally rec
a reply from an engineer. However, each and every comment is read, evaluated, and arc
by the specification team.

Acknowledgements
This public draft represents the team work of the JSR053 expert group.
Preface 16

PROPOSED FINAL DRAFT
17 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

t.
al
with

TTP).

e
uests,
rvlets

an

may
). The

as
CHAPTER 1

Overview

This chapter provides an overview of the Servlet API.

1.1 What is a Servlet?
A servlet is a web component, managed by a container, that generates dynamic conten
Servlets are small, platform independent Java classes compiled to an architecture neutr
bytecode that can be loaded dynamically into and run by a web server. Servlets interact
web clients via a request response paradigm implemented by the servlet container. This
request-response model is based on the behavior of the Hypertext Transfer Protocol (H

1.2 What is a Servlet Container?
The servlet container, in conjunction with a web server or application server, provides th
network services over which requests and responses are set, decodes MIME based req
and formats MIME based responses. A servlet container also contains and manages se
through their lifecycle.

A servlet container can either be built into a host web server or installed as an add-on
component to a Web Server via that server’s native extension API. Servlet Containers c
also be built into or possibly installed into web-enabled Application Servers.

All servlet containers must support HTTP as a protocol for requests and responses, but
also support other request / response based protocols such as HTTPS (HTTP over SSL
minimum required version of the HTTP specification that a container must implement is
HTTP/1.0. It is strongly suggested that containers implement the HTTP/1.1 specification
well.
 Overview 18

PROPOSED FINAL DRAFT

rise
n
limit

quest.
The
nd
n in
a

rvlet
back

se is

es
ams

s

A Servlet Container may place security restrictions on the environment that a servlet
executes in. In a Java 2 Platform Standard Edition 1.2 (J2SE) or Java 2 Platform Enterp
Edition 1.3 (J2EE) environment, these restrictions should be placed using the permissio
architecture defined by Java 2 Platform. For example, high end application servers may
certain action, such as the creation of aThread object, to insure that other components of
the container are not negatively impacted.

1.3 An Example
A client program, such as a web browser, accesses a web server and makes an HTTP re
This request is processed by the web server and is handed off to the servlet container.
servlet container determines which servlet to invoke based on its internal configuration a
calls it with objects representing the request and response. The servlet container can ru
the same process as the host web server, in a different process on the same host, or on
different host from the web server for which it processes requests.

The servlet uses the request object to find out who the remote user is, what HTML form
parameters may have been sent as part of this request, and other relevant data. The se
can then perform whatever logic it was programmed with and can generate data to send
to the client. It sends this data back to the client via the response object.

Once the servlet is done with the request, the servlet container ensures that the respon
properly flushed and returns control back to the host web server.

1.4 Comparing Servlets with Other Technologi
In functionality, servlets lie somewhere between Common Gateway Interface (CGI) progr
and proprietary server extensions such as the Netscape Server API (NSAPI) or Apache
Modules.

Servlets have the following advantages over other server extension mechanisms:

• They are generally much faster than CGI scripts because a different process model i
used.

• They use a standard API that is supported by many web servers.

• They have all the advantages of the Java programming language, including ease of
development and platform independence.

• They can access the large set of APIs available for the Java platform.
19 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

that
1.5 Relationship to Java 2 Platform Enterprise
Edition
The Servlet API v2.3 is a required API of the Java 2 Platform Enterprise Edition, v1.31. The
J2EE specification describes additional requirements for servlet containers, and servlets
are deployed into them, that are executing in a J2EE environment.

1. Please see the Java 2 Platform Enterprise Edition specification available at
http://java.sun.com/j2ee/
Chapter 1 Overview 20

PROPOSED FINAL DRAFT
21 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

nt
e

rvlet.
CHAPTER 2

The Servlet Interface

TheServlet interface is the central abstraction of the Servlet API. All servlets impleme
this interface either directly, or more commonly, by extending a class that implements th
interface. The two classes in the API that implement theServlet interface are
GenericServlet andHttpServlet . For most purposes, developers will typically
extendHttpServlet to implement their servlets.

2.1 Request Handling Methods
The basicServlet interface defines aservice method for handling client requests. This
method is called for each request that the servlet container routes to an instance of a se
Multiple request threads may be executing within the service method at any time.

2.1.1 HTTP Specific Request Handling Methods

The HttpServlet abstract subclass adds additional methods which are automatically
called by theservice method in theHttpServlet class to aid in processing HTTP
based requests. These methods are:

• doGet for handling HTTP GET requests

• doPost for handling HTTP POST requests

• doPut for handling HTTP PUT requests

• doDelete for handling HTTP DELETE requests

• doHead for handling HTTP HEAD requests

• doOptions for handling HTTP OPTIONS requests

• doTrace for handling HTTP TRACE requests
 The Servlet Interface 22

PROPOSED FINAL DRAFT

to

ts

ders

s a
body

ient

a
ass

te
Typically when developing HTTP based servlets, a Servlet Developer will only concern
himself with thedoGet anddoPost methods. The rest of these methods are considered
be advanced methods for use by programmers very familiar with HTTP programming.

ThedoPut anddoDelete methods allow Servlet Developers to support HTTP/1.1 clien
which support these features. ThedoHead method inHttpServlet is a specialized
method that will execute thedoGet method, but only return the headers produced by the
doGet method to the client. ThedoOptions method automatically determines which
HTTP methods are directly supported by the servlet and returns that information to the
client. ThedoTrace method causes a response with a message containing all of the hea
sent in the TRACE request.

In containers that only support HTTP/1.0, only thedoGet , doHead anddoPost methods
will be used as HTTP/1.0 does not define the PUT, DELETE, OPTIONS, or TRACE
methods.

2.1.2 Conditional GET Support

The HttpServlet interface defines thegetLastModified method to support
conditional get operations. A conditional get operation is one in which the client request
resource with the HTTP GET method and adds a header that indicates that the content
should only be sent if it has been modified since a specified time.

Servlets that implement thedoGet method and that provide content that does not
necessarily change from request to request should implement this method to aid in effic
utilization of network resources.

2.2 Number of Instances
In the default case of a servlet not implementing SingleThreadModel and not hosted in
distributed environment, the servlet container must use only one instance of a servlet cl
per servlet definition.

In the case of a servlet that implements theSingleThreadModel interface, the servlet
container may instantiate multiple instances of that servlet so that it can handle a heavy
request load while still serializing requests to a single instance.

In the case where a servlet was deployed as part of an application that is marked in the
deployment descriptor asdistributable, there is one instance of a servlet class per servlet
definition per VM in a container. If the servlet implements theSingleThreadModel
interface as well as is part of a distributable web application, the container may instantia
multiple instances of that servlet in each VM of the container.
23 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

l

one

ice.

tion
r

e
le

t

et

t
read
2.2.1 Note about SingleThreadModel

The use of theSingleThreadModel interface guarantees that one thread at a time wil
execute through a given servlet instance’sservice method. It is important to note that this
guarantee only applies to servlet instance. Objects that can be accessible to more than
servlet instance at a time, such as instances ofHttpSession , may be available to multiple
servlets, including those that implementSingleThreadModel , at any particular time.

2.3 Servlet Life Cycle
A servlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, handles requests from clients, and how it is taken out of serv
This life cycle is expressed in the API by theinit , service , anddestroy methods of
the javax.servlet.Servlet interface that all servlets must, directly or indirectly
through theGenericServlet or HttpServlet abstract classes, implement.

2.3.1 Loading and Instantiation

The servlet container is responsible for loading and instantiating a servlet. The instantia
and loading can occur when the engine is started or it can be delayed until the containe
determines that it needs the servlet to service a request.

First, a class of the servlet’s type must be located by the servlet container. If needed, th
servlet container loads a servlet using normal Java class loading facilities from a local fi
system, a remote file system, or other network services.

After the container has loaded theServlet class, it instantiates an object instance of tha
class for use.

It is important to note that there can be more than one instance of a givenServlet class in
the servlet container. For example, this can occur where there was more than one servl
definition that utilized a specific servlet class with different initialization parameters. This
can also occur when a servlet implements theSingleThreadModel interface and the
container creates a pool of servlet instances to use.

2.3.2 Initialization

After the servlet object is loaded and instantiated, the container must initialize the servle
before it can handle requests from clients. Initialization is provided so that a servlet can
any persistent configuration data, initialize costly resources (such as JDBC™ based
Chapter 2 The Servlet Interface 24

PROPOSED FINAL DRAFT

let

ject

and

nd

r
ed.

or

ts.
connection), and perform any other one-time activities. The container initializes the serv
by calling theinit method of theServlet interface with a unique (per servlet definition)
object implementing theServletConfig interface. This configuration object allows the
servlet to access name-value initialization parameters from the servlet container’s
configuration information. The configuration object also gives the servlet access to an ob
implementing theServletContext interface which describes the runtime environment
that the servlet is running within. See Chapter 3, “Servlet Context” for more information
about theServletContext interface.

2.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can signal that it is not to be placed into active
service by throwing anUnavailableException or ServletException . If a
servlet instance throws an exception of this type, it must not be placed into active service
the instance must be immediately released by the servlet container. Thedestroy method is
not called in this case as initialization was not considered to be successful.

After the instance of the failed servlet is released, a new instance may be instantiated a
initialized by the container at any time. The only exception to this rule is if the
UnavailableException thrown by the failed servlet which indicates the minimum
time of unavailability. In this case, the container must wait for the minimum time of
unavailability to pass before creating and initializing a new servlet instance.

2.3.2.2 Tool Considerations

When a tool loads and introspects a web application, it may load and introspect membe
classes of the web application. This will trigger static initialization methods to be execut
Because of this behavior, a Developer should not assume that a servlet is in an active
container runtime unless theinit method of theServlet interface is called. For
example, this means that a servlet should not try to establish connections to databases
Enterprise JavaBeans™ compenent architecture containers when its static (class)
initialization methods are invoked.

2.3.3 Request Handling

After the servlet is properly initialized, the servlet container may use it to handle reques
Each request is represented by a request object of typeServletRequest and the servlet
can create a response to the request by using the provided object of type
ServletResponse . These objects are passed as parameters to theservice method of
the Servlet interface. In the case of an HTTP request, the container must provide the
request and response objects as implementations ofHttpServletRequest and
HttpServletResponse .
25 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

a

ple

A

en
VM

ce

sures

d of
ust

se
It is important to note that a servlet instance may be created and placed into service by
servlet container but may handle no requests during its lifetime.

2.3.3.1 Multithreading Issues

During the course of servicing requests from clients, a servlet container may send multi
requests from multiple clients through theservice method of the servlet at any one time.
This means that the Developer must take care to make sure that the servlet is properly
programmed for concurrency.

If a Developer wants to prevent this default behavior, he can program the servlet to
implement theSingleThreadModel interface. Implementing this interface will
guarantee that only one request thread at a time will be allowed in the service method.
servlet container may satisfy this guarantee by serializing requests on a servlet or by
maintaining a pool of servlet instances. If the servlet is part of an application that has be
marked as distributable, the container may maintain a pool of servlet instances in each
that the application is distributed across.

If a Developer defines aservice method (or methods such asdoGet or doPost which
are dispatched to from theservice method of theHttpServlet abstract class) with the
synchronized keyword, the servlet container will, by necessity of the underlying Java
runtime, serialize requests through it. However, the container must not create an instan
pool as it does for servlets that implement theSingleThreadModel . It is strongly
recommended that developers not synchronize the service method or any of the
HttpServlet service methods such asdoGet , doPost , etc.

2.3.3.2 Exceptions During Request Handling

A servlet may throw either aServletException or anUnavailableException
during the service of a request. AServletException signals that some error occurred
during the processing of the request and that the container should take appropriate mea
to clean up the request. AnUnavailableException signals that the servlet is unable to
handle requests either temporarily or permanently.

If a permanent unavailability is indicated by theUnavailableException , the servlet
container must remove the servlet from service, call itsdestroy method, and release the
servlet instance.

If temporary unavailability is indicated by theUnavailableException , then the
container may choose to not route any requests through the servlet during the time perio
the temporary unavailability. Any requests refused by the container during this period m
be returned with aSERVICE_UNAVAILABLE(503) response status along with aRetry-
After header indicating when the unavailability will terminate. The container may choo
to ignore the distinction between a permanent and temporary unavailability and treat all
UnavailableExceptions as permanent, thereby removing a servlet that throws any
UnavailableException from service.
Chapter 2 The Servlet Interface 26

PROPOSED FINAL DRAFT

not
f the
given

vlet
he
any

or
ing

a

ny
the
2.3.3.3 Thread Safety

A Developer should note that implementations of the request and response objects are
guaranteed to be thread safe. This means that they should only be used in the scope o
request handling thread. References to the request and response objects should not be
to objects executing in other threads as the behavior may be nondeterministic.

2.3.4 End of Service

The servlet container is not required to keep a servlet loaded for any period of time. A ser
instance may be kept active in a servlet container for a period of only milliseconds, for t
lifetime of the servlet container (which could be measured in days, months, or years), or
amount of time in between.

When the servlet container determines that a servlet should be removed from service (f
example, when a container wants to conserve memory resources, or when it itself is be
shut down), it must allow the servlet to release any resources it is using and save any
persistent state. To do this the servlet container calls thedestroy method of theServlet
interface.

Before the servlet container can call thedestroy method, it must allow any threads that
are currently running in theservice method of the servlet to either complete, or exceed
server defined time limit, before the container can proceed with calling thedestroy
method.

Once thedestroy method is called on a servlet instance, the container may not route a
more requests to that particular instance of the servlet. If the container needs to enable
servlet again, it must do so with a new instance of the servlet’s class.

After the destroy method completes, the servlet container must release the servlet
instance so that it is eligible for garbage collection
27 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

any

are
CHAPTER 3

Servlet Context

The ServletContext defines a servlet’s view of the web application within which the
servlet is running. TheServletContext also allows a servlet to access resources
available to it. Using such an object, a servlet can log events, obtain URL references to
resources, and set and store attributes that other servlets in the context can use. The
Container Provider is responsible for providing an implementation of the
ServletContext interface in the servlet container.

A ServletContext is rooted at a specific path within a web server. For example a
context could be located athttp://www.mycorp.com/catalog . All requests that
start with the/catalog request path, which is known as thecontext path, will be routed to
this servlet context.

3.1 Scope of a ServletContext
There is one instance of theServletContext interface associated with each web
application deployed into a container. In cases where the container is distributed over m
virtual machines, there is one instance per web application per VM.

Servlets that exist in a container that were not deployed as part of a web application are
implicitly part of a “default” web application and are contained by a default
ServletContext . In a distributed container, the defaultServletContext is non-
distributable and must only exist on one VM.

3.2 Initialization Parameters
A set of context initialization parameters can be associated with a web application and
made available by the following methods of theServletContext interface:
 Servlet Context 28

PROPOSED FINAL DRAFT

ritical

If
hat
set in

of
tion
• getInitParameter

• getInitParameterNames

Initialization parameters can be used by an application developer to convey setup
information, such as a webmaster’s e-mail address or the name of a system that holds c
data.

3.3 Context Attributes
A servlet can bind an object attribute into the context by name. Any object bound into a
context is available to any other servlet that is part of the same web application. The
following methods ofServletContext interface allow access to this functionality:

• setAttribute

• getAttribute

• getAttributeNames

• removeAttribute

3.3.1 Context Attributes in a Distributed Container

Context attributes exist locally to the VM in which they were created and placed. This
prevents theServletContext from being used as a distributed shared memory store.
information needs to be shared between servlets running in a distributed environment, t
information should be placed into a session (See Chapter 8, “Sessions”), a database or
an Enterprise JavaBean.

3.4 Resources
The ServletContext interface allows direct access to the static document hierarchy
content documents, such as HTML, GIF, and JPEG files, that are part of the web applica
via the following methods of theServletContext interface:

• getResource

• getResourceAsStream

Both thegetResource andgetResourceAsStream methods take aString
argument giving the path of the resource relative to the root of the context.
29 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

web
not
ages

ts” for

ress

wn
tual

f

to

f
ded in
cted
It is important to note that these methods give access to static resources from whatever
repository the server uses. This hierarchy of documents may exist in a file system, in a
application archive file, on a remote server, or some other location. These methods are
used to obtain dynamic content. For example, in a container supporting the JavaServer P
specification1, a method call of the formgetResource("/index.jsp") would return
the JSP source code and not the processed output. See Chapter 8, “Dispatching Reques
more information about accessing dynamic content.

3.5 Multiple Hosts and Servlet Contexts
Many web servers support the ability for multiple logical hosts to share the same IP add
on a server. This capability is sometimes referred to as "virtual hosting". If a servlet
container’s host web server has this capability, each unique logical host must have its o
servlet context or set of servlet contexts. A servlet context can not be shared across vir
hosts.

3.6 Reloading Considerations
Many servlet containers support servlet reloading for ease of development. Reloading o
servlet classes has been accomplished by previous generations of servlet containers by
creating a new class loader to load the servlet which is distinct from class loaders used
load other servlets or the classes that they use in the servlet context. This can have the
undesirable side effect of causing object references within a servlet context to point at a
different class or object than expected which can cause unexpected behavior.

Therefore, when a Container Provider implements a class reloading scheme for ease o
development, they must ensure that all servlets, and classes that they may use, are loa
the scope of a single class loader guaranteeing that the application will behave as expe
by the Developer.

1. The JavaServer Pages specification can be found athttp://java.sun.com/products/
jsp
Chapter 3 Servlet Context 30

PROPOSED FINAL DRAFT

al

e

3.7 Temporary Working Directories
It is often useful for Application Developers to have a temporary working area on the loc
filesystem. All servlet containers must provide a private temporary directory per servlet
context and make it available via the context attribute of
javax.servlet.context.tempdir . The object associated with the attribute must b
of type java.io.File .
31 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

rs

uest.

n

est
over

the
CHAPTER 4

The Request

The request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server by the HTTP heade
and the message body of the request.

4.1 Parameters
Request parameters are strings sent by the client to a servlet container as part of a req
When the request is aHttpServletRequest , the attributes are populated from the URI
query string and possibly posted form data. The parameters are stored by the servlet
container as a set of name-value pairs. Multiple parameter values can exist for any give
parameter name. The following methods of theServletRequest interface are available
to access parameters:

• getParameter

• getParameterNames

• getParameterValues

The getParameterValues method returns an array ofString objects containing all
the parameter values associated with a parameter name. The value returned from the
getParameter method must always equal the first value in the array ofString objects
returned bygetParameterValues .

All form data from both the query string and the post body are aggregated into the requ
parameter set. The order of this aggregation is that query string data takes precedence
post body parameter data. For example, if a request is made with a query string ofa=hello
and a post body ofa=goodbye&a=world , the resulting parameter set would be ordered
a=(hello, goodbye, world) .

Posted form data is only read from the input stream of the request and used to populate
parameter set when all of the following conditions are met:
 The Request 32

PROPOSED FINAL DRAFT

to
y a

d

the

ls
1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST

3. The content type isapplication/x-www-form-urlencoded

4. The servlet calls any of thegetParameter family of methods on the request object.

If any of thegetParameter family of methods is not called, or not all of the above
conditions are met, the post data must remain available for the servlet to read via the
request’s input stream.

4.2 Attributes
Attributes are objects associated with a request. Attributes may be set by the container
express information that otherwise could not be expressed via the API, or may be set b
servlet to communicate information to another servlet (viaRequestDispatcher).
Attributes are accessed with the following methods of theServletRequest interface:

• getAttribute

• getAttributeNames

• setAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the prefixes of “java.” and “javax. ” are reserved for
definition by this specification. Similarly attribute names beginning with the prefixes of
“sun.” , and “com.sun. ” are reserved for definition by Sun Microsystems. It is suggeste
that all attributes placed into the attribute set be named in accordance with the reverse
package name convention suggested by the Java Programming Language Specification1 for
package naming.

4.3 Headers
A servlet can access the headers of an HTTP request through the following methods of
HttpServletRequest interface:

• getHeader

• getHeaders

1. The Java Programming Language Specification is available at http://java.sun.com/docs/books/j
33 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

tant
a the

r’s

ed

let

RI
• getHeaderNames

The getHeader method allows access to the value of a header given the name of the
header. Multiple headers, such as theCache-Control header, can be present in an HTTP
request. If there are multiple headers with the same name in a request, thegetHeader
method returns the first header contained in the request. ThegetHeaders method allow
access to all the header values associated with a particular header name returning an
Enumeration of String objects.

Headers may contain data that is better expressed as anint or a Date object. The
following convenience methods of theHttpServletRequest interface provide access to
header data in a one of these formats:

• getIntHeader

• getDateHeader

If the getIntHeader method cannot translate the header value to anint , a
NumberFormatException is thrown. If thegetDateHeader method cannot
translate the header to aDate object, anIllegalArgumentException is thrown.

4.4 Request Path Elements
The request path that leads to a servlet servicing a request is composed of many impor
sections. The following elements are obtained from the request URI path and exposed vi
request object:

• Context Path: The path prefix associated with theServletContext that this servlet
is a part of. If this context is the “default” context rooted at the base of the web serve
URL namespace, this path will be an empty string. Otherwise, this path starts with a’/’
character but does not end with a’/’ character.

• Servlet Path: The path section that directly corresponds to the mapping which activat
this request. This path starts with a’/’ character.

• PathInfo: The part of the request path that is not part of the Context Path or the Serv
Path.

The following methods exist in theHttpServletRequest interface to access this
information:

• getContextPath

• getServletPath

• getPathInfo

It is important to note that, except for URL encoding differences between the request U
and the path parts, the following equation is always true:
requestURI = contextPath + servletPath + pathInfo
Chapter 4 The Request 34

PROPOSED FINAL DRAFT

ods
To give a few examples to clarify the above points, consider the following:

The following behavior is observed:

4.5 Path Translation Methods
There are two convenience methods in theHttpServletRequest interface which allow
the Developer to obtain the file system path equivalent to a particular path. These meth
are:

• getRealPath

• getPathTranslated

Table 1: Example Context Set Up

ContextPath /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServlet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServlet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null
35 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

ods,
not

ent to

okie
re not

ion

t

let
The getRealPath method takes aString argument and returns aString
representation of a file on the local file system to which that path corresponds. The
getPathTranslated method computes the real path of thepathInfo of this request.

In situations where the servlet container cannot determine a valid file path for these meth
such as when the web application is executed from an archive, on a remote file system
accessible locally, or in a database, these methods must return null.

4.6 Cookies
The HttpServletRequest interface provides thegetCookies method to obtain an
array of cookies that are present in the request. These cookies are data sent from the cli
the server on every request that the client makes. Typically, the only information that the
client sends back as part of a cookie is the cookie name and the cookie value. Other co
attributes that can be set when the cookie is sent to the browser, such as comments, a
typically returned.

4.7 SSL Attributes
If a request has been transmitted over a secure protocol, such as HTTPS, this informat
must be exposed via theisSecure method of theServletRequest interface. The web
container must expose the following attributes to the servlet programmer

• the cipher suite

• the bit size of the algothm

as java objects of typeString andInteger respectively. The names of the attributes mus
be javax.servlet.request.cipher-suite and
javax.servet.request.key-size .

If there is an SSL certificate associated with the request, it must be exposed by the serv
container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible via a
ServletRequest attribute ofjavax.servlet.request.X509Certificate .
Chapter 4 The Request 36

PROPOSED FINAL DRAFT

nt

the

es a
latform

od
ling

nt
4.8 Internationalization
Clients may optionally indicate to a web server what language they would prefer the
response be given in. This information can be communicated from the client using the
Accept-Language header along with other mechanisms described in the HTTP/1.1
specification. The following methods are provided in theServletRequest interface to
determine the preferred locale of the sender:

• getLocale

• getLocales

The getLocale method will return the preferred locale that the client will accept conte
in. See section 14.4 of RFC 2616 (HTTP/1.1) for more information about how theAccept-
Language header must interpreted to determine the preferred language of the client.

The getLocales method will return anEnumeration of Locale objects indicating,
in decreasing order starting with the preferred locale, the locales that are acceptable to
client.

If no preferred locale is specified by the client, the locale returned by thegetLocale
method must be the default locale for the servlet container and thegetLocales method
must contain an enumeration of a single Locale element of the default locale.

4.9 Request data encoding
Currently, many browsers do not send a char encoding qualifier with the Content-Type
header. This leaves open the determination of the character encoding for reading Http
requests. Many containers default in this case to the JVM default encoding, which caus
breakage when the request data has not been encoded with the same encoding as the p
default.

To aid this situation, a new methodsetCharacterEncoding(String enc) has been
added to the ServletRequest interface. Developers can override the character encoding
supplied by the container in this situation if necessary by calling this method. This meth
must be called prior to parsing any post data or reading any input from the request. Cal
this method once data has been read will not affect the encoding.

The default encoding of a request is “ISO-8859-1” if none has been specified by the clie
request.
37 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

lient.
y

lt,

be
ze
er
CHAPTER 5

The Response

The response object encapsulates all information to be returned from the server to the c
In the HTTP protocol, this information is transmitted from the server to the client either b
HTTP headers or the message body of the request.

5.1 Buffering
In order to improve efficiency, a servlet container is allowed, but not required to by defau
to buffer output going to the client. The following methods are provided via the
ServletResponse interface to allow a servlet access to, and the setting of, buffering
information:

• getBufferSize

• setBufferSize

• isCommitted

• reset

• flushBuffer

These methods are provided on theServletResponse interface to allow buffering
operations to be performed whether the servlet is using aServletOutputStream or a
Writer .

The getBufferSize method returns the size of the underlying buffer being used. If no
buffering is being used for this response, this method must return theint value of0
(zero) .

The servlet can request a preferred buffer size for the response by using the
setBufferSize method. The actual buffer assigned to this request is not required to
the same size as requested by the servlet, but must be at least as large as the buffer si
requested. This allows the container to reuse a set of fixed size buffers, providing a larg
 The Response 38

PROPOSED FINAL DRAFT

itten

ot
to the

ted

e

er
or the

If
new
buffer than requested if appropriate. This method must be called before any content is wr
using aServletOutputStream or Writer . If any content has been written, this
method must throw anIllegalStateException .

The isCommitted method returns a boolean value indicating whether or not any bytes
from the response have yet been returned to the client. TheflushBuffer method forces
any content in the buffer to be written to the client.

The reset method clears any data that exists in the buffer as long as the response is n
considered to be committed. All headers and the status code set by the servlet previous
reset called must be cleared as well.

If the response is committed and thereset method is called, an
IllegalStateException must be thrown. In this case, the response and its associa
buffer will be unchanged.

When buffering is in use is filled, the container must immediatly flush the contents of the
buffer to the client. If this is the first time for this request that data is sent to the client, th
response is considered to be committed at this point.

5.2 Headers
A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

• setHeader

• addHeader

The setHeader method sets a header with a given name and value. If a previous head
exists, it is replaced by the new header. In the case where a set of header values exist f
given name, all values are cleared and replaced with the new value.

The addHeader method adds a header value to the set of headers with a given name.
there are no headers already associated with the given name, this method will create a
set.

Headers may contain data that is better expressed as anint or a Date object. The
following convenience methods of theHttpServletResponse interface allow a servlet
to set a header using the correct formatting for the appropriate data type:

• setIntHeader

• setDateHeader

• addIntHeader

• addDateHeader
39 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

e
by

the
rvlet
.

ect
er

t be

the

e
hods

onse
data

tion
In order to be successfully transmitted back to the client, headers must be set before th
response is committed. Any headers set after the response is committed will be ignored
the servlet container.

Servlet programmers are resoponsible for ensuring that the Content-Type header is
appropriately set on the response object for the content the servlet is generating. Since
Http 1.1 specification does not require that this header be set on an HTTP response, se
containers must not set a default content type if the servlet programmer has not set one

5.3 Convenience Methods
The following convenience methods exist in theHttpServletResponse interface:

• sendRedirect

• sendError

The sendRedirect method will set the appropriate headers and content body to redir
the client to a different URL. It is legal to call this method with a relative URL path, howev
the underlying container must translate the relative path to a fully qualified URL for
transmission back to the client. If a partial URL is given and, for whatever reason, canno
converted into a valid URL, then this method must throw an
IllegalArgumentException .

The sendError method will set the appropriate headers and content body to return to
client. An optionalString argument can be provided to thesendError method which
can be used in the content body of the error.

These methods will have the side effect of committing the response, if it had not already
been committed, and terminating it. No further output to the client should be made by th
servlet after these methods are called. If data is written to the response after these met
are called, the data is ignored.

If data has been written to the response buffer, but not returned to the client (i.e. the resp
is not committed), the data in the response buffer must be cleared and replaced with the
set by these methods. If the response is committed, these methods must throw an
IllegalStateException .

TBD Make it clearer that these mechanisms should not destroy existing header informa
like Cookies
Chapter 5 The Response 40

PROPOSED FINAL DRAFT

rhaps
onse

a

e the

rvlet

the
5.4 Internationalization
In response to a request by a client to obtain a document of a particular language, or pe
due to preference setting by a client, a servlet can set the language attributes of a resp
back to a client. This information is communicated via theContent-Language header
along with other mechanisms described in the HTTP/1.1 specification. The language of
response can be set with thesetLocale method of theServletResponse interface.
This method must correctly set the appropriate HTTP headers to accurately communicat
Locale to the client.

For maximum benefit, thesetLocale method should be called by the Developer before
the getWriter method of theServletResponse interface is called. This will ensure
that the returnedPrintWriter is configured appropriately for the targetLocale .

If the setContentType method is called after thesetLocale method and there is a
charset component to the given content type, thecharset specified in the content type
overrides the value set via the call tosetLocale .

The default encoding of a response is “ISO-8859-1” if none has been specified by the se
programmer.

5.5 Closure of Response Object
A number of events can indicate that the servlet has provided all of the content to satisfy
request and that the response object can be considered to be closed. The events are:

• The termination of the service method of the servlet.

• When the amount of content specified in thesetContentLength method of the
response has been written to the response.

• The sendError method is called.

• The sendRedirect method is called.

When a response is closed, all content in the response buffer, if any remains, must be
immediately flushed to the client.
41 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

the
ts
b
be

e

t or
do
quest
web

s

ions
CHAPTER 6

Filtering

Filters are a new feature in the Java servlet API for version 2.3. This chapter describes
new API classes and methods that provide a lightweight framework for filtering of Servle
and static content in the API. It describes the ways that filters can be configured in a we
application, and describes some of the conventions and semantics around how they can
implemented.

Filters allow on the fly transformations of the payload and header information both of th
request in to a resource and on the response from a resource.

API documentation for this model is provided in the API definitions chapters of this
document. Configuration syntax for filters is given by the Document Type Definition in
Chapter 13. Both should be referenced when reading this chapter.

6.1 What is a filter?
A filter is a reusable piece of code that transforms either the content of an HTTP reques
response and can also modify header information. Filters differ from Servlets in that they
not themselves usually create a response, rather, they are there to modify or adapt the re
for a resource and modify or adapt the response from a request for a resource within the
application.

The main functionality areas that are available to the Filter author are

• They can intercept the invocation of a servlet or static resource before the resource i
invoked.

• They can look at the request for a resource before it is invoked.

• They can modify the request headers and request data by providing customized vers
of the request object that wrap the real request.

• They can modify the response headers and response data by providing customized
versions of the response object that wrap the real response.
 Filtering 42

PROPOSED FINAL DRAFT

in a

e in

tent

be
.
by

of

the
• They can intercept the invocation of a resource after the it is called.

• They can be configured to act on a Servlet, on groups of Servlets or static content

• Servlets or static content can be configured to be filtered by zero, one or more filters
specifiable order.

6.1.1 Examples of Filtering Components
• Authentication Filters

• Logging and Auditing Filters

• Image conversion Filters

• Data compression Filters

• Encryption Filters

• Tokenizing Filters

• Filters that trigger resource access events

• XSL/T filters that transform XML content

• Mime-type chain Filters

6.2 Main Concepts
The main concepts in this filtering model are described in this section.

The application developer creates a filter by implementing the javax.servlet.Filter interfac
the Java Servlet API and must provide a public constructor taking no arguments. The
implementation class is packaged in the Web Archive along with the rest of the static con
and Servlets that make up the web application. Each Filter is declared using the <filter>
syntax in the deployment descriptor. A Filter or collection of Filters can be configured to
invoked by defining a number of <filter-mapping> elements in the deployment descriptor
The syntax associates the filter or group of filters with a particular Servlet. This is done
mapping a filter to a particular servlet by the servlet’s logical name, or mapping to a group
Servlets and static content resources by mapping a filter to a url pattern.

6.2.1 Filter Lifecycle

After the time when the web application containing filters is deployed, and before an
incoming request for a resource in the web application causes a the container to access
resource and serve it back, the container must look through the list of filter mappings to
43 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

ed
that

nd
r.

list

r
filter

of

d)

t

locate the list of filters that must be applied to the resource. How this list is built is describ
below. The container must ensure at some point in this time that, for each filter instance
is to be applied, it has instantiated a filter of the appropriate class, and called
setFilterConfig(FilterConfig config) on each filter instance in the list. The
container must ensure that only one instance of a filter per <filter> declaration in the
deployment descriptor is instantiated per Java Virtual Machine of the container. The
container also ensures that thejavax.servlet.FilterConfig instance that is passed
in to this call has been initialized with the filter name as declared in the deployment
descriptor for that filter, with the reference to the ServletContext for this web application a
with the set of initialization parameters declared for the filter in the deployment descripto

When the container receives the incoming request, it takes the first filter instance in the
and calls itsdoFilter() method, passing in theServletRequest and
ServletResponse , and a reference to theFilterChain object it will use.

The doFilter() method of a Filter will typically be implemented following this or some
subset of this pattern

1) It will examine the request headers

2) It may wrap the request object passed into itsdoFilter() method with a customized
implementation of ServletRequest or HttpServletRequest if it wishes to modify request
headers or data.

3) It may wrap the response object passed in to itsdoFilter() method with a customized
implementation of ServletRequest or HttpServletRequest if it wishes to modify response
headers or data.

4) It can make an invocation of the next entity in the filter chain. If this filter is the last filte
in the chain that ends with the target servlet or static resource, the next entity is the next
that was configured in the deployment descriptor, if it is not, it is the resource at the end
the chain. It does this by calling thedoFilter() method on the chain object (passing in
the request and response it was called with, or the wrapped versions it may have create

Alternatively, it can choose to block the request by not making the call to invoke the nex
entity. In the latter case, the filter is responsible for filling out the response.

5) It may examine response headers after it has invoked the next filter in the chain.

6) Alternatively, the Filter may throw an exception to indicate an error in processing.

Before the container can remove filter instances at the end of the lifetime of a web
application, it must call thesetFilterConfig() method on the Filter passing in null to
indicate that the Filter is being taken out of service.
Chapter 6 Filtering 44

PROPOSED FINAL DRAFT

ent
to the

t,

filter-
the
e>

rn>
6.2.2 Filter environment

A set of initialization parameters can be associated with a filter using the init-params elem
in the deployment descriptor. The names and values of these parameters are available
Filter at runtime via thegetInitParameter andgetInitParameterNames
methods on the filter’sFilterConfig . Additionally, theFilterConfig affords access
to the ServletContext of the web application for the loading of resources, for logging
functionality or for storage of state in theServletContext’s attribute list.

6.2.3 Configuration of Filters in a Web Application

A Filter is defined in the deployment descriptor using the <filter> element. In this elemen
the programmer declares the

filter-name - this is used to map the filter to a servlet or URL

filter-class - this is used by the container to identify the filter type

init-params - the initialization parameters for a filter

and optionally can specify icons, a textual description and a display name for tool
manipulation.

Once a Filter has been declared in the deployment descriptor, the assembler uses the <
mapping> element to define to which Servlets and static resources in the web application
Filter is to be applied. Filters can be associated with a Servlet by using the <servlet-nam
style

<filter-mapping>

<filter-name>Image Filter</filter-name>

<servlet-name>ImageServlet</servlet-name>

</filter-mapping>

In this case the Image Filter is applied to the Servlet with servlet-name ‘Image Servlet’.

Filters can be associated with groups of Servlets and static content using the <url-patte
style of filter mapping:-

<filter-mapping>

<filter-name>Logging Filter</filter-name>
45 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

the

t
les

nts

nts
<url-pattern>/*</url-pattern>

</filter-mapping>

In this case, the Logging Filter is applied to all the Servlets and static content pages in
web application, because every request URI matches the ‘/*’ URL pattern.

When processing a filter-mapping element using the url-pattern style, the container mus
determine whether the URL pattern matches the request URI using the path mapping ru
defined in 12.1.

The order in which the container builds the chain of filters to be applied for a particular
request URI is

1) The URL pattern matching filter-mappings in the same as the order that those eleme
appear in the deployment descriptor, and then

2) The servlet-name matching filter-mappings in the same as the order that those eleme
appear in the deployment descriptor
Chapter 6 Filtering 46

PROPOSED FINAL DRAFT
47 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

tive
nt
ver

er in

sion
the

me of
CHAPTER 7

Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build effec
web applications, it is imperative that a series of different requests from a particular clie
can be associated with each other. Many strategies for session tracking have evolved o
time, but all are difficult or troublesome for the programmer to use directly.

This specification defines a simpleHttpSession interface that allows a servlet container
to use any number of approaches to track a user’s session without involving the Develop
the nuances of any one approach.

7.1 Session Tracking Mechanisms
There are several strategies to implement session tracking.

7.1.1 URL Rewriting

URL rewriting is the lowest common denominator of session tracking. In cases where a
client will not accept a cookie, URL rewriting may be used by the server to establish ses
tracking. URL rewriting involves adding data to the URL path that can be interpreted by
container on the next request to associate the request with a session.

The session id must be encoded as a path parameter in the resulting URL string. The na
the parameter must bejsessionid . Here is an example of a URL containing encoded
path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234
 Sessions 48

PROPOSED FINAL DRAFT

nd is
lient.

g

as a

ata to

g
ent

until

the

o

7.1.2 Cookies

Session tracking through HTTP cookies is the most used session tracking mechanism a
required to be supported by all servlet containers. The container sends a cookie to the c
The client will then return the cookie on each subsequent request to the server
unambiguously associating the request with a session. The name of the session trackin
cookie must beJSESSIONID.

7.1.3 SSL Sessions

Secure Sockets Layer, the encryption technology which is used in the HTTPS protocol, h
mechanism built into it allowing multiple requests from a client to be unambiguously
identified as being part of an accepted session. A servlet container can easily use this d
serve as the mechanism for defining a session.

7.1.4 Session Integrity

Web containers must be able to support the integrity of the HTTP session when servicin
HTTP requests from clients that do not support the use of cookies. To fulfil this requirem
in this scenario, web containers commonly support the URL rewriting mechanism.

7.2 Creating a Session
Because HTTP is a request-response based protocol, a session is considered to be new
a client “joins” it. A client joins a session when session tracking information has been
successfully returned to the server indicating that a session has been established. Until
client joins a session, it cannot be assumed that the next request from the client will be
recognized as part of the session.

The session is considered to be “new” if either of the following is true:

• The client does not yet know about the session

• The client chooses not to join a session. This implies that the servlet container has n
mechanism by which to associate a request with a previous request.
49 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

as

ject,

sion.

is no
A Servlet Developer must design their application to handle a situation where a client h
not, can not, or will not join a session.

7.3 Session Scope
HttpSession objects must be scoped at the application / servlet context level. The
underlying mechanism, such as the cookie used to establish the session, can be shared
between contexts, but the object exposed, and more importantly the attributes in that ob
must not be shared between contexts.

7.4 Binding Attributes into a Session
A servlet can bind an object attribute into anHttpSession implementation by name. Any
object bound into a session is available to any other servlet that belongs to the same
ServletContext and that handles a request identified as being a part of the same
session.

Some objects may require notification when they are placed into, or removed from, a ses
This information can be obtained by having the object implement the
HttpSessionBindingListener interface. This interface defines the following
methods that will signal an object being bound into, or being unbound from, a session.

• valueBound

• valueUnbound

The valueBound method must be called before the object is made available via the
getAttribute method of theHttpSession interface. ThevalueUnbound method
must be called after the object is no longer available via thegetAttribute method of the
HttpSession interface.

7.5 Session Timeouts
In the HTTP protocol, there is no explicit termination signal when a client is no longer
active. This means that the only mechanism that can be used to indicate when a client
longer active is a timeout period.
Chapter 7 Sessions 50

PROPOSED FINAL DRAFT

sion is
servlet

object
ces

ion
able

ch as
The default timeout period for sessions is defined by the servlet container and can be
obtained via thegetMaxInactiveInterval method of theHttpSession interface.
This timeout can be changed by the Developer using thesetMaxInactiveInterval of
the HttpSession interface. The timeout periods used by these methods is defined in
seconds. If the timeout period for a session is set to-1 , the session will never expire.

7.6 Last Accessed Times
The getLastAccessedTime method of theHttpSession interface allows a servlet
to determine the last time the session was accessed before the current request. The ses
considered to be accessed when a request that is part of the session is handled by the
context.

7.7 Important Session Semantics

7.7.1 Threading Issues

Multiple servlets executing request threads may have active access to a single session
at the same time. The Developer has the responsibility to synchronize access to resour
stored in the session as appropriate.

7.7.2 Distributed Environments

Within an application that is marked as distributable, all requests that are part of a sess
can only be handled on a single VM at any one time. In addition the container must be
to handle all objects placed into instances of theHttpSession class using the
setAttribute or putValue methods approriately.

• The container must accept objects that implement the Serializable interface

• The container may choose to support storage of other objects in the HttpSession (su
references to Enterprise JavaBeans and transactions), migration of sessions will be
handled by container-specific facilities.

The servlet container may throw anIllegalArgumentException if a object is placed
into the session which does not fall into either these two categories for which it cannot
support the mechanism necessary for migration of the session.
51 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

rom

,

call

d.

e

er
m all
For
re
These restrictions mean that the Developer is ensured that there are no additional
concurrency issues beyond those encountered in a non-distributed container.

The Container Provider can ensure scalability and quality of service features like load-
balancing and failover by having the ability to move a session object, and its contents, f
any active node of the distributed system to a different node of the system.

If distributed containers persist or migrate sessions to provide quality of service features
they are not restricted to using the native JVM Serialization mechanism for serializing
HttpSessions and their attributes. Developers are not guaranteed that containers will
readObject () andwriteObject () methods on session attributes if they implement
them, but are guaranteed that the Serializable closure of their attributes will be preserve

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of a session. They must notify
listeners of passivation prior to serialization of a session, and of activation after de-
serialization of a session.

Developers writing distributed applications must that since the container may run in mor
than on Java VM, the developer cannot depend static or instance variables for storing
application state. They should store such state using an EJB or a database.

7.7.3 Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the web brows
process and are not associated with any particular window of a the browser, requests fro
windows of a client application to a servlet container might be part of the same session.
maximum portability, the Developer should always assume that all windows of a client a
participating in the same session.
Chapter 7 Sessions 52

PROPOSED FINAL DRAFT
53 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

h

CHAPTER 8

Dispatching Requests

When building a web application, it is often useful to forward processing of a request to
another servlet, or to include the output of another servlet in the response. The
RequestDispatcher interface provides a mechanism to accomplish this.

8.1 Obtaining a RequestDispatcher
An object implementing theRequestDispather interface may be obtained from the
ServletContext via the following methods:

• getRequestDispatcher

• getNamedDispatcher

The getRequestDispatcher method takes aString argument describing a path
within the scope of theServletContext . This path must be relative to the root of the
ServletContext . This path is used to look up a servlet, wrap it with a
RequestDispatcher object, and return it. If no servlet can be resolved based on the
given path, aRequestDispatcher is provided that simply returns the content for that
path.

ThegetNamedDispatcher method takes aString argument indicating the name of a
servlet known to theServletContext . If a servlet is known to theServletContext
by the given name, it is wrapped with aRequestDispatcher object and returned. If no
servlet is associated with the given name, the method must returnnull .

To allow RequestDispatcher objects to be obtained using relative paths, paths whic
are not relative to the root of theServletContext but instead are relative to the path of
the current request, the following method is provided in theServletRequest interface:

• getRequestDispatcher
 Dispatching Requests 54

PROPOSED FINAL DRAFT

e
n the

e

t has
ring
ith

ame
The behavior of this method is similar to the method of the same name in the
ServletContext , however it does not require a complete path within the context to b
given as part of the argument to operate. The servlet container can use the information i
request object to transform the given relative path to a complete path. For example, in a
context rooted at’/’ , a request to
/garden/tools.html , a request dispatcher obtained via
ServletRequest.getRequestDispatcher("header.html") will behave
exactly like a call to ServletContext.getRequestDispatcher("/garden/
header.html") .

8.1.1 Query Strings in Request Dispatcher Paths

In theServletContext andServletRequest methods which allow the creation of a
RequestDispatcher using path information, optional query string information may b
attached to the path. For example, a Developer may obtain aRequestDispatcher by
using the following code:
String path = “/raisons.jsp?orderno=5”;
RequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(request, response);

The contents of the query string are added to the parameter set that the included servle
access to. The parameters are ordered so that any parameters specified in the query st
used to create theRequestDispatcher take precedence. The parameters associated w
a RequestDispatcher are only scoped for the duration of theinclude or forward call.

8.2 Using a Request Dispatcher
To use a request dispatcher, a developer needs to call either theinclude or forward
method of theRequestDispatcher interface using therequest andresponse
arguments that were passed in via theservice method of theServlet interface.

The Container Provider must ensure that the dispatch to a target servlet occurs in the s
thread of the same VM as the original request.
55 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

uffer

Any

t

ath
8.3 Include
The include method of theRequestDispatcher interface may be called at any time.
The target servlet has access to all aspects of the request object, but can only write
information to theServletOutputStream or Writer of the response object as well as
the ability to commit a response by either writing content past the end of the response b
or explicitly calling theflush method of theServletResponse interface. The included
servlet cannot set headers or call any method that affects the headers of the response.
attempt to do so should be ignored.

8.3.1 Included Request Parameters

When a servlet is being used from within aninclude , it is sometimes necessary for that
servlet to know the path by which it was invoked and not the original request paths. The
following request attributes are set:
javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

These attributes are accessible from the included servlet via thegetAttribute method
on therequest object.

If the included servlet was obtained by using aNamedDispatcher , these attributes are
not set.

8.4 Forward
The forward method of theRequestDispatcher interface may only be called by the
calling servlet if no output has been committed to the client. If output data exists in the
response buffer that has not been committed, the content must cleared before the targe
servlet’sservice method is called. If the response has been committed, an
IllegalStateException must be thrown.

The path elements of the request object exposed to the target servlet must reflect the p
used to obtain theRequestDispatcher . The only exception to this is if the
RequestDispatcher was obtained via thegetNamedDispatcher method. In this
case, the path elements of the request object reflect those of the original request.
Chapter 8 Dispatching Requests 56

PROPOSED FINAL DRAFT

r

Before theforward method of theRequestDispatcher interface returns, the
response must be committed and closed by the servlet container.

8.4.1 Query String

The request dispatching mechanism aggregate query string parameters on forwarding o
including requests.

8.5 Error Handling
Only runtime exceptions and checked exceptions of typeServletException or
IOException should be propagated to the calling servlet if thrown by the target of a
request dispatcher. All other exceptions should be wrapped as aServletException and
the root cause of the exception set to the original exception.
57 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

 - PROPOSED FINAL DRAFT

t can

e

. For

e.

ust

ation
CHAPTER 9

Web Applications

A web application is a collection of servlets, html pages, classes, and other resources tha
be bundled and run on multiple containers from multiple vendors. A web application is
rooted at a specific path within a web server. For example, a catalog application could b
located athttp://www.mycorp.com/catalog . All requests that start with this prefix
will be routed to theServletContext which represents the catalog application.

A servlet container can also establish rules for automatic generation of web applications
example a~user/ mapping could be used to map to a web application based at/home/
user/public_html/ .

By default an instance of a web application must only be run on one VM at any one tim
This behavior can be overridden if the application is marked as “distributable” via its the
deployment descriptor. When an application is marked as distributable, the Developer m
obey a more restrictive set of rules than is expected of a normal web application. These
specific rules are called out throughout this specification.

9.1 Relationship to ServletContext
The servlet container must enforce a one to one correspondence between a web applic
and aServletContext . A ServletContext object can be viewed as a Servlet’s
view onto its application.

9.2 Elements of a Web Application
A web application may consist of the following items:

• Servlets
 Web Applications 58

PROPOSED FINAL DRAFT

, an

hy
r a

the

nd
e

• JavaServer Pages1

• Utility Classes

• Static documents (html, images, sounds, etc.)

• Client side applets, beans, and classes

• Descriptive meta information which ties all of the above elements together.

9.3 Distinction Between Representations
This specification defines a hierarchical structure which can exist in an open file system
archive file, or some other form for deployment purposes. It is recommended, but not
required, that servlet containers support this structure as a runtime representation.

9.4 Directory Structure
A web application exists as a structured hierarchy of directories. The root of this hierarc
serves as a document root for serving files that are part of this context. For example, fo
web application located at/catalog in a web server, theindex.html file located at the
base of the web application hierarchy can be served to satisfy a request to/catalog/
index.html .

A special directory exists within the application hierarchy named “WEB-INF”. This
directory contains all things related to the application that aren’t in the document root of
application. It is important to note that theWEB-INF node is not part of the public document
tree of the application. No file contained in theWEB-INF directory may be served directly
to a client.

The contents of theWEB-INF directory are:

• /WEB-INF/web.xml deployment descriptor

• /WEB-INF/classes/* directory for servlet and utility classes. The classes in this
directory are used by the application class loader to load classes from.

• /WEB-INF/lib/*.jar area for Java ARchive files which contain servlets, beans, a
other utility classes useful to the web application. All such archive files are used by th
web application class loader to load classes from.

1. See the JavaServer Pages specification available from http://java.sun.com/products/jsp.
59 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

and

hive

nto a

ner
The web application classloader loads classes first from the WEB-INF/classes directory
then from library JARs in the WEB-INF/lib directory. For the latter case, the classloader
should attempt to load from library JARs in the same order that they appear as WAR arc
entries.

9.4.1 Sample Web Application Directory Structure

Illustrated here is a listing of all the files in a sample web application:

/index.html

/howto.jsp

/feedback.jsp

/images/banner.gif

/images/jumping.gif

/WEB-INF/web.xml

/WEB-INF/lib/jspbean.jar

/WEB-INF/classes/com/mycorp/servlets/MyServlet.class

/WEB-INF/classes/com/mycorp/util/MyUtils.class

9.5 Web Application Archive File
Web applications can be packaged and signed, using the standard Java Archive tools, i
Web ARchive format (war) file. For example, an application for issue tracking could be
distributed in an archive with the filenameissuetrack.war .

When packaged into such a form, a META-INF directory will be present which contains
information useful to the Java Archive tools. If this directory is present, the servlet contai
must not allow it be served as content to a web client’s request.
Chapter 9 Web Applications 60

PROPOSED FINAL DRAFT

r 13,

s

ary

ies,
ave.

he
nd

s are
t

t. In
try
e/
9.6 Web Application Configuration Descriptor
The following types of configuration and deployment information exist in the web
application deployment descriptor:

• ServletContext Init Parameters

• Session Configuration

• Servlet / JSP Definitions

• Servlet / JSP Mappings

• Mime Type Mappings

• Welcome File list

• Error Pages

• Security

All of these types of information are conveyed in the deployment descriptor (See Chapte
“Deployment Descriptor”).

9.6.1 Dependencies on extensions: Container Library File

Groups of applications commonly make use of the code or resources contained in a libr
file or files installed container-wide in current implementations of web containers. The
application developer needs to be able to know what extensions are installed on a web
container for portability, and in creating a web application that may depend on such librar
containers need to know what dependencies on such libraries Servlets in a WAR may h

Web containers are recommended to have a mechanism by which they can expose to t
application classloaders of every web app therein extra JAR files containing resources a
code. It is recommended that they provide a user-friendly way of editing and configuring
these library files or extensions, and that they expose information about what extension
available to web applications deployed on the web container. Application developers tha
depend on the installation of library JARs installed on a web container should provide a
META-INF/MANIFEST.MF entry in the WAR file listing the extensions that the WAR
depends upon. The format of the manifest entry follows the standard JAR manifest forma
expressing dependencies on extensions installed on the web container, the manifest en
should follow the specification for standard extensions defined at http://java.sun.com/j2s
1.3/docs/guide/extensions/versioning.html.
61 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

in the

ld

R to
the

tion
h a
ainer-

l to

h to

are
error
Web Containers should be able to recognize such declared dependencies as expressed
optional manifest entry in a WAR file, or in the manifest entry of any of the library JARs
under the WEB-INF/lib entry in a WAR. If a web container is not able to satisfy the
dependencies that a WAR has on a particular extension declared in this manner, it shou
reject the application with an informative error message.

9.6.2 Web Application Classloader

The classloader that a container uses to load a servlet in a WAR must not allow the WA
override JDK or Java Servlet API classes, and is recommended not to allow Servlets in
WAR visibility of the web containers implementation classes.

If a web container has a mechanism for exposing container-wide library JARs to applica
classloaders, it is recommended that the application classloader be implemented in suc
way that classes packaged within the WAR are able to override classes residing in cont
wide library JARs.

9.7 Replacing a Web Application
Applications evolve and must occasionally be replaced. In a long running server it is idea
be able to load a new web application and shut down the old one without restarting the
container. When an application is replaced, a container should provide a robust approac
preserving session data within that application.

9.8 Error Handling
A web application may specify that when errors occur, other resources in the application
used. These resources are specified in the deployment descriptor. If the location of the
handler is a servlet or a JSP, the following request attributes can be set:

• javax.servlet.error.status_code

• javax.servlet.error.exception_type

• javax.servlet.error.message

• javax.servlet.error.exception

• javax.servlet.error.request_uri
Chapter 9 Web Applications 62

PROPOSED FINAL DRAFT

us
RI of

ust
r that
lass.
rce

e is set

ion
m is

tial
ntry
valid
hat
in
t/

list
file
er a
e

the

rn
These attributes allow the servlet to generate specialized content depending on the stat
code, exception type, message of the error, the exception object itself, and the request U
the Servlet in which the error occurred. The types of the attribute objects are
java.lang.Integer, java.lang.Class and java.lang.String.
java.lang.Throwable and java.lang.String respectively.

With the introduction of the exception object to this attributes list for version 2.3 of this
specification, the exception type and error message attributes are redundant. They are
retained for backwards compatibility with earlier versions of the API.

The deployment descriptor defines a list of error page descriptions that the container m
examine when a Servlet generates an error. The container examines the list in the orde
it is defined, and attempts to match the error condition, by status code or by exception c
On the first successful match of the error condition the container serves back the resou
defined in the corresponding location.

If a Servlet generates an error, the container must ensure the status code of the respons
to status code 500.

9.9 Welcome Files
Web Application developers can define an ordered list of partial URIs in the web applicat
deployment descriptor known as welcome files. The deployment syntax for this mechanis
described in the web application deployment descriptor DTD.

The purpose of this mechanism is to allow the deployer to specify an ordered list of par
URIs for the container to append to a request for a URI that corresponds to a directory e
in the WAR that is not mapped to a web component. Such a request is known here as a
partial request. The most common example is to define a welcome file of ‘index.html’ so t
a request to a URL like ‘host:port/webapp/directory’ where ‘directory’ is a directory entry
the WAR that is not mapped to a Servlet or JSP is served back to the client as ‘host:por
webapp/directory/index.html’.

If a web container receives a valid partial request, the web container must examine the
welcome file list defined in the deployment descriptor. The welcome file list is an ordered
of partial URLs with no trailing or leading /. The web server must append each welcome
in the order specified in the deployment descriptor to the partial request and check wheth
resource in the WAR is mapped to that request URI. The web container must forward th
request to the first resource in the WAR that matches.

If no matching welcome file is found in the manner described, the container may handle
request in a manner it finds suitable. For some configurations this may mean invoking a
default file servlet, or serving back a directory listing; for other configurations it may retu
a 404 response.
63 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

ry

s to
the

b

is

y

Consider a web application where

• The deployment descriptor lists index.html, default.jsp as its welcome files.

• Servlet A is exact mapped to /foo/bar

The static content in the WAR is as follows

/foo/index.html

/foo/default.html

/foo/orderform.html

/foo/home.gif

/catalog/default.jsp

/catalog/products/shop.jsp

/catalog/products/register.jsp

• A request URI of /foo or /foo/ will be forwarded to /foo/index.html

• A request URI of /catalog/ will be forwarded to /catalog/default.jsp

• A request URI of /catalog/index.html will cause a 404 not found

• A request URI of /catalog/products/ may cause a 404 not found, may cause a directo
listing of shop.jsp or register.jsp, or other behavior suitable for the container.

9.10 Web Application Environment
Java 2 Platform Enterprise Edition defines a naming environment that allows application
easily access resources and external information without the explicit knowledge of how
external information is named or organized.

As servlets are an integral component type of J2EE, provision has been made in the we
application deployment descriptor for specifying information allowing a servlet to obtain
references to resources and enterprise beans. The deployment elements that contain th
information are:

• env-entry

• ejb-ref

• resource-ref

The env-entry element contains information to set up basic environment entry names
relative to thejava:comp/env context, the expected Java type of the environment entr
value (the type of object returned from the JNDI lookup method), and an optional
Chapter 9 Web Applications 64

PROPOSED FINAL DRAFT

a

re

t

,
ng.
environment entry value. Theejb-ref element contains the information needed to allow
servlet to locate the home interfaces of a enterprise bean. Theresource-ref element
contains the information needed to set up a resource factory.

The requirements of the J2EE environment with regards to setting up the environment a
described in Chapter 5 of the Java 2 Platform Enterprise Edition v 1.3 specification1. Servlet
containers that are not part of a J2EE compliant implementation are encouraged, but no
required, to implement the application environment functionality described in the J2EE
specification. If they do not implement the facilities required to support this environment
upon deploying an application that relies on them, the container should provide a warni

1. The J2EE specification is available athttp://java.sun.com/j2ee
65 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

the

n be

s made

the
e

ach
CHAPTER 10

Application Lifecycle Events

10.1 Introduction
New for the Servlet Specification v2.3 is support for application level events. Application
events give the web application developer greater control over interactions with the
ServletContext andHttpSession objects, allow for better code factorization and
increased efficiency in managing resources that the web application uses.

10.2 Event Listeners
In extending the Java Servlet API to support event notifications for the state changes in
servlet context and http session objects, the developer has a greater ability to manage
resources and state at the logical level of the web application. Servlet context listeners ca
used to manage resources or state held at a VM level for the application. Http session
listeners can be used to manage state or resources associated with a series of request
into a web application from the same client or user.

Event listeners are Java classes following the JavaBeans design. They are provided by
developer in the WAR. They implement one or more of the event listener interfaces in th
Servlet API v 2.3 and are instantiated and registered in the web container at the time of
deployment of the web application. There may be multiple listener classes listening to e
event type, and the developer may specify the order in which the container invokes the
listener beans for each event type.

The events are shown in the following table, together with the listener interfaces.
 Application Lifecycle Events 66

PROPOSED FINAL DRAFT

e a
ion

store

wn,
e

For details on the API, refer to the API reference at the end of this document.

To illustrate one possible use of the event scheme, consider a simple web application
containing a number of servlets that make use of a database. The developer can provid
servlet context listener class that manages the database connection. When the applicat
starts up the listener class is notified and so has the chance to log on to the database and
the connection in the servlet context. Any servlet in the application may access the
connection during activity in the web application. When either the web server is shut do
or the application is removed from the web server, the listener class is notified and so th
database connection can be at that point closed.

Event Type Description
Listener Interface

Servlet Context
Events

Lifecycle The servlet context has
just been created and is
available to service its first
request, or the servlet con-
text is about to be shut
down

javax.servlet.ServletCon-
textListener

Changes to attributes Attributes on the servlet
context have been added,
removed or replaced.

javax.servlet.ServletContex-
tAttributesListener

Http Session Events
Lifecycle An HttpSession has just

been created, or has been
invalidated or timed out

javax.servlet.http.HttpSes-
sionListener

Changes to attributes Attributes have been
added, removed or
replaced on an HttpSes-
sion

javax.servlet.HttpSession-
AttributesListener
67 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

f the
ctor

WEB-

by
web

ing
ach
ent in

ns

cle

t

10.3 Configuration of Listener Classes
The developer of the web application writes listener classes to implement one or more o
four listener classes in the Servlet API. Each listener class must provide a public constru
taking no arguments. The listener classes are packaged into the WAR, either under the
INF/classes archive entry, or inside a JAR in the WEB-INF/lib directory.

Listener classes are declared in the web application deployment descriptor using the
<listener> element. The web application deployment descriptor lists the listener classes
classname in the order that it wishes them to be invoked if there are more than one. The
container is responsible for creating an instance of each listener class defined in the
deployment descriptor and registering it for event notifications prior to the first request be
serviced by the application. The web container checks the interfaces implemented by e
listener class and registers the listener instances according to the interfaces they implem
the order that they appear in the deployment descriptor.

On application shutdown, all listeners to sessions must be notified of session invalidatio
prior to context listeners being notified of application shutdown. They are notified in the
reverse order they were specified in the deployment descriptor.
ServletContextListeners are notified of shutdown in the reverse order that they
were specified in the deployment descriptor.

Here is an example of the deployment grammar for registering two servlet context lifecy
listeners and anHttpSession listener. Suppose that
com.acme.MyConnectionManager and com.acme.MyLoggingModule both implemen
javax.servlet.ServletContextListener , and that
com.acme.MyLoggingModule additionally implements
javax.servlet.HttpSessionListener . Also the developer wishes for
com.acme.MyConnectionManager to be notified of servlet context lifecycle events
beforecom.acme.MyLoggingModule . Here is what the deployment descriptor for this
application would look like

<web-app>

<display-name>MyListeningApplication<display-name>

<listener>

<listener-class>com.acme.MyConnectionManager</listener-class>

</listener>

<listener>

<listener-class>com.acme.MyLoggingModule</listener-class>

</listener>
Chapter 10 Application Lifecycle Events 68

PROPOSED FINAL DRAFT

tion
t
.

uests

alid
<servlet>

<display-name>RegistrationServlet</display-name>

...etc

...etc

</web-app>

10.4 Listener Instances and Threading
The container is required to complete instantiation of the listener classes in a web applica
prior to the start of execution of the first request into the application. The container mus
reference each listener instance until the last request is serviced for the web application

Attribute list changes on both the servlet context and the http session object may occur
concurrently. The container is not required to synchronize the resulting notifications to
attribute listener classes. Listener beans that maintain state hold the responsibility for
ensuring integrity of data by handling this case explicitly.

10.5 Distributed Containers
In distributed web containers, Http session instances are scoped to the VM servicing req
within the session, and the servlet context is scoped to one per web container VM.
Distributed containers are not required to propogate either servlet context events or Http
session events in a distributed manner. Listener class instances are scoped to one per
declaration in the deployment descriptor per Java Virtual Machine.

10.6 Session Events- Invalidation vs. Timeout
Listener classes provide the developer with a way of tracking sessions within a web
application. It is often useful in tracking sessions to know whether a session became inv
because the container timed out the session or because a web component within the
69 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

ith
application invalidated it using the invalidate() method. There is currently sufficient API w
the listeners and API methods on theHTTPSession class to determine this situation
indirectly.
Chapter 10 Application Lifecycle Events 70

PROPOSED FINAL DRAFT
71 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

web
s it

heir
s in

the
In
the
RL

sion

t to
for
CHAPTER 11

Mapping Requests to Servlets

Previous versions of this specification have allowed servlet containers a great deal of
flexibility in mapping client requests to servlets only defining a set a suggested mapping
techniques. This specification now requires a set of mapping techniques to be used for
applications which are deployed via the Web Application Deployment mechanism. Just a
is highly recommended that servlet containers use the deployment representations as t
runtime representation, it is highly recommended that they use these path mapping rule
their servers for all purposes and not just as part of deploying a web application.

11.1 Use of URL Paths
Servlet containers must use URL paths to map requests to servlets. The container uses
RequestURI from the request, minus the Context Path, as the path to map to a servlet.
determining the part of the URL signifying the context path, the container must choose
longest matching available context path from the list of web applications it hosts. The U
path mapping rules are as follows (where the first match wins and no further rules are
attempted):

1. The servlet container will try to match the exact path of the request to a servlet.

2. The container will then try to recursively match the longest path prefix mapping. This
process occurs by stepping down the path tree a directory at a time, using the’/’
character as a path separator, and determining if there is a match with a servlet.

3. If the last node of the url-path contains an extension (.jsp for example), the servlet
container will try to match a servlet that handles requests for the extension. An exten
is defined as the part of the path after the last’.’ character.

4. If neither of the previous two rules result in a servlet match, the container will attemp
serve content appropriate for the resource requested. If a "default" servlet is defined
the application, it will be used in this case.
 Mapping Requests to Servlets 70

PROPOSED FINAL DRAFT

ase-

g
uest

gs
Containers must attempt path matching according to the rules set out here by making c
sensitive string comparisons.

11.2 Specification of Mappings
In the web application deployment descriptor, the following syntax is used to define
mappings:

• A string beginning with a‘/’ character and ending with a‘/*’ postfix is used as a path
mapping.

• A string beginning with a‘*.’ prefix is used as an extension mapping.

• All other strings are used as exact matches only

• A string containing only the’/’ character indicates that servlet specified by the mappin
becomes the "default" servlet of the application. In this case the servlet path is the req
URI minus the context path and the path info is null.

11.2.1 Implicit Mappings

If the container has an internal JSP container, the*.jsp extension is implicitly mapped to
it so that JSP pages may be executed on demand. If the web application defines a*.jsp
mapping, its mapping takes precedence over this implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappin
take precedence. For example, an implicit mapping of*.shtml could be mapped by a
container to a server side include functionality.

11.2.2 Example Mapping Set

Consider the following set of mappings:

Table 3: Example Set of Maps

path pattern servlet

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3
71 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

’t
The following behavior would result:

Note that in the case of/catalog/index.html and/catalog/racecar.bop , the
servlet mapped to “/catalog ” is not used as it is not an exact match and the rule doesn
include the ’*’ character.

*.bop servlet4

Table 4: Incoming Paths applied to Example Maps

incoming path servlet handling request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html “default” servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

Table 3: Example Set of Maps

path pattern servlet
Chapter 11 Mapping Requests to Servlets 72

PROPOSED FINAL DRAFT
73 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

s the

oyed

this

itive

urity
to
ay

er

e

is
CHAPTER 12

Security

Web applications are created by a Developer, who then gives, sells, or otherwise transfer
application to the Deployer for installation into a runtime environment. It is useful for the
Developer to communicate attributes about how the security should be set up for a depl
application.

As with the web application directory layout and deployment descriptor, the elements of
section are only required as a deployment representation, not a runtime representation.
However, it is recommended that containers implement these elements as part of their
runtime representation.

12.1 Introduction
A web application contains many resources that can be accessed by many users. Sens
information often traverses unprotected open networks, such as the Internet. In such an
environment, there is a substantial number web applications that have some level of sec
requirements. Most servlet containers have the specific mechanisms and infrastructure
meet these requirements. Although the quality assurances and implementation details m
vary, all of these mechanisms share some of the following characteristics:

• Authentication: The mechanism by which communicating entities prove to one anoth
that they are acting on behalf of specific identities.

• Access control for resources:The mechanism by which interactions with resources ar
limited to collections of users or programs for the purpose of enforcing availability,
integrity, or confidentiality.

• Data Integrity: The mechanism used to prove that information could not have been
modified by a third party while in transit.

• Confidentiality or Data Privacy: The mechanism used to ensure that the information
only made available to users who are authorized to access it and is not compromised
during transmission.
 Security 74

PROPOSED FINAL DRAFT

,
e
eb

f the
er
by

a

lone

he
ne

the
user.

he
12.2 Declarative Security
Declarative security refers to the means of expressing an application’s security structure
including roles, access control, and authentication requirements in a form external to th
application. The deployment descriptor is the primary vehicle for declarative security in w
applications.

The Deployer maps the application’s logical security requirements to a representation o
security policy that is specific to the runtime environment. At runtime, the servlet contain
uses the security policy that was derived from the deployment descriptor and configured
the deployer to enforce authentication and authorization.

The security model is declared in this way to apply to both static content part of the web
application and to Servlets within the application that are requested by the client. The
security model does not intervene between a Servlet using theRequestDispatcher to
invoke a static resource or Servlet and the static resource or servlet being requested by
forward() or an include() .

12.3 Programmatic Security
Programmatic security is used by security aware applications when declarative security a
is not sufficient to express the security model of the application. Programmatic security
consists of the following methods of theHttpServletRequest interface:

• getRemoteUser

• isUserInRole

• getUserPrincipal

ThegetRemoteUser method returns the user name that the client authenticated with. T
isUserInRole queries the underlying security mechanism of the container to determi
if a particular user is in a given security role. ThegetUserPrinciple method returns a
java.security.Pricipal object.

These APIs allow servlets to make business logic decisions based on the logical role of
remote user. They also allow the servlet to determine the principal name of the current

If getRemoteUser returnsnull (which means that no user has been authenticated), t
isUserInRole method will always returnfalse and thegetUserPrincipal will
always returnnull .
75 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

be

ent
all.

the
pect
he

e
st
ped

r or

ated

ts
onal
role.

es.
e

isms:
The isUserInRole method expects a String rolename. In order that this rolename can
adjusted by the application assembler, or the deployer without having to recompile the
Servlet making the call, a <security-role-ref> element should be declared in the deploym
descriptor with the <role-name> sub-element containing the rolename passed into this c
The value of the <role-link> sub-element is the <role-name> of the <security-role> that
programmer is testing that the caller is mapped to or not. The container is required to res
this mapping of <security-role-ref> to <security-role> in this manner when determining t
return value of the call.

If, however, no <security-role-ref> has been declared with <role-name> that matches th
argument toisUserInRole , the container must default to checking the argument again
the list of <security-role>s for this web application to determine whether the caller is map
to the rolename passed in.

12.4 Roles
A role is an abstract logical grouping of users that is defined by the Application Develope
Assembler. When the application is deployed, these roles are mapped by a Deployer to
security identities, such as principals or groups, in the runtime environment.

A servlet container enforces declarative or programmatic security for the principal associ
with an incoming request based on the security attributes of that calling principal. For
example,

1. When a deployer has mapped a security role to a user group in the operational
environment. The user group to which the calling principal belongs is retrieved from i
security attributes. If the principal’s user group matches the user group in the operati
environment that the security role has been mapped to, the principal is in the security

2. When a deployer has mapped a security role to a principal name in a security policy
domain, the principal name of the calling principal is retrieved from its security attribut
If the principal is the same as the principal to which the security role was mapped, th
calling principal is in the security role.

12.5 Authentication
A web client can authenticate a user to a web server using one of the following mechan

• HTTP Basic Authentication

• HTTP Digest Authentication

• HTTPS Client Authentication
Chapter 12 Security 76

PROPOSED FINAL DRAFT

uests
string
ote
y
The
the

) or

on
he
ding
key

in

in
ation

age
fy
• Form Based Authentication

12.5.1 HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism defined in the HTTP/1.1
specification. This mechanism is based on a username and password. A web server req
a web client to authenticate the user. As part of the request, the web server passes the
called therealmof the request in which the user is to be authenticated. It is important to n
that the realm string of the Basic Authentication mechanism does not have to reflect an
particular security policy domain (which confusingly, can also be referred to as a realm).
web client obtains the username and the password from the user and transmits them to
web server. The web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol as the user password is
transmitted with a simple base64 encoding and the target server is not authenticated.
However, additional protection, such as applying a secure transport mechanism (HTTPS
using security at the network level (such as the IPSEC protocol or VPN strategies) can
alleviate some of these concerns.

12.5.2 HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user based
a username and a password. However the authentication is performed by transmitting t
password in an encrypted form which is much more secure than the simple base64 enco
used by Basic Authentication. This authentication method is not as secure as any private
scheme such as HTTPS Client Authentication. As Digest Authentication is not currently
widespread use, servlet containers are not required, but are encouraged, to support it.

12.5.3 Form Based Authentication

The look and feel of the “login screen” cannot be controlled with an HTTP browser’s built
authentication mechanisms. Therefore this specification defines a form based authentic
mechanism which allows a Developer to control the look and feel of the login screens.

The web application deployment descriptor contains entries for a login form and error p
to be used with this mechanism. The login form must contain fields for the user to speci
username and password. These fields must be named’j_username’ and
’j_password’ , respectively.
77 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

er has
, the
the

RL

error
se is

the

that

rd is

t the

is

t

e

When a user attempts to access a protected web resource, the container checks if the us
been authenticated. If so, and dependent on the user’s authority to access the resource
requested web resource is activated and returned. If the user is not authenticated, all of
following steps occur:

1. The login form associated with the security constraint is returned to the client. The U
path which triggered the authentication is stored by the container.

2. The client fills out the form, including the username and password fields.

3. The form is posted back to the server.

4. The container processes the form to authenticate the user. If authentication fails, the
page is returned using either a forward or a redirect and the status code of the respon
set to 401.

5. The authenticated principal is checked to see if it is in an authorized role for accessing
original web request.

6. The client is redirected to the original resource using the original stored URL path.

If the user is not successfully authenticated, the error page is returned to the client. It is
recommended that the error page contains information that allows the user to determine
the authorization failed.

Like Basic Authentication, this is not a secure authentication protocol as the user passwo
transmitted as plain text and the target server is not authenticated. However, additional
protection, such as applying a secure transport mechanism (HTTPS) or using security a
network level (IPSEC or VPN) can alleviate some of these concerns.

12.5.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implement. It
strongly recommended that form based login only be used when the session is being
maintained by cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login form mus
always be “j_security_check ”. This restriction is made so that the login form will
always work no matter what the resource is that requests it and avoids requiring that th
server to process the outbound form to correct the action field.

Here is an HTML sample showing how the form should be coded into the HTML page:
<form method=”POST” action=”j_security_check”>
<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>
</form>
Chapter 12 Security 78

PROPOSED FINAL DRAFT

al
uested

).

not

ed in

n is

iner
ne
ed to
If the form based login mechanism is invoked as a result of a http request, all the origin
request parameters should be preserved when the container redirects the call to the req
resource within the web application on successful login.

12.5.4 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the user to possess a Public Key Certificate (PKC
Currently, PKCs are useful in e-commerce applications and also for single-signon from
within the browser in an enterprise. Servlet containers that are not J2EE compliant are
required to support the HTTPS protocol.

12.6 Server Tracking of Authentication
Information
As the underlying security identities (such as users and groups) to which roles are mapp
a runtime environment are environment specific rather than application specific, it is
desirable to:

1. Make login mechanisms and policies a property of the environment the web applicatio
deployed in.

2. Be able to use the same authentication information to represent a principal to all
applications that are deployed in the same container.

3. Require the user to re-authenticate only when crossing a security policy domain.

Therefore, a servlet container is required to track authentication information at the conta
level and not at the web application level allowing a user who is authenticated against o
web application to access any other resource managed by the container which is restrict
the same security identity.

12.7 Propagation of Security Identity
The default mode for security identity propagation of a web user calling in to an EJB
container is to propogate the security identity of the caller to the EJB container. Web
applications may be configured to allow open access to all web users, or to employ of
79 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

iner

nt
B. If
in
ust
of a

me

et of
L

role,

ion
ering

er

ded
strategy whereby signon and customization of data based on caller identity is dealt with
wholly by application code. In either case, the web users are not known to the web conta
or the EJB container.

The existence of a run-as element to the ejb-ref element in a web application deployme
descriptor is an instruction to the web container that when a Servlet makes calls to an EJ
present, the container must propagate the security identity of the caller to the EJB layer
terms of the security role name defined in the run-as element. The security role name m
one of the security role names defined for the web application. For web containers part
the J2EE platform, the use of the mechism is supported both for calls to EJBs within the
same J2EE application as the calling web components and EJBs deployed as part of so
other J2EE application.

12.8 Specifying Security Constraints
Security constraints are a declarative way of annotating the intended protection of web
content. A constraint consists of the following elements:

• web resource collection

• authorization constraint

• user data constraint

A web resource collection is a set of URL patterns and HTTP methods that describe a s
resources to be protected. All requests that contain a request path that matches the UR
pattern described in the web resource collection is subject to the constraint.

An authorization constraint is a set of roles that users must be a part of to access the
resources described by the web resource collection. If the user is not part of a allowed
the user is denied access to that resource.

A user data constraint indicates that the transport layer of the client server communicat
process satisfy the requirement of either guaranteeing content integrity (preventing tamp
in transit) or guaranteeing confidentiality (preventing reading while in transit).

For an application specifying multiple security constraints, on processing a request to
determine what authentication method to use, or what authorization to allow, the contain
matches to security constraints on a ‘first match wins’ basis.

12.8.1 Default Policies

By default, authentication is not needed to access resources. Authentication is only nee
for requests in a specific web resource collection when specified by the deployment
descriptor.
Chapter 12 Security 80

PROPOSED FINAL DRAFT
81 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

b

n.
CHAPTER 13

Deployment Descriptor

The Deployment Descriptor conveys the elements and configuration information of a we
application between Developers, Assemblers, and Deployers. This chapter defines and
describes the deployment descriptor for this version, 2.3, of the Java Servlet speicifcatio
For backwards compatibility of applications written to the 2.2 version of the API, web
containers are required to support the 2.2 version of the deployment descirptor. The 2.2
version is located as an appendix to this document.

13.1 Deployment Descriptor Elements
The following types of configuration and deployment information exist in the web
application deployment descriptor:

• ServletContext Init Parameters

• Session Configuration

• Servlet / JSP Definitions

• Servlet / JSP Mappings

• Application Lifecyle Listener classes

• Filter Definitions and Filter Mappings

• Mime Type Mappings

• Welcome File list

• Error Pages

• Security

See the DTD comments for further description of these elements.
 Deployment Descriptor 82

PROPOSED FINAL DRAFT

note

ace

ions
nt
ers

e as
ant

rror
f

ple,

g ‘/
13.1.1 General Rules for Processing the Deployment
Descriptor

In this section is a listing of some general rules that web containers and developers must
concerning processing of the deployment descriptor for a web application

• Web containers should ignore all leading whitespace characters before the first non-
writespace character, and all trailing whitespace characters after the last non-whitesp
character for PCDATA within text nodes of a deployment descriptor.

• Web containers and tools that manipulate web applications have a wide range of opt
in checking the validity of a WAR. This includes checking the validity of the deployme
descriptor document held within. It is recommended, but not required, that web contain
and tools validate deployment descriptors against the DTD document for structural
correctness. Additionally it is recommended that they provide a level of semantic
checking, for example, that a role referenced in a security constraint has the same nam
one of the security roles defined in the deployment descriptor. In cases of non-conform
web applications, tools and containers should inform the developer with descriptive e
messages. High end application server vendors are encouraged to supply this kind o
validity checking in the form of a toool separate from the container.

• URI paths specified in the deployment descriptor are assumed to be in URL-decoded
form.

• Containers must attempt to canonicalize paths in the deployment descriptor. For exam
apths opf the form ‘/a/..b’ must be interpreted as ‘/a’. Paths beginning or resolving to
paths that begin with ‘..’ are not valid paths in the deplyoment descriptor.

• URI paths referring to a resource relative to the root of the WAR, or a path mapping
relative to the root of the WAR, unless otherwise specified, should begin with a leadin
’.

13.1.2 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following DOCTYPE
declaration:
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation
2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

13.2 DTD
The DTD that follows defines the XML grammar for a web application deployment
descriptor.
83 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
<!--
The web-app element is the root of the deployment descriptor for
a web application
-->

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param*, filter*, filter-mapping*, listener*,
servlet*, servlet-mapping*, session-config?,
mime-mapping*, welcome-file-list?, error-page*, taglib*,
resource-env-ref*, resource-ref*, security-constraint*, login-
config?, security-role*,
env-entry*, ejb-ref*)>

<!--
Declares a filter in the web application. The filter is mapped to
either a servlet or a URL pattern in the filter-mapping element,
using the filter-name value to reference. Filters can access the
initialization parameters declared in the deployment descriptor at
runtime via the FilterConfig interface.
-->

<!ELEMENT filter (icon?, filter-name, display-name?, description?,

filter-class, init-param*)>

<!--
The logical name of the filter. This name is used to map the filter.
-->
<!ELEMENT filter-name (#PCDATA)>

<!--
The fully qualified classname of the filter.
-->
<!ELEMENT filter-class (#PCDATA)>

<!--
Declaration of the filter mappings in this web application. The
container uses the filter-mapping declarations to decide which
filters to apply to a request, and in what order. The container
matches the request URI to a Servlet in the normal way. To determine
which filters to apply it matches filter-mapping declarations either
on servlet-name, or on url-pattern for each filter-mapping element,
depending on which style is used. The order in which filters are
invoked is the order in which filter-mapping declarations that match
a request URI for a servlet appear in the list of filter-mapping
elements.The filter-name value must be the value of the <filter-
name> sub-elements of one of the <filter> declarations in the
deployment descriptor.
-->
Chapter 13 Deployment Descriptor 84

PROPOSED FINAL DRAFT
<!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-
name))>

<!--
The icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small
and large image used to represent the web application in a GUI tool.
At a minimum, tools must accept GIF and JPEG format images.
-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--
The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-->

<!ELEMENT small-icon (#PCDATA)>

<!--
The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-->

<!ELEMENT large-icon (#PCDATA)>

<!--
The display-name element contains a short name that is intended
to be displayed by GUI tools
-->

<!ELEMENT display-name (#PCDATA)>

<!--
The description element is used to provide descriptive text about
the parent element.
-->

<!ELEMENT description (#PCDATA)>

<!--
The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container
-->

<!ELEMENT distributable EMPTY>
85 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
<!--
The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-->

<!ELEMENT context-param (param-name, param-value, description?)>

<!--
The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--
The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--
The listener element indicates the deployment properties for a web
application listener bean.
-->

<!ELEMENT listener (listener-class)>

<!--
The listener-class element declares a class in the application must
be registered as a web application listener bean.
-->

<!ELEMENT listener-class (#PCDATA)>

<!--
The servlet element contains the declarative data of a
servlet. If a jsp-file is specified and the load-on-startup element
is
present, then the JSP should be precompiled and loaded.
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, security-
role-ref*)>

<!--
The servlet-name element contains the canonical name of the
servlet.
Chapter 13 Deployment Descriptor 86

PROPOSED FINAL DRAFT
-->

<!ELEMENT servlet-name (#PCDATA)>

<!--
The servlet-class element contains the fully qualified class name
of the servlet.
-->

<!ELEMENT servlet-class (#PCDATA)>

<!--
The jsp-file element contains the full path to a JSP file within
the web application beginning with a ‘/’.
-->

<!ELEMENT jsp-file (#PCDATA)>

<!--
The init-param element contains a name/value pair as an
initialization param of the servlet
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--
The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application. The optional contents
of
these element must be a positive integer indicating the order in
which
the servlet should be loaded. Lower integers are loaded before
higher
integers. If no value is specified, or if the value specified is not
a
positive integer, the container is free to load it at any time in the
startup sequence.
-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--
The servlet-mapping element defines a mapping between a servlet
and a url pattern
-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>
87 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
<!--
The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 11.2 of the
Servlet API Specification.
-->

<!ELEMENT url-pattern (#PCDATA)>

<!--
The session-config element defines the session parameters for
this web application.
-->

<!ELEMENT session-config (session-timeout?)>

<!--
The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
-->

<!ELEMENT session-timeout (#PCDATA)>

<!--
The mime-mapping element defines a mapping between an extension
and a mime type.
-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--
The extension element contains a string describing an
extension. example: "txt"
-->

<!ELEMENT extension (#PCDATA)>

<!--
The mime-type element contains a defined mime type. example:
"text/plain"
-->

<!ELEMENT mime-type (#PCDATA)>

<!--
The welcome-file-list contains an ordered list of welcome files
elements.
-->
Chapter 13 Deployment Descriptor 88

PROPOSED FINAL DRAFT
<!ELEMENT welcome-file-list (welcome-file+)>

<!--
The welcome-file element contains file name to use as a default
welcome file, such as index.html
-->

<!ELEMENT welcome-file (#PCDATA)>

<!--
The taglib element is used to describe a JSP tag library.
-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--
The taglib-uri element describes a URI, relative to the location
of the web.xml document, identifying a Tag Library used in the Web
Application.
-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--
the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.
-->

<!ELEMENT taglib-location (#PCDATA)>

<!--
The error-page element contains a mapping between an error code
or exception type to the path of a resource in the web application
-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--
The error-code contains an HTTP error code, ex: 404
-->

<!ELEMENT error-code (#PCDATA)>

<!--
The exception type contains a fully qualified class name of a
Java exception type.
-->
89 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
<!ELEMENT exception-type (#PCDATA)>

<!--
The location element contains the location of the resource in the
web application relative to the root of the web application. The
value of the location must have a leading ‘/’.
-->

<!ELEMENT location (#PCDATA)>

<!-- The resource-env-ref element contains a declaration of an
component’s reference to an administered object associated with a
resource in the component’s environment. It consists of an optional
description, the resource environment reference name, and an indica-
tion of the resource environment reference type expected by the
component’s code.
Examples:
<resource-env-ref>

<resource-env-ref-name>jms/StockQueue </resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue </resource-env-ref-type>
</resource-env-ref>
-->

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>

<!-- The resource-env-ref-name element specifies the name of a
resource environment reference; its value is the environment entry
name used in code.
 -->

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!-- The resource-env-ref-type element specifies the type of a
resource environment reference. Web containers in J2EE are required
to support javax.jms.Topic and javax.jms.Queue
-->

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--
The resource-ref element contains a declaration of a Web
Application’s reference to an external resource.
-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth, res-sharing-scope?)>

<!--
Chapter 13 Deployment Descriptor 90

PROPOSED FINAL DRAFT
The res-ref-name element specifies the name of the resource
factory reference name.
-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--
The res-type element specifies the (Java class) type of the data
source.
-->

<!ELEMENT res-type (#PCDATA)>

<!--
The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer. The allowed values are
 <res-auth>Application</res-auth>
 <res-auth>Container</res-auth>
for those respective cases.
-->

<!ELEMENT res-auth (#PCDATA)>

<!-- The res-sharing-scope element specifies whether connections
obtained through the given resource manager connection factory
reference can be shared. The value of this element, if specified,
must be one of the two following: <res-sharing-scope>Shareable</res-
sharing-scope>
<res-sharing-scope>Unshareable</res-sharing-scope> The default value
is Shareable.
-->

<!ELEMENT res-sharing-scope (#PCDATA)>

<!--
The security-constraint element is used to associate security
constraints with one or more web resource collections
-->

<!ELEMENT security-constraint (display-name?, web-resource-
collection+,
auth-constraint?, user-data-constraint?)>

<!--
The web-resource-collection element is used to identify a subset
91 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP
methods
are specified, then the security constraint applies to all HTTP
methods.
-->

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>

<!--
The web-resource-name contains the name of this web resource
collection
-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--
The http-method contains an HTTP method (GET | POST |...)
-->

<!ELEMENT http-method (#PCDATA)>

<!--
The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--
The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means
that the application requires that the data be transmitted in a
fashion that prevents other entities from observing the contents of
the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.
-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--
The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role used here
Chapter 13 Deployment Descriptor 92

PROPOSED FINAL DRAFT
must either in a security-role-ref element, or be the specially
reserved role-name “*” that is a compact syntax for indicating all
roles in the web application. If both “*” and rolenames appear, the
container interprets this as all roles.
-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--
The role-name element contains the name of a security role.
-->

<!ELEMENT role-name (#PCDATA)>

<!--
The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login
mechanism.
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-
config?)>

<!--
The realm name element specifies the realm name to use in HTTP
Basic authorization
-->

<!ELEMENT realm-name (#PCDATA)>

<!--
The form-login-config element specifies the login and error pages
that should be used in form based login. If form based
authentication
is not used, these elements are ignored.
-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>

<!--
The form-login-page element defines the location in the web app
where the page that can be used for login can be found
-->

<!ELEMENT form-login-page (#PCDATA)>

<!--
93 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
The form-error-page element defines the location in the web app
where the error page that is displayed when login is not successful
can be found
-->

<!ELEMENT form-error-page (#PCDATA)>

<!--
The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining
access to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".
-->

<!ELEMENT auth-method (#PCDATA)>

<!--
The security-role element contains the declaration of a security
role which is used in the security-constraints placed on the web
application.
-->

<!ELEMENT security-role (description?, role-name)>

<!--
The security-role-ref element defines a mapping between the name of
role called from a Servlet using
isUserInRole(String name) and the name of a security role defined
for the web application. For example,
to map the security role reference "FOO" to the security role with
role-name "manager" the sytax would
be:

<security-role-ref>
<role-name>FOO</role-name>
<role-link>manager</manager>

</security-role-ref>

In this case if the servlet called by a user belonging to the
"manager" security role made the API call
isUserInRole("FOO") the result would be true.
Since the role-name “*” has a special meaning for authorization
constraints, its value is not permitted here.
-->

<!ELEMENT security-role-ref (description?, role-name, role-link)>
Chapter 13 Deployment Descriptor 94

PROPOSED FINAL DRAFT
<!--
The role-link element is used to link a security role reference
to a defined security role. The role-link element must contain the
name of one of the security roles defined in the security-role
elements.
-->

<!ELEMENT role-link (#PCDATA)>

<!--
The env-entry element contains the declaration of an
application’s environment entry. This element is required to be
honored on in J2EE compliant servlet containers.
-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-value?,
env-entry-type)>

<!--
The env-entry-name contains the name of an application’s
environment entry
-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-value element contains the value of an
application’s environment entry
-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--
The env-entry-type element contains the fully qualified Java type
of the environment entry value that is expected by the application
code. The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.
-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--
The ejb-ref element is used to declare a reference to an
enterprise bean. If the optional runAs element is used, the security
identity of the call to the EJB must be propogated as the security
role with the same name to the EJB.
-->
95 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-link?, run-as?)>

<!--
The ejb-ref-name element contains the name of an EJB
reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.
-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!-- The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be one of
the following:
 <ejb-ref-type>Entity</ejb-ref-type>
 <ejb-ref-type>Session</ejb-ref-type>
-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
The ejb-home element contains the fully qualified name of the
EJB’s home interface
-->

<!ELEMENT home (#PCDATA)>

<!--
The ejb-remote element contains the fully qualified name of the
EJB’s remote interface
-->

<!ELEMENT remote (#PCDATA)>

<!--
The ejb-link element is used in the ejb-ref element to specify
that an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package. The value of the
ejb-link element must be the ejb-name of and EJB in the J2EE
application package.
-->

<!ELEMENT ejb-link (#PCDATA)>

<!--
The run-as element must contain the name of a security role defined
for this web application.
-->
Chapter 13 Deployment Descriptor 96

PROPOSED FINAL DRAFT
<!ELEMENT run-as (#PCDATA)>

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e
information
beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard web-
app
deployment descriptor.
-->

<!ATTLIST web-app id ID #IMPLIED>
<!ATTLIST filter id ID #IMPLIED>
<!ATTLIST filter-name id ID #IMPLIED>
<!ATTLIST filter-class id ID #IMPLIED>
<!ATTLIST filter-mapping id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST distributable id ID #IMPLIED>
<!ATTLIST context-param id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>
<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST listener id ID #IMPLIED>
<!ATTLIST listener-class id ID #IMPLIED>
<!ATTLIST servlet id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST mime-mapping id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST mime-type id ID #IMPLIED>
<!ATTLIST welcome-file-list id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>
<!ATTLIST taglib id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>
97 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST location id ID #IMPLIED>
<!ATTLIST resource-env-ref id ID #IMPLIED>
<!ATTLIST resource-env-ref-name id ID #IMPLIED>
<!ATTLIST resource-env-ref-type id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST res-sharing-scope id ID #IMPLIED>
<!ATTLIST security-constraint id ID #IMPLIED>
<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>
<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
<!ATTLIST run-as id ID #IMPLIED>

13.3 Examples
The following examples illustrate the usage of the definitions listed above DTD.
Chapter 13 Deployment Descriptor 98

PROPOSED FINAL DRAFT
13.3.1 A Basic Example
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation
2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>
 <display-name>A Simple Application</display-name>
 <context-param>
 <param-name>Webmaster</param-name>
 <param-value>webmaster@mycorp.com</param-value>
 </context-param>
 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.mycorp.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
 <mime-mapping>

 <extension>pdf</extension>
 <mime-type>application/pdf</mime-type>
 </mime-mapping>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file-list>
 <error-page>
 <error-code>404</error-code>
 <location>/404.html</location>
 </error-page>
</web-app>

13.3.2 An Example of Security
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-
app_2_2.dtd">
<web-app>
 <display-name>A Secure Application</display-name>
99 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT
 <security-role>
 <role-name>manager</role-name>
 </security-role>
 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.mycorp.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
 </init-param>
 <security-role-ref>
 <role-name>MGR</role-name> <!-- role name used in code -->
 <role-link>manager</role-link>
 </security-role-ref>
 </servlet>
 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>

</servlet-mapping>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>SalesInfo</web-resource-name>
 <url-pattern>/salesinfo/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>

 <role-name>manager</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>
Chapter 13 Deployment Descriptor 100

PROPOSED FINAL DRAFT
101 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

PROPOSED FINAL DRAFT

, the
CHAPTER 14

API Details

The following two chapters define the Java Servlet API in terms of Java classes, interfaces
accompanying method signatures and javadoc comments.
 API Details 100

PROPOSED FINAL DRAFT
101 Java Servlet 2.3 Specification - PROPOSED FINAL DRAFT• October 20, 2000

Package

javax.servlet
or-

(a

 a

 a

urce

o a

iner,

st

t

et

eb

n

 sub-
Class Summary

Interfaces

Config This is the super interface for objects in the Servlet API that pass configuration inf
mation to Servlets or Filters during initialization.

Filter A filter is an object than perform filtering tasks on either the request to a resource
servlet or static content), or on the response from a resource, or both.
Filters perform filtering in thedoFilter method.

FilterChain A FilterChain is an object provided by the servlet container to the developer giving
view into the invocation chain of a filtered request for a resource.

FilterConfig A filter configuration object used by a servlet container used to pass information to
filter during initialization.

RequestDispatcher Defines an object that receives requests from the client and sends them to any reso
(such as a servlet, HTML file, or JSP file) on the server.

Servlet Defines methods that all servlets must implement.

ServletConfig A servlet configuration object used by a servlet container used to pass information t
servlet during initialization.

ServletContext Defines a set of methods that a servlet uses to communicate with its servlet conta
for example, to get the MIME type of a file, dispatch requests, or write to a log file.

ServletContextAt-
tributesListener

Implementations of this interface recieve notifications of changes to the attribute li
on the servlet context of a web application.

ServletContextLis-
tener

Implementations of this interface recieve notifications about changes to the servle
context of the web application they are part of.

ServletRequest Defines an object to provide client request information to a servlet.

ServletResponse Defines an object to assist a servlet in sending a response to the client.

SingleThreadModel Ensures that servlets handle only one request at a time.

Classes

GenericServlet Defines a generic, protocol-independent servlet.

ServletContextAt-
tributeEvent

This is the event class for notifications about changes to the attributes of the servl
context of a web application.

ServletContextEvent This is the event class for notifications about changes to the servlet context of a w
application.

ServletInputStream Provides an input stream for reading binary data from a client request, including a
efficientreadLine method for reading data one line at a time.

ServletOutputStream Provides an output stream for sending binary data to the client.

ServletRequestWrapper Provides a convenient implementation of the ServletRequest interface that can be
classed by developers wishing to adapt the request to a Servlet.
1

javax.servlet

e

po-
ServletResponseWrap-
per

Provides a convenient implementation of the ServletResponse interface that can b
subclassed by developers wishing to adapt the response from a Servlet.

Exceptions

ServletException Defines a general exception a servlet can throw when it encounters difficulty.

UnavailableException Defines an exception that a servlet throws to indicate that it is permanently or tem
rarily unavailable.

Class Summary
2

javax.servlet Config

getInitParameter(String)

Filters
ame/
n-
javax.servlet

Config
Syntax
public interface Config

Description
This is the super interface for objects in the Servlet API that pass configuration information to Servlets or
during initialization. The configuration information contains initialization parameters, which are a set of n
value pairs, and aServletContext object, which gives the calling object information about the web co
tainer.

Since: v 2.3

See Also: ServletContext

Methods

getInitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parameter, ornull if the parameter
does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

getInitParameterNames()

public java.util.Enumeration getInitParameterNames()

Member Summary

Methods
getInitParame-
ter(String)

Returns aString containing the value of the named initialization parameter, or
null if the parameter does not exist.

getInitParameter-
Names()

Returns the names of the servlet’s initialization parameters as anEnumeration of
String objects, or an emptyEnumeration if the servlet has no initialization
parameters.

getServletContext() Returns a reference to theServletContext in which the caller is executing.
3

Config javax.servlet

getServletContext()
Returns the names of the servlet’s initialization parameters as anEnumeration of String objects, or an
emptyEnumeration if the servlet has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the servlet’s initialization
parameters

getServletContext()

public ServletContext getServletContext()

Returns a reference to theServletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its servlet container

See Also: ServletContext
4

javax.servlet Filter

getServletContext()

nt), or

ich
to load

/
t the

ter-
javax.servlet

Filter
Syntax
public interface Filter

Description
A filter is an object than perform filtering tasks on either the request to a resource (a servlet or static conte
on the response from a resource, or both.

Filters perform filtering in thedoFilter method. Every Filter has access to a FilterConfig object from wh
it can obtain its initialization parameters, a reference to the ServletContext which it can use, for example,
resources needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are

1) Authentication Filters

2) Logging and Auditing Filters

3) Image conversion Filters

4) Data compression Filters

5) Encryption Filters

6) Tokenizing Filters

7) Filters that trigger resource access events

8) XSL/T filters

9) Mime-type chain Filter

Since: Servlet 2.3

Methods

Member Summary

Methods
doFilter(ServletRe-
quest, ServletRe-
sponse, FilterChain)

ThedoFilter method of the Filter is called by the container each time a request
response pair is passed through the chain due to a client request for a resource a
end of the chain.

getFilterConfig() Return the FilterConfig for this Filter.
setFilterConfig(Fil-
terConfig)

The container calls this method when the Filter is instantiated and passes in a Fil
Config object.
5

Filter javax.servlet

doFilter(ServletRequest, ServletResponse, FilterChain)

assed
ed in to

ut fil-

utput

st pro-

en the
doFilter(ServletRequest, ServletResponse, FilterChain)

public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain)

ThedoFilter method of the Filter is called by the container each time a request/response pair is p
through the chain due to a client request for a resource at the end of the chain. The FilterChain pass
this method allows the Filter to pass on the request and response to the next entity in the chain.

A typical implementation of this method would follow the following pattern:-

1. Examine the request

2. Optionally wrap the request object with a custom implementation to filter content or headers for inp
tering

3. Optionally wrap the response object with a custom implementation to filter content or headers for o
filtering

4. a)Either invoke the next entity in the chain using the FilterChain object (chain.doFilter()),

4. b) or not pass on the request/response pair to the next entity in the filter chain to block the reque
cessing

5. Directly set headers on the response after invokation of the next entity in ther filter chain.

Throws: ServletException , IOException

getFilterConfig()

public FilterConfig getFilterConfig()

Return the FilterConfig for this Filter.

setFilterConfig(FilterConfig)

public void setFilterConfig(FilterConfig filterConfig)

The container calls this method when the Filter is instantiated and passes in a FilterConfig object. Wh
container is done with the Filter, it calls this method, passing in null.
6

javax.servlet FilterChain

doFilter(ServletRequest, ServletResponse)

ation
r if the

es the

er
javax.servlet

FilterChain
Syntax
public interface FilterChain

Description
A FilterChain is an object provided by the servlet container to the developer giving a view into the invoc
chain of a filtered request for a resource. Filters use the FilterChain to invoke the next filter in the chain, o
calling filter is the last filter in the chain, to invoke the rosource at the end of the chain.

Since: Servlet 2.3

See Also: Filter

Methods

doFilter(ServletRequest, ServletResponse)

public void doFilter(ServletRequest request, ServletResponse response)

Causes the next filter in the chain to be invoked, or if the calling filter is the last filter in the chain, caus
resource at the end of the chain to be invoked.

Parameters:
request - the request to pass along the chain.

response - the response to pass along the chain.

Throws: ServletException , IOException

Since: 2.3

Member Summary

Methods
doFilter(ServletRe-
quest, ServletRe-
sponse)

Causes the next filter in the chain to be invoked, or if the calling filter is the last filt
in the chain, causes the resource at the end of the chain to be invoked.
7

FilterConfig javax.servlet

getFilterName()

ation.
javax.servlet

FilterConfig
Syntax
public interface FilterConfig

Description
A filter configuration object used by a servlet container used to pass information to a filter during initializ

Since: Servlet 2.3

See Also: Filter

Methods

getFilterName()

public java.lang.String getFilterName()

Returns the filter-name of this filter as defined in the deployment descriptor.

getInitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parameter, ornull if the parameter
does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

Member Summary

Methods
getFilterName() Returns the filter-name of this filter as defined in the deployment descriptor.
getInitParame-
ter(String)

Returns aString containing the value of the named initialization parameter, or
null if the parameter does not exist.

getInitParameter-
Names()

Returns the names of the servlet’s initialization parameters as anEnumeration of
String objects, or an emptyEnumeration if the servlet has no initialization
parameters.

getServletContext() Returns a reference to theServletContext in which the caller is executing.
8

javax.servlet FilterConfig

getInitParameterNames()
getInitParameterNames()

public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as anEnumeration of String objects, or an
emptyEnumeration if the servlet has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the servlet’s initialization
parameters

getServletContext()

public ServletContext getServletContext()

Returns a reference to theServletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its servlet container

See Also: ServletContext
9

GenericServlet javax.servlet

getServletContext()

xtend

uch as

n

ed

e.
javax.servlet

GenericServlet
Syntax
public abstract class GenericServlet implements Servlet , ServletConfig , java.io.Serializable

java.lang.Object
|
+-- javax.servlet.GenericServlet

Direct Known Subclasses: HttpServlet

All Implemented Interfaces: java.io.Serializable,Servlet , ServletConfig

Description
Defines a generic, protocol-independent servlet. To write an HTTP servlet for use on the Web, e
HttpServlet instead.

GenericServlet implements theServlet andServletConfig interfaces.GenericServlet may
be directly extended by a servlet, although it’s more common to extend a protocol-specific subclass s
HttpServlet .

GenericServlet makes writing servlets easier. It provides simple versions of the lifecycle methodsinit
anddestroy and of the methods in theServletConfig interface.GenericServlet also implements
the log method, declared in theServletContext interface.

To write a generic servlet, you need only override the abstractservice method.

Member Summary

Constructors
GenericServlet() Does nothing.

Methods
destroy() Called by the servlet container to indicate to a servlet that the servlet is being take

out of service.
getInitParame-
ter(String)

Returns aString containing the value of the named initialization parameter, or
null if the parameter does not exist.

getInitParameter-
Names()

Returns the names of the servlet’s initialization parameters as anEnumeration of
String objects, or an emptyEnumeration if the servlet has no initialization
parameters.

getServletConfig() Returns this servlet’sServletConfig object.
getServletContext() Returns a reference to theServletContext in which this servlet is running.
getServletInfo() Returns information about the servlet, such as author, version, and copyright.
getServletName() Returns the name of this servlet instance.
init() A convenience method which can be overridden so that there’s no need to call

super.init(config) .
init(ServletConfig) Called by the servlet container to indicate to a servlet that the servlet is being plac

into service.
log(String) Writes the specified message to a servlet log file, prepended by the servlet’s nam
10

javax.servlet GenericServlet

GenericServlet()

e. See

rvlet’s
Constructors

GenericServlet()

public GenericServlet()

Does nothing. All of the servlet initialization is done by one of theinit methods.

Methods

destroy()

public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being taken out of servic
destroy() .

Specified By: destroy() in interfaceServlet

getInitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parameter, ornull if the parameter
does not exist. SeegetInitParameter(String) .

This method is supplied for convenience. It gets the value of the named parameter from the se
ServletConfig object.

Specified By: getInitParameter(String) in interfaceServletConfig

Parameters:

log(String, Throw-
able)

Writes an explanatory message and a stack trace for a givenThrowable exception
to the servlet log file, prepended by the servlet’s name.

service(ServletRe-
quest, ServletRe-
sponse)

Called by the servlet container to allow the servlet to respond to a request.

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Member Summary
11

GenericServlet javax.servlet

getInitParameterNames()

e

ethod
See
name - aString specifying the name of the initialization parameter

Returns: String aString containing the value of the initalization parameter

getInitParameterNames()

public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as anEnumeration of String objects, or an
empty Enumeration if the servlet has no initialization parameters. Se
getInitParameterNames() .

This method is supplied for convenience. It gets the parameter names from the servlet’sServletConfig
object.

Specified By: getInitParameterNames() in interfaceServletConfig

Returns: Enumeration an enumeration ofString objects containing the names of the servlet’s
initialization parameters

getServletConfig()

public ServletConfig getServletConfig()

Returns this servlet’sServletConfig object.

Specified By: getServletConfig() in interfaceServlet

Returns: ServletConfig theServletConfig object that initialized this servlet

getServletContext()

public ServletContext getServletContext()

Returns a reference to theServletContext in which this servlet is running. See
getServletContext() .

This method is supplied for convenience. It gets the context from the servlet’sServletConfig object.

Specified By: getServletContext() in interfaceServletConfig

Returns: ServletContext theServletContext object passed to this servlet by theinit method

getServletInfo()

public java.lang.String getServletInfo()

Returns information about the servlet, such as author, version, and copyright. By default, this m
returns an empty string. Override this method to have it return a meaningful value.
getServletInfo() .

Specified By: getServletInfo() in interfaceServlet

Returns: String information about this servlet, by default an empty string

getServletName()
12

javax.servlet GenericServlet

init()

e. See

r

public java.lang.String getServletName()

Returns the name of this servlet instance. SeegetServletName() .

Specified By: getServletName() in interfaceServletConfig

Returns: the name of this servlet instance

init()

public void init()

A convenience method which can be overridden so that there’s no need to callsuper.init(config) .

Instead of overridinginit(ServletConfig) , simply override this method and it will be called by
GenericServlet.init(ServletConfig config) . The ServletConfig object can still be
retrieved viagetServletConfig() .

Throws: ServletException - if an exception occurs that interrupts the servlet’s normal operation

init(ServletConfig)

public void init(ServletConfig config)

Called by the servlet container to indicate to a servlet that the servlet is being placed into servic
init(ServletConfig) .

This implementation stores theServletConfig object it receives from the servlet container for alte
use. When overriding this form of the method, callsuper.init(config) .

Specified By: init(ServletConfig) in interfaceServlet

Parameters:
config - theServletConfig object that contains configutation information for this servlet

Throws: ServletException - if an exception occurs that interrupts the servlet’s normal operation

See Also: UnavailableException

log(String)

public void log(java.lang.String msg)

Writes the specified message to a servlet log file, prepended by the servlet’s name. Seelog(String) .

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)

public void log(java.lang.String message, java.lang.Throwable t)

Writes an explanatory message and a stack trace for a givenThrowable exception to the servlet log file,
prepended by the servlet’s name. Seelog(String, Throwable) .

Parameters:
message - aString that describes the error or exception

t - thejava.lang.Throwable error or exception
13

GenericServlet javax.servlet

service(ServletRequest, ServletResponse)
service(ServletRequest, ServletResponse)

public abstract void service(ServletRequest req, ServletResponse res)

Called by the servlet container to allow the servlet to respond to a request. Seeservice(ServletRe-
quest, ServletResponse) .

This method is declared abstract so subclasses, such asHttpServlet , must override it.

Specified By: service(ServletRequest, ServletResponse) in interfaceServlet

Parameters:
req - theServletRequest object that contains the client’s request

res - theServletResponse object that will contain the servlet’s response

Throws: ServletException - if an exception occurs that interferes with the servlet’s normal
operation occurred

IOException - if an input or output exception occurs
14

javax.servlet RequestDispatcher

forward(ServletRequest, ServletResponse)

t, HTML

r. This
rate the

dy out-

the

le)

.

javax.servlet

RequestDispatcher
Syntax
public interface RequestDispatcher

Description
Defines an object that receives requests from the client and sends them to any resource (such as a servle
file, or JSP file) on the server. The servlet container creates theRequestDispatcher object, which is used
as a wrapper around a server resource located at a particular path or given by a particular name.

This interface is intended to wrap servlets, but a servlet container can createRequestDispatcher objects to
wrap any type of resource.

See Also: getRequestDispatcher(String) , getNamedDispatcher(String) , getRe-
questDispatcher(String)

Methods

forward(ServletRequest, ServletResponse)

public void forward(ServletRequest request, ServletResponse response)

Forwards a request from a servlet to another resource (servlet, JSP file, or HTML file) on the serve
method allows one servlet to do preliminary processing of a request and another resource to gene
response.

For a RequestDispatcher obtained viagetRequestDispatcher() , the ServletRequest
object has its path elements and parameters adjusted to match the path of the target resource.

forward should be called before the response has been committed to the client (before response bo
put has been flushed). If the response already has been committed, this method throws anIllegal-
StateException . Uncommitted output in the response buffer is automatically cleared before
forward.

Member Summary

Methods
forward(ServletRe-
quest, ServletRe-
sponse)

Forwards a request from a servlet to another resource (servlet, JSP file, or HTML fi
on the server.

include(ServletRe-
quest, ServletRe-
sponse)

Includes the content of a resource (servlet, JSP page, HTML file) in the response
15

RequestDispatcher javax.servlet

include(ServletRequest, ServletResponse)

servlet’s

et

e

method

the
o make a

servlet’s
The request and response parameters must be either the same objects as were passed to the calling
service method or be subclasses of theServletRequestWrapper or
ServletResponseWrapper classes that wrap them.

Parameters:
request - aServletRequest object that represents the request the client makes of the servl

response - aServletResponse object that represents the response the servlet returns to th
client

Throws: ServletException - if the target resource throws this exception

IOException - if the target resource throws this exception

IllegalStateException - if the response was already committed

include(ServletRequest, ServletResponse)

public void include(ServletRequest request, ServletResponse response)

Includes the content of a resource (servlet, JSP page, HTML file) in the response. In essence, this
enables programmatic server-side includes.

The ServletResponse object has its path elements and parameters remain unchanged from
caller’s. The included servlet cannot change the response status code or set headers; any attempt t
change is ignored.

The request and response parameters must be either the same objects as were passed to the calling
service method or be subclasses of theServletRequestWrapper or
ServletResponseWrapper classes that wrap them.

Parameters:
request - aServletRequest object that contains the client’s request

response - aServletResponse object that contains the servlet’s response

Throws: ServletException - if the included resource throws this exception

IOException - if the included resource throws this exception
16

javax.servlet Servlet

include(ServletRequest, ServletResponse)

ts from

server.

n

ed
javax.servlet

Servlet
Syntax
public interface Servlet

All Known Implementing Classes: GenericServlet

Description
Defines methods that all servlets must implement.

A servlet is a small Java program that runs within a Web server. Servlets receive and respond to reques
Web clients, usually across HTTP, the HyperText Transfer Protocol.

To implement this interface, you can write a generic servlet that extendsjavax.servlet.Generic-
Servlet or an HTTP servlet that extendsjavax.servlet.http.HttpServlet .

This interface defines methods to initialize a servlet, to service requests, and to remove a servlet from the
These are known as life-cycle methods and are called in the following sequence:

1. The servlet is constructed, then initialized with theinit method.

2. Any calls from clients to theservice method are handled.

3. The servlet is taken out of service, then destroyed with thedestroy method, then garbage collected and
finalized.

In addition to the life-cycle methods, this interface provides thegetServletConfig method, which the
servlet can use to get any startup information, and thegetServletInfo method, which allows the servlet to
return basic information about itself, such as author, version, and copyright.

See Also: GenericServlet , HttpServlet

Methods

Member Summary

Methods
destroy() Called by the servlet container to indicate to a servlet that the servlet is being take

out of service.
getServletConfig() Returns aServletConfig object, which contains initialization and startup param-

eters for this servlet.
getServletInfo() Returns information about the servlet, such as author, version, and copyright.
init(ServletConfig) Called by the servlet container to indicate to a servlet that the servlet is being plac

into service.
service(ServletRe-
quest, ServletRe-
sponse)

Called by the servlet container to allow the servlet to respond to a request.
17

Servlet javax.servlet

destroy()

. This
t

ample,
et’s cur-

let.

.

ML,

al
destroy()

public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being taken out of service
method is only called once all threads within the servlet’sservice method have exited or after a timeou
period has passed. After the servlet container calls this method, it will not call theservice method again
on this servlet.

This method gives the servlet an opportunity to clean up any resources that are being held (for ex
memory, file handles, threads) and make sure that any persistent state is synchronized with the servl
rent state in memory.

getServletConfig()

public ServletConfig getServletConfig()

Returns aServletConfig object, which contains initialization and startup parameters for this serv
TheServletConfig object returned is the one passed to theinit method.

Implementations of this interface are responsible for storing theServletConfig object so that this
method can return it. TheGenericServlet class, which implements this interface, already does this

Returns: theServletConfig object that initializes this servlet

See Also: init(ServletConfig)

getServletInfo()

public java.lang.String getServletInfo()

Returns information about the servlet, such as author, version, and copyright.

The string that this method returns should be plain text and not markup of any kind (such as HTML, X
etc.).

Returns: aString containing servlet information

init(ServletConfig)

public void init(ServletConfig config)

Called by the servlet container to indicate to a servlet that the servlet is being placed into service.

The servlet container calls theinit method exactly once after instantiating the servlet. Theinit method
must complete successfully before the servlet can receive any requests.

The servlet container cannot place the servlet into service if theinit method

1. Throws aServletException

2. Does not return within a time period defined by the Web server

Parameters:
config - aServletConfig object containing the servlet’s configuration and initialization
parameters

Throws: ServletException - if an exception has occurred that interferes with the servlet’s norm
operation
18

javax.servlet Servlet

service(ServletRequest, ServletResponse)

oncur-
ork con-
eaded
See Also: UnavailableException , getServletConfig()

service(ServletRequest, ServletResponse)

public void service(ServletRequest req, ServletResponse res)

Called by the servlet container to allow the servlet to respond to a request.

This method is only called after the servlet’sinit() method has completed successfully.

The status code of the response always should be set for a servlet that throws or sends an error.

Servlets typically run inside multithreaded servlet containers that can handle multiple requests c
rently. Developers must be aware to synchronize access to any shared resources such as files, netw
nections, and as well as the servlet’s class and instance variables. More information on multithr
programming in Java is available in the Java tutorial on multi-threaded programming.

Parameters:
req - theServletRequest object that contains the client’s request

res - theServletResponse object that contains the servlet’s response

Throws: ServletException - if an exception occurs that interferes with the servlet’s normal
operation

IOException - if an input or output exception occurs
19

ServletConfig javax.servlet

getInitParameter(String)

ializa-
javax.servlet

ServletConfig
Syntax
public interface ServletConfig

All Known Implementing Classes: GenericServlet

Description
A servlet configuration object used by a servlet container used to pass information to a servlet during init
tion.

Methods

getInitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization parameter, ornull if the parameter
does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

getInitParameterNames()

public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as anEnumeration of String objects, or an
emptyEnumeration if the servlet has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the servlet’s initialization
parameters

Member Summary

Methods
getInitParame-
ter(String)

Returns aString containing the value of the named initialization parameter, or
null if the parameter does not exist.

getInitParameter-
Names()

Returns the names of the servlet’s initialization parameters as anEnumeration of
String objects, or an emptyEnumeration if the servlet has no initialization
parameters.

getServletContext() Returns a reference to theServletContext in which the caller is executing.
getServletName() Returns the name of this servlet instance.
20

javax.servlet ServletConfig

getServletContext()

gned in
ance it
getServletContext()

public ServletContext getServletContext()

Returns a reference to theServletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its servlet container

See Also: ServletContext

getServletName()

public java.lang.String getServletName()

Returns the name of this servlet instance. The name may be provided via server administration, assi
the web application deployment descriptor, or for an unregistered (and thus unnamed) servlet inst
will be the servlet’s class name.

Returns: the name of the servlet instance
21

ServletContext javax.servlet

getServletName()

get the

n of

ntext
al infor-
.

-

orts.

v-

ing.
javax.servlet

ServletContext
Syntax
public interface ServletContext

Description
Defines a set of methods that a servlet uses to communicate with its servlet container, for example, to
MIME type of a file, dispatch requests, or write to a log file.

There is one context per “web application” per Java Virtual Machine. (A “web application” is a collectio
servlets and content installed under a specific subset of the server’s URL namespace such as/catalog and
possibly installed via a.war file.)

In the case of a web application marked “distributed” in its deployment descriptor, there will be one co
instance for each virtual machine. In this situation, the context cannot be used as a location to share glob
mation (because the information won’t be truly global). Use an external resource like a database instead

TheServletContext object is contained within theServletConfig object, which the Web server pro-
vides the servlet when the servlet is initialized.

See Also: getServletConfig() , getServletContext()

Member Summary

Methods
getAttribute(String) Returns the servlet container attribute with the given name, ornull if there is no

attribute by that name.
getAttributeNames() Returns anEnumeration containing the attribute names available within this serv

let context.
getContext(String) Returns aServletContext object that corresponds to a specified URL on the

server.
getInitParame-
ter(String)

Returns aString containing the value of the named context-wide initialization
parameter, ornull if the parameter does not exist.

getInitParameter-
Names()

Returns the names of the context’s initialization parameters as anEnumeration of
String objects, or an emptyEnumeration if the context has no initialization
parameters.

getMajorVersion() Returns the major version of the Java Servlet API that this servlet container supp
getMimeType(String) Returns the MIME type of the specified file, ornull if the MIME type is not known.
getMinorVersion() Returns the minor version of the Servlet API that this servlet container supports.
getNamedDis-
patcher(String)

Returns aRequestDispatcher object that acts as a wrapper for the named ser
let.

getRealPath(String) Returns aString containing the real path for a given virtual path.
getRequestDis-
patcher(String)

Returns aRequestDispatcher object that acts as a wrapper for the resource
located at the given path.

getResource(String) Returns a URL to the resource that is mapped to a specified path.
getResourceAs-
Stream(String)

Returns the resource located at the named path as anInputStream object.

getResourcePaths() Return all the paths to resources held in the web application.
getServerInfo() Returns the name and version of the servlet container on which the servlet is runn
22

javax.servlet ServletContext

getAttribute(String)

.
y this
ibutes

e

the

ec-
-

Methods

getAttribute(String)

public java.lang.Object getAttribute(java.lang.String name)

Returns the servlet container attribute with the given name, ornull if there is no attribute by that name
An attribute allows a servlet container to give the servlet additional information not already provided b
interface. See your server documentation for information about its attributes. A list of supported attr
can be retrieved usinggetAttributeNames .

The attribute is returned as ajava.lang.Object or some subclass. Attribute names should follow th
same convention as package names. The Java Servlet API specification reserves names matchingjava.* ,
javax.* , andsun.* .

Parameters:
name - aString specifying the name of the attribute

Returns: anObject containing the value of the attribute, ornull if no attribute exists matching the
given name

See Also: getAttributeNames()

getAttributeNames()

public java.util.Enumeration getAttributeNames()

Returns anEnumeration containing the attribute names available within this servlet context. Use
getAttribute(String) method with an attribute name to get the value of an attribute.

Returns: anEnumeration of attribute names

See Also: getAttribute(String)

getServlet(String)

getServletContext-
Name()

Returns the name of this web application correponding to this ServletContext as sp
ified in the deployment descriptor for this web application by the display-name ele
ment.

getServletNames()

getServlets()

log(Exception,
String)
log(String) Writes the specified message to a servlet log file, usually an event log.
log(String, Throw-
able)

Writes an explanatory message and a stack trace for a givenThrowable exception
to the servlet log file.

removeAt-
tribute(String)

Removes the attribute with the given name from the servlet context.

setAttribute(String,
Object)

Binds an object to a given attribute name in this servlet context.

Member Summary
23

ServletContext javax.servlet

getContext(String)

needed
ith

xam-

ations
getContext(String)

public ServletContext getContext(java.lang.String uripath)

Returns aServletContext object that corresponds to a specified URL on the server.

This method allows servlets to gain access to the context for various parts of the server, and as
obtainRequestDispatcher objects from the context. The given path must be absolute (beginning w
“/”) and is interpreted based on the server’s document root.

In a security conscious environment, the servlet container may returnnull for a given URL.

Parameters:
uripath - aString specifying the absolute URL of a resource on the server

Returns: theServletContext object that corresponds to the named URL

See Also: RequestDispatcher

getInitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named context-wide initialization parameter, ornull if the
parameter does not exist.

This method can make available configuration information useful to an entire “web application”. For e
ple, it can provide a webmaster’s email address or the name of a system that holds critical data.

Parameters:
name - aString containing the name of the parameter whose value is requested

Returns: aString containing at least the servlet container name and version number

See Also: getInitParameter(String)

getInitParameterNames()

public java.util.Enumeration getInitParameterNames()

Returns the names of the context’s initialization parameters as anEnumeration of String objects, or
an emptyEnumeration if the context has no initialization parameters.

Returns: anEnumeration of String objects containing the names of the context’s initialization
parameters

See Also: getInitParameter(String)

getMajorVersion()

public int getMajorVersion()

Returns the major version of the Java Servlet API that this servlet container supports. All implement
that comply with Version 2.3 must have this method return the integer 2.

Returns: 2

getMimeType(String)
24

javax.servlet ServletContext

getMinorVersion()

eploy-

s that

lication

ml”
//host/

ch the

s being
public java.lang.String getMimeType(java.lang.String file)

Returns the MIME type of the specified file, ornull if the MIME type is not known. The MIME type is
determined by the configuration of the servlet container, and may be specified in a web application d
ment descriptor. Common MIME types are“text/html” and“image/gif” .

Parameters:
file - aString specifying the name of a file

Returns: aString specifying the file’s MIME type

getMinorVersion()

public int getMinorVersion()

Returns the minor version of the Servlet API that this servlet container supports. All implementation
comply with Version 2.2 must have this method return the integer 3.

Returns: 3

getNamedDispatcher(String)

public RequestDispatcher getNamedDispatcher(java.lang.String name)

Returns aRequestDispatcher object that acts as a wrapper for the named servlet.

Servlets (and JSP pages also) may be given names via server administration or via a web app
deployment descriptor. A servlet instance can determine its name usinggetServletName() .

This method returnsnull if the ServletContext cannot return aRequestDispatcher for any
reason.

Parameters:
name - aString specifying the name of a servlet to wrap

Returns: aRequestDispatcher object that acts as a wrapper for the named servlet

See Also: RequestDispatcher , getContext(String) , getServletName()

getRealPath(String)

public java.lang.String getRealPath(java.lang.String path)

Returns aString containing the real path for a given virtual path. For example, the path “/index.ht
returns the absolute file path on the server’s filesystem would be served by a request for “http:
contextPath/index.html”, where contextPath is the context path of this ServletContext..

The real path returned will be in a form appropriate to the computer and operating system on whi
servlet container is running, including the proper path separators. This method returnsnull if the servlet
container cannot translate the virtual path to a real path for any reason (such as when the content i
made available from a.war archive).

Parameters:
path - aString specifying a virtual path

Returns: aString specifying the real path, or null if the translation cannot be performed
25

ServletContext javax.servlet

getRequestDispatcher(String)

ath.
the

ns

th

and is

ource.

y

URL

e

the
getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String path)

Returns aRequestDispatcher object that acts as a wrapper for the resource located at the given p
A RequestDispatcher object can be used to forward a request to the resource or to include
resource in a response. The resource can be dynamic or static.

The pathname must begin with a “/” and is interpreted as relative to the current context root. Useget-
Context to obtain aRequestDispatcher for resources in foreign contexts. This method retur
null if theServletContext cannot return aRequestDispatcher .

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the resource at the specified pa

See Also: RequestDispatcher , getContext(String)

getResource(String)

public java.net.URL getResource(java.lang.String path)

Returns a URL to the resource that is mapped to a specified path. The path must begin with a “/”
interpreted as relative to the current context root.

This method allows the servlet container to make a resource available to servlets from any s
Resources can be located on a local or remote file system, in a database, or in a.war file.

The servlet container must implement the URL handlers andURLConnection objects that are necessar
to access the resource.

This method returnsnull if no resource is mapped to the pathname.

Some containers may allow writing to the URL returned by this method using the methods of the
class.

The resource content is returned directly, so be aware that requesting a.jsp page returns the JSP sourc
code. Use aRequestDispatcher instead to include results of an execution.

This method has a different purpose thanjava.lang.Class.getResource , which looks up
resources based on a class loader. This method does not use class loaders.

Parameters:
path - aString specifying the path to the resource

Returns: the resource located at the named path, ornull if there is no resource at that path

Throws: MalformedURLException - if the pathname is not given in the correct form

getResourceAsStream(String)

public java.io.InputStream getResourceAsStream(java.lang.String path)

Returns the resource located at the named path as anInputStream object.

The data in theInputStream can be of any type or length. The path must be specified according to
rules given ingetResource . This method returnsnull if no resource exists at the specified path.
26

javax.servlet ServletContext

getResourcePaths()

cation,

begin

p-

s, for

ill
Meta-information such as content length and content type that is available viagetResource method is
lost when using this method.

The servlet container must implement the URL handlers andURLConnection objects necessary to
access the resource.

This method is different fromjava.lang.Class.getResourceAsStream , which uses a class
loader. This method allows servlet containers to make a resource available to a servlet from any lo
without using a class loader.

Parameters:
name - aString specifying the path to the resource

Returns: theInputStream returned to the servlet, ornull if no resource exists at the specified path

getResourcePaths()

public java.util.Set getResourcePaths()

Return all the paths to resources held in the web application. All paths are java.lang.String objects,
with a leading /, and are relative to the root of the web application.

Returns: an immutable set containing the paths

Since: Servlet 2.3

getServerInfo()

public java.lang.String getServerInfo()

Returns the name and version of the servlet container on which the servlet is running.

The form of the returned string isservername/versionnumber. For example, the JavaServer Web Develo
ment Kit may return the stringJavaServer Web Dev Kit/1.0 .

The servlet container may return other optional information after the primary string in parenthese
example,JavaServer Web Dev Kit/1.0 (JDK 1.1.6; Windows NT 4.0 x86) .

Returns: aString containing at least the servlet container name and version number

getServlet(String)

public Servlet getServlet(java.lang.String name)

Deprecated. As of Java Servlet API 2.1, with no direct replacement.

This method was originally defined to retrieve a servlet from aServletContext . In this version,
this method always returnsnull and remains only to preserve binary compatibility. This method w
be permanently removed in a future version of the Java Servlet API.

In lieu of this method, servlets can share information using theServletContext class and can
perform shared business logic by invoking methods on common non-servlet classes.

Throws: ServletException

getServletContextName()

public java.lang.String getServletContextName()
27

ServletContext javax.servlet

getServletNames()

eploy-

Java

nly to
Java

vlet log
Returns the name of this web application correponding to this ServletContext as specified in the d
ment descriptor for this web application by the display-name element.

Returns: The name of the web application or null if no name has been declared in the deployment
descriptor.

Since: Servlet 2.3

getServletNames()

public java.util.Enumeration getServletNames()

Deprecated. As of Java Servlet API 2.1, with no replacement.

This method was originally defined to return anEnumeration of all the servlet names known to this
context. In this version, this method always returns an emptyEnumeration and remains only to
preserve binary compatibility. This method will be permanently removed in a future version of the
Servlet API.

getServlets()

public java.util.Enumeration getServlets()

Deprecated. As of Java Servlet API 2.0, with no replacement.

This method was originally defined to return anEnumeration of all the servlets known to this
servlet context. In this version, this method always returns an empty enumeration and remains o
preserve binary compatibility. This method will be permanently removed in a future version of the
Servlet API.

log(Exception, String)

public void log(java.lang.Exception exception, java.lang.String msg)

Deprecated. As of Java Servlet API 2.1, uselog(String, Throwable) instead.

This method was originally defined to write an exception’s stack trace and an explanatory error
message to the servlet log file.

log(String)

public void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log. The name and type of the ser
file is specific to the servlet container.

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)

public void log(java.lang.String message, java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for a givenThrowable exception to the servlet log file.
The name and type of the servlet log file is specific to the servlet container, usually an event log.
28

javax.servlet ServletContext

removeAttribute(String)

alls to

for an

fication
Parameters:
message - aString that describes the error or exception

throwable - theThrowable error or exception

removeAttribute(String)

public void removeAttribute(java.lang.String name)

Removes the attribute with the given name from the servlet context. After removal, subsequent c
getAttribute(String) to retrieve the attribute’s value will returnnull .

Parameters:
name - aString specifying the name of the attribute to be removed

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object object)

Binds an object to a given attribute name in this servlet context. If the name specified is already used
attribute, this method will remove the old attribute and bind the name to the new attribute.

Attribute names should follow the same convention as package names. The Java Servlet API speci
reserves names matchingjava.* , javax.* , andsun.* .

Parameters:
name - aString specifying the name of the attribute

object - anObject representing the attribute to be bound
29

ServletContextAttributeEvent javax.servlet

setAttribute(String, Object)

ication.
javax.servlet

ServletContextAttributeEvent
Syntax
public class ServletContextAttributeEvent extends ServletContextEvent

java.lang.Object
|
+--java.util.EventObject

|
+-- ServletContextEvent

|
+-- javax.servlet.ServletContextAttributeEvent

All Implemented Interfaces: java.io.Serializable

Description
This is the event class for notifications about changes to the attributes of the servlet context of a web appl

Since: v 2.3

See Also: ServletContextAttributesListener

Member Summary

Constructors
ServletContextAt-
tributeEvent(Servlet-
Context, String,
Object)

Construct a ServletContextAttributeEvent from the given context for the given
attribute name and attribute value.

Methods
getName() Return the name of the attribute that changed on the ServletContext.
getValue() Returns the value of the attribute being added removed or replaced.

Inherited Member Summary

Fields inherited from class java.util.EventObject

source

Methods inherited from classServletContextEvent

getServletContext()

Methods inherited from class java.util.EventObject

getSource, toString
30

javax.servlet ServletContextAttributeEvent

ServletContextAttributeEvent(ServletContext, String, Object)

ribute

is the
ribute
Constructors

ServletContextAttributeEvent(ServletContext, String, Object)

public ServletContextAttributeEvent(ServletContext source, java.lang.String name,

java.lang.Object value)

Construct a ServletContextAttributeEvent from the given context for the given attribute name and att
value.

Methods

getName()

public java.lang.String getName()

Return the name of the attribute that changed on the ServletContext.

getValue()

public java.lang.Object getValue()

Returns the value of the attribute being added removed or replaced. If the attribute was added, this
value of the attribute. If the attrubute was removed, this is the value of the removed attribute. If the att
was replaced, this is the old value of the attribute.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Inherited Member Summary
31

ServletContextAttributesListener javax.servlet

attributeAdded(ServletContextAttributeEvent)

xt of a
yment

ute is
javax.servlet

ServletContextAttributesListener
Syntax
public interface ServletContextAttributesListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Description
Implementations of this interface recieve notifications of changes to the attribute list on the servlet conte
web application. To recieve notification events, the implementation class must be configured in the deplo
descriptor for the web application.

Since: v 2.3

See Also: ServletContextAttributeEvent

Methods

attributeAdded(ServletContextAttributeEvent)

public void attributeAdded(ServletContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called after the attribute is added.

attributeRemoved(ServletContextAttributeEvent)

public void attributeRemoved(ServletContextAttributeEvent scab)

Notification that an existing attribute has been remved from the servlet context. Called after the attrib
removed.

Member Summary

Methods
attributeAdded(Serv-
letContextAttribu-
teEvent)

Notification that a new attribute was added to the servlet context.

attributeRe-
moved(ServletContex-
tAttributeEvent)

Notification that an existing attribute has been remved from the servlet context.

attributeRe-
placed(ServletContex-
tAttributeEvent)

Notification that an attribute on the servlet context has been replaced.
32

javax.servlet ServletContextAttributesListener

attributeReplaced(ServletContextAttributeEvent)

placed.
attributeReplaced(ServletContextAttributeEvent)

public void attributeReplaced(ServletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced. Called after the attribute is re
33

ServletContextEvent javax.servlet

attributeReplaced(ServletContextAttributeEvent)
javax.servlet

ServletContextEvent
Syntax
public class ServletContextEvent extends java.util.EventObject

java.lang.Object
|
+--java.util.EventObject

|
+-- javax.servlet.ServletContextEvent

Direct Known Subclasses: ServletContextAttributeEvent

All Implemented Interfaces: java.io.Serializable

Description
This is the event class for notifications about changes to the servlet context of a web application.

Since: v 2.3

See Also: ServletContextListener

Member Summary

Constructors
ServletContex-
tEvent(ServletCon-
text)

Construct a ServletContextEvent from the given context.

Methods
getServletContext() Return the ServletContext that changed.

Inherited Member Summary

Fields inherited from class java.util.EventObject

source

Methods inherited from class java.util.EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
34

javax.servlet ServletContextEvent

ServletContextEvent(ServletContext)
Constructors

ServletContextEvent(ServletContext)

public ServletContextEvent(ServletContext source)

Construct a ServletContextEvent from the given context.

Parameters:
source - - the ServletContext that is sending the event.

Methods

getServletContext()

public ServletContext getServletContext()

Return the ServletContext that changed.

Returns: the ServletContext that sent the event.
35

ServletContextListener javax.servlet

contextDestroyed(ServletContextEvent)

pplica-
eploy-
javax.servlet

ServletContextListener
Syntax
public interface ServletContextListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Description
Implementations of this interface recieve notifications about changes to the servlet context of the web a
tion they are part of. To recieve notification events, the implementation class must be configured in the d
ment descriptor for the web application.

Since: v 2.3

See Also: ServletContextEvent

Methods

contextDestroyed(ServletContextEvent)

public void contextDestroyed(ServletContextEvent sce)

Notification that the servlet context is about to be shut down.

contextInitialized(ServletContextEvent)

public void contextInitialized(ServletContextEvent sce)

Notification that the web application is ready to process requests.

Member Summary

Methods
contextDe-
stroyed(ServletCon-
textEvent)

Notification that the servlet context is about to be shut down.

contextInitial-
ized(ServletContex-
tEvent)

Notification that the web application is ready to process requests.
36

javax.servlet ServletException

contextInitialized(ServletContextEvent)

 and
l

 and
l

javax.servlet

ServletException
Syntax
public class ServletException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+-- javax.servlet.ServletException

Direct Known Subclasses: UnavailableException

All Implemented Interfaces: java.io.Serializable

Description
Defines a general exception a servlet can throw when it encounters difficulty.

Member Summary

Constructors
ServletException() Constructs a new servlet exception.
ServletExcep-
tion(String)

Constructs a new servlet exception with the specified message.

ServletExcep-
tion(String, Throw-
able)

Constructs a new servlet exception when the servlet needs to throw an exception
include a message about the “root cause” exception that interfered with its norma
operation, including a description message.

ServletExcep-
tion(Throwable)

Constructs a new servlet exception when the servlet needs to throw an exception
include a message about the “root cause” exception that interfered with its norma
operation.

Methods
getRootCause() Returns the exception that caused this servlet exception.

Inherited Member Summary

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace,
printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
37

ServletException javax.servlet

ServletException()

rver log

essage
ssage.

ng

essage
based

n

ng
Constructors

ServletException()

public ServletException()

Constructs a new servlet exception.

ServletException(String)

public ServletException(java.lang.String message)

Constructs a new servlet exception with the specified message. The message can be written to the se
and/or displayed for the user.

Parameters:
message - aString specifying the text of the exception message

ServletException(String, Throwable)

public ServletException(java.lang.String message, java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an exception and include a m
about the “root cause” exception that interfered with its normal operation, including a description me

Parameters:
message - aString containing the text of the exception message

rootCause - theThrowable exception that interfered with the servlet’s normal operation, maki
this servlet exception necessary

ServletException(Throwable)

public ServletException(java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an exception and include a m
about the “root cause” exception that interfered with its normal operation. The exception’s message is
on the localized message of the underlying exception.

This method calls thegetLocalizedMessage method on theThrowable exception to get a localized
exception message. When subclassingServletException , this method can be overridden to create a
exception message designed for a specific locale.

Parameters:
rootCause - theThrowable exception that interfered with the servlet’s normal operation, maki
the servlet exception necessary

Methods

getRootCause()
38

javax.servlet ServletException

getRootCause()
public java.lang.Throwable getRootCause()

Returns the exception that caused this servlet exception.

Returns: theThrowable that caused this servlet exception
39

ServletInputStream javax.servlet

getRootCause()

ent the
javax.servlet

ServletInputStream
Syntax
public abstract class ServletInputStream extends java.io.InputStream

java.lang.Object
|
+--java.io.InputStream

|
+-- javax.servlet.ServletInputStream

Description
Provides an input stream for reading binary data from a client request, including an efficientreadLine
method for reading data one line at a time. With some protocols, such as HTTP POST and PUT, aServlet-
InputStream object can be used to read data sent from the client.

A ServletInputStream object is normally retrieved via thegetInputStream() method.

This is an abstract class that a servlet container implements. Subclasses of this class must implem
java.io.InputStream.read() method.

See Also: ServletRequest

Constructors

Member Summary

Constructors
ServletInputStream() Does nothing, because this is an abstract class.

Methods
readLine(byte[], int,
int)

Reads the input stream, one line at a time.

Inherited Member Summary

Methods inherited from class java.io.InputStream

available, close, mark, markSupported, read, read, read, reset, skip

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait
40

javax.servlet ServletInputStream

ServletInputStream()

s a cer-

ber of

ched
ServletInputStream()

protected ServletInputStream()

Does nothing, because this is an abstract class.

Methods

readLine(byte[], int, int)

public int readLine(byte[] b, int off, int len)

Reads the input stream, one line at a time. Starting at an offset, reads bytes into an array, until it read
tain number of bytes or reaches a newline character, which it reads into the array as well.

This method returns -1 if it reaches the end of the input stream before reading the maximum num
bytes.

Parameters:
b - an array of bytes into which data is read

off - an integer specifying the character at which this method begins reading

len - an integer specifying the maximum number of bytes to read

Returns: an integer specifying the actual number of bytes read, or -1 if the end of the stream is rea

Throws: IOException - if an input or output exception has occurred
41

ServletOutputStream javax.servlet

readLine(byte[], int, int)

ent the

-

d.

r

).

r.
javax.servlet

ServletOutputStream
Syntax
public abstract class ServletOutputStream extends java.io.OutputStream

java.lang.Object
|
+--java.io.OutputStream

|
+-- javax.servlet.ServletOutputStream

Description
Provides an output stream for sending binary data to the client. AServletOutputStream object is nor-
mally retrieved via thegetOutputStream() method.

This is an abstract class that the servlet container implements. Subclasses of this class must implem
java.io.OutputStream.write(int) method.

See Also: ServletResponse

Member Summary

Constructors
ServletOutputStream() Does nothing, because this is an abstract class.

Methods
print(boolean) Writes aboolean value to the client, with no carriage return-line feed (CRLF) char

acter at the end.
print(char) Writes a character to the client, with no carriage return-line feed (CRLF) at the en
print(double) Writes adouble value to the client, with no carriage return-line feed (CRLF) at the

end.
print(float) Writes afloat value to the client, with no carriage return-line feed (CRLF) at the

end.
print(int) Writes an int to the client, with no carriage return-line feed (CRLF) at the end.
print(long) Writes along value to the client, with no carriage return-line feed (CRLF) at the

end.
print(String) Writes aString to the client, without a carriage return-line feed (CRLF) characte

at the end.
println() Writes a carriage return-line feed (CRLF) to the client.
println(boolean) Writes aboolean value to the client, followed by a carriage return-line feed

(CRLF).
println(char) Writes a character to the client, followed by a carriage return-line feed (CRLF).
println(double) Writes adouble value to the client, followed by a carriage return-line feed (CRLF
println(float) Writes afloat value to the client, followed by a carriage return-line feed (CRLF).
println(int) Writes an int to the client, followed by a carriage return-line feed (CRLF) characte
println(long) Writes along value to the client, followed by a carriage return-line feed (CRLF).
println(String) Writes aString to the client, followed by a carriage return-line feed (CRLF).
42

javax.servlet ServletOutputStream

ServletOutputStream()
Constructors

ServletOutputStream()

protected ServletOutputStream()

Does nothing, because this is an abstract class.

Methods

print(boolean)

public void print(boolean b)

Writes aboolean value to the client, with no carriage return-line feed (CRLF) character at the end.

Parameters:
b - theboolean value to send to the client

Throws: IOException - if an input or output exception occurred

print(char)

public void print(char c)

Writes a character to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
c - the character to send to the client

Throws: IOException - if an input or output exception occurred

print(double)

public void print(double d)

Writes adouble value to the client, with no carriage return-line feed (CRLF) at the end.

Inherited Member Summary

Methods inherited from class java.io.OutputStream

close, flush, write, write, write

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait
43

ServletOutputStream javax.servlet

print(float)
Parameters:
d - thedouble value to send to the client

Throws: IOException - if an input or output exception occurred

print(float)

public void print(float f)

Writes afloat value to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
f - thefloat value to send to the client

Throws: IOException - if an input or output exception occurred

print(int)

public void print(int i)

Writes an int to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
i - the int to send to the client

Throws: IOException - if an input or output exception occurred

print(long)

public void print(long l)

Writes along value to the client, with no carriage return-line feed (CRLF) at the end.

Parameters:
l - thelong value to send to the client

Throws: IOException - if an input or output exception occurred

print(String)

public void print(java.lang.String s)

Writes aString to the client, without a carriage return-line feed (CRLF) character at the end.

Parameters:
s - theString</code to send to the client

Throws: IOException - if an input or output exception occurred

println()

public void println()

Writes a carriage return-line feed (CRLF) to the client.

Throws: IOException - if an input or output exception occurred
44

javax.servlet ServletOutputStream

println(boolean)
println(boolean)

public void println(boolean b)

Writes aboolean value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
b - theboolean value to write to the client

Throws: IOException - if an input or output exception occurred

println(char)

public void println(char c)

Writes a character to the client, followed by a carriage return-line feed (CRLF).

Parameters:
c - the character to write to the client

Throws: IOException - if an input or output exception occurred

println(double)

public void println(double d)

Writes adouble value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
d - thedouble value to write to the client

Throws: IOException - if an input or output exception occurred

println(float)

public void println(float f)

Writes afloat value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
f - thefloat value to write to the client

Throws: IOException - if an input or output exception occurred

println(int)

public void println(int i)

Writes an int to the client, followed by a carriage return-line feed (CRLF) character.

Parameters:
i - the int to write to the client

Throws: IOException - if an input or output exception occurred

println(long)

public void println(long l)
45

ServletOutputStream javax.servlet

println(String)
Writes along value to the client, followed by a carriage return-line feed (CRLF).

Parameters:
l - thelong value to write to the client

Throws: IOException - if an input or output exception occurred

println(String)

public void println(java.lang.String s)

Writes aString to the client, followed by a carriage return-line feed (CRLF).

Parameters:
s - the String to write to the client

Throws: IOException - if an input or output exception occurred
46

javax.servlet ServletRequest

println(String)

input
le,

the

-

javax.servlet

ServletRequest
Syntax
public interface ServletRequest

All Known Subinterfaces: HttpServletRequest

All Known Implementing Classes: ServletRequestWrapper

Description
Defines an object to provide client request information to a servlet. The servlet container creates aServlet-
Request object and passes it as an argument to the servlet’sservice method.

A ServletRequest object provides data including parameter name and values, attributes, and an
stream. Interfaces that extendServletRequest can provide additional protocol-specific data (for examp
HTTP data is provided byHttpServletRequest .

See Also: HttpServletRequest

Member Summary

Methods
getAttribute(String) Returns the value of the named attribute as anObject , or null if no attribute of the

given name exists.
getAttributeNames() Returns anEnumeration containing the names of the attributes available to this

request.
getCharacterEncod-
ing()

Returns the name of the character encoding used in the body of this request.

getContentLength() Returns the length, in bytes, of the request body and made available by the input
stream, or -1 if the length is not known.

getContentType() Returns the MIME type of the body of the request, ornull if the type is not known.
getInputStream() Retrieves the body of the request as binary data using aServletInputStream .
getLocale() Returns the preferredLocale that the client will accept content in, based on the

Accept-Language header.
getLocales() Returns anEnumeration of Locale objects indicating, in decreasing order start-

ing with the preferred locale, the locales that are acceptable to the client based on
Accept-Language header.

getParameter(String) Returns the value of a request parameter as aString , ornull if the parameter does
not exist.

getParameterMap() Returns a java.util.Map of the parameters of this request.
getParameterNames() Returns anEnumeration of String objects containing the names of the parame

ters contained in this request.
getParameterVal-
ues(String)

Returns an array ofString objects containing all of the values the given request
parameter has, ornull if the parameter does not exist.

getProtocol() Returns the name and version of the protocol the request uses in the formprotocol/
majorVersion.minorVersion, for example, HTTP/1.1.

getReader() Retrieves the body of the request as character data using aBufferedReader .
47

ServletRequest javax.servlet

getAttribute(String)

forma-

nt.

names

thod

of

nel,
Methods

getAttribute(String)

public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute as anObject , ornull if no attribute of the given name exists.

Attributes can be set two ways. The servlet container may set attributes to make available custom in
tion about a request. For example, for requests made using HTTPS, the attributejavax.serv-
let.request.X509Certificate can be used to retrieve information on the certificate of the clie
Attributes can also be set programatically usingsetAttribute(String, Object) . This allows
information to be embedded into a request before aRequestDispatcher call.

Attribute names should follow the same conventions as package names. This specification reserves
matchingjava.* , javax.* , andsun.* .

Parameters:
name - aString specifying the name of the attribute

Returns: anObject containing the value of the attribute, ornull if the attribute does not exist

getAttributeNames()

public java.util.Enumeration getAttributeNames()

Returns anEnumeration containing the names of the attributes available to this request. This me
returns an emptyEnumeration if the request has no attributes available to it.

Returns: anEnumeration of strings containing the names of the request’s attributes

getRealPath(String)

getRemoteAddr() Returns the Internet Protocol (IP) address of the client that sent the request.
getRemoteHost() Returns the fully qualified name of the client that sent the request, or the IP address

the client if the name cannot be determined.
getRequestDis-
patcher(String)

Returns aRequestDispatcher object that acts as a wrapper for the resource
located at the given path.

getScheme() Returns the name of the scheme used to make this request, for example,http ,
https , or ftp .

getServerName() Returns the host name of the server that received the request.
getServerPort() Returns the port number on which this request was received.
isSecure() Returns a boolean indicating whether this request was made using a secure chan

such as HTTPS.
removeAt-
tribute(String)

Removes an attribute from this request.

setAttribute(String,
Object)

Stores an attribute in this request.

setCharacterEncod-
ing(String)

Overrides the name of the character encoding used in the body of this request.

Member Summary
48

javax.servlet ServletRequest

getCharacterEncoding()

length

,

wn

s

der.
ale for
getCharacterEncoding()

public java.lang.String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request. This method returnsnull if
the request does not specify a character encoding

Returns: aString containing the name of the chararacter encoding, ornull if the request does not
specify a character encoding

getContentLength()

public int getContentLength()

Returns the length, in bytes, of the request body and made available by the input stream, or -1 if the
is not known. For HTTP servlets, same as the value of the CGI variable CONTENT_LENGTH.

Returns: an integer containing the length of the request body or -1 if the length is not known

getContentType()

public java.lang.String getContentType()

Returns the MIME type of the body of the request, ornull if the type is not known. For HTTP servlets
same as the value of the CGI variable CONTENT_TYPE.

Returns: aString containing the name of the MIME type of the request, or -1 if the type is not kno

getInputStream()

public ServletInputStream getInputStream()

Retrieves the body of the request as binary data using aServletInputStream . Either this method or
getReader() may be called to read the body, not both.

Returns: aServletInputStream object containing the body of the request

Throws: IllegalStateException - if the getReader() method has already been called for thi
request

IOException - if an input or output exception occurred

getLocale()

public java.util.Locale getLocale()

Returns the preferredLocale that the client will accept content in, based on the Accept-Language hea
If the client request doesn’t provide an Accept-Language header, this method returns the default loc
the server.

Returns: the preferredLocale for the client

getLocales()

public java.util.Enumeration getLocales()
49

ServletRequest javax.servlet

getParameter(String)

ed
e client

st
d in the

ameter

in the

en read-

on sent
ta.

s map

this
Returns anEnumeration of Locale objects indicating, in decreasing order starting with the preferr
locale, the locales that are acceptable to the client based on the Accept-Language header. If th
request doesn’t provide an Accept-Language header, this method returns anEnumeration containing
oneLocale , the default locale for the server.

Returns: anEnumeration of preferredLocale objects for the client

getParameter(String)

public java.lang.String getParameter(java.lang.String name)

Returns the value of a request parameter as aString , or null if the parameter does not exist. Reque
parameters are extra information sent with the request. For HTTP servlets, parameters are containe
query string or posted form data.

You should only use this method when you are sure the parameter has only one value. If the par
might have more than one value, usegetParameterValues(String) .

If you use this method with a multivalued parameter, the value returned is equal to the first value
array returned bygetParameterValues .

If the parameter data was sent in the request body, such as occurs with an HTTP POST request, th
ing the body directly viagetInputStream() or getReader() can interfere with the execution of
this method.

Parameters:
name - aString specifying the name of the parameter

Returns: aString representing the single value of the parameter

See Also: getParameterValues(String)

getParameterMap()

public java.util.Map getParameterMap()

Returns a java.util.Map of the parameters of this request. Request parameters are extra informati
with the request. For HTTP servlets, parameters are contained in the query string or posted form da

Returns: an immutable java.util.Map containing parameter names as keys and parameter values a
values.

getParameterNames()

public java.util.Enumeration getParameterNames()

Returns anEnumeration of String objects containing the names of the parameters contained in
request. If the request has no parameters, the method returns an emptyEnumeration .

Returns: anEnumeration of String objects, eachString containing the name of a request
parameter; or an emptyEnumeration if the request has no parameters

getParameterValues(String)

public java.lang.String[] getParameterValues(java.lang.String name)
50

javax.servlet ServletRequest

getProtocol()

e CGI

d

e as the
Returns an array ofString objects containing all of the values the given request parameter has, ornull
if the parameter does not exist.

If the parameter has a single value, the array has a length of 1.

Parameters:
name - aString containing the name of the parameter whose value is requested

Returns: an array ofString objects containing the parameter’s values

See Also: getParameter(String)

getProtocol()

public java.lang.String getProtocol()

Returns the name and version of the protocol the request uses in the formprotocol/majorVersion.minor-
Version, for example, HTTP/1.1. For HTTP servlets, the value returned is the same as the value of th
variableSERVER_PROTOCOL.

Returns: aString containing the protocol name and version number

getReader()

public java.io.BufferedReader getReader()

Retrieves the body of the request as character data using aBufferedReader . The reader translates the
character data according to the character encoding used on the body. Either this method orgetReader()
may be called to read the body, not both.

Returns: aBufferedReader containing the body of the request

Throws: UnsupportedEncodingException - if the character set encoding used is not supporte
and the text cannot be decoded

IllegalStateException - if getInputStream() method has been called on this request

IOException - if an input or output exception occurred

See Also: getInputStream()

getRealPath(String)

public java.lang.String getRealPath(java.lang.String path)

Deprecated. As of Version 2.1 of the Java Servlet API, usegetRealPath(String) instead.

getRemoteAddr()

public java.lang.String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the request. For HTTP servlets, sam
value of the CGI variableREMOTE_ADDR.

Returns: aString containing the IP address of the client that sent the request

getRemoteHost()
51

ServletRequest javax.servlet

getRequestDispatcher(String)

name

ath.
the

t. If the

th

e of the

e of the
public java.lang.String getRemoteHost()

Returns the fully qualified name of the client that sent the request, or the IP address of the client if the
cannot be determined. For HTTP servlets, same as the value of the CGI variableREMOTE_HOST.

Returns: aString containing the fully qualified name of the client

getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String path)

Returns aRequestDispatcher object that acts as a wrapper for the resource located at the given p
A RequestDispatcher object can be used to forward a request to the resource or to include
resource in a response. The resource can be dynamic or static.

The pathname specified may be relative, although it cannot extend outside the current servlet contex
path begins with a “/” it is interpreted as relative to the current context root. This method returnsnull if
the servlet container cannot return aRequestDispatcher .

The difference between this method andgetRequestDispatcher(String) is that this method can
take a relative path.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the resource at the specified pa

See Also: RequestDispatcher , getRequestDispatcher(String)

getScheme()

public java.lang.String getScheme()

Returns the name of the scheme used to make this request, for example,http , https , or ftp . Different
schemes have different rules for constructing URLs, as noted in RFC 1738.

Returns: aString containing the name of the scheme used to make this request

getServerName()

public java.lang.String getServerName()

Returns the host name of the server that received the request. For HTTP servlets, same as the valu
CGI variableSERVER_NAME.

Returns: aString containing the name of the server to which the request was sent

getServerPort()

public int getServerPort()

Returns the port number on which this request was received. For HTTP servlets, same as the valu
CGI variableSERVER_PORT.

Returns: an integer specifying the port number
52

javax.servlet ServletRequest

isSecure()

S.

rsist as

used in

called
isSecure()

public boolean isSecure()

Returns a boolean indicating whether this request was made using a secure channel, such as HTTP

Returns: a boolean indicating if the request was made using a secure channel

removeAttribute(String)

public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally needed as attributes only pe
long as the request is being handled.

Attribute names should follow the same conventions as package names. Names beginning withjava.* ,
javax.* , andcom.sun.* , are reserved for use by Sun Microsystems.

Parameters:
name - aString specifying the name of the attribute to remove

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object o)

Stores an attribute in this request. Attributes are reset between requests. This method is most often
conjunction withRequestDispatcher .

Attribute names should follow the same conventions as package names. Names beginning withjava.* ,
javax.* , andcom.sun.* , are reserved for use by Sun Microsystems.

Parameters:
name - aString specifying the name of the attribute

o - theObject to be stored

setCharacterEncoding(String)

public void setCharacterEncoding(java.lang.String env)

Overrides the name of the character encoding used in the body of this request. This method must be
prior to reading request parameters or reading input using getReader().

Parameters:
a - String containing the name of the chararacter encoding.

Throws: java.io.UnsupportedEncodingException - if this is not a valid encoding
53

ServletRequestWrapper javax.servlet

setCharacterEncoding(String)

velopers
ethods

ed

d

st

est
javax.servlet

ServletRequestWrapper
Syntax
public class ServletRequestWrapper implements ServletRequest

java.lang.Object
|
+-- javax.servlet.ServletRequestWrapper

Direct Known Subclasses: HttpServletRequestWrapper

All Implemented Interfaces: ServletRequest

Description
Provides a convenient implementation of the ServletRequest interface that can be subclassed by de
wishing to adapt the request to a Servlet. This class implements the Wrapper or Decorator pattern. M
default to calling through to the wrapped request object.

Since: v 2.3

See Also: ServletRequest

Member Summary

Constructors
ServletRequestWrap-
per(ServletRequest)

Creates a ServletRequest adaptor wrapping the given request object.

Methods
getAttribute(String) The default behavior of this method is to call getAttribute(String name) on the

wrapped request object.
getAttributeNames() The default behavior of this method is to return getAttributeNames() on the wrapp

request object.
getCharacterEncod-
ing()

The default behavior of this method is to return getCharacterEncoding() on the
wrapped request object.

getContentLength() The default behavior of this method is to return getContentLength() on the wrappe
request object.

getContentType() The default behavior of this method is to return getContentType() on the wrapped
request object.

getInputStream() The default behavior of this method is to return getInputStream() on the wrapped
request object.

getLocale() The default behavior of this method is to return getLocale() on the wrapped reque
object.

getLocales() The default behavior of this method is to return getLocales() on the wrapped requ
object.

getParameter(String) The default behavior of this method is to return getParameter(String name) on the
wrapped request object.
54

javax.servlet ServletRequestWrapper

ServletRequestWrapper(ServletRequest)

d

ped

 on

est

est

on

est

t

)

ed
Constructors

ServletRequestWrapper(ServletRequest)

getParameterMap() The default behavior of this method is to return getParameterMap() on the wrappe
request object.

getParameterNames() The default behavior of this method is to return getParameterNames() on the wrap
request object.

getParameterVal-
ues(String)

The default behavior of this method is to return getParameterValues(String name)
the wrapped request object.

getProtocol() The default behavior of this method is to return getProtocol() on the wrapped requ
object.

getReader() The default behavior of this method is to return getReader() on the wrapped requ
object.

getRealPath(String) The default behavior of this method is to return getRealPath(String path) on the
wrapped request object.

getRemoteAddr() The default behavior of this method is to return getRemoteAddr() on the wrapped
request object.

getRemoteHost() The default behavior of this method is to return getRemoteHost() on the wrapped
request object.

getRequest() Return the wrapped request object.
getRequestDis-
patcher(String)

The default behavior of this method is to return getRequestDispatcher(String path)
the wrapped request object.

getScheme() The default behavior of this method is to return getScheme() on the wrapped requ
object.

getServerName() The default behavior of this method is to return getServerName() on the wrapped
request object.

getServerPort() The default behavior of this method is to return getServerPort() on the wrapped
request object.

isSecure() The default behavior of this method is to return isSecure() on the wrapped reques
object.

removeAt-
tribute(String)

The default behavior of this method is to call removeAttribute(String name) on the
wrapped request object.

setAttribute(String,
Object)

The default behavior of this method is to return setAttribute(String name, Object o
on the wrapped request object.

setCharacterEncod-
ing(String)

The default behavior of this method is to set the character encoding on the wrapp
request object.

setRequest(ServletRe-
quest)

Sets the request object being wrapped.

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Member Summary
55

ServletRequestWrapper javax.servlet

getAttribute(String)

ct.

ject.
public ServletRequestWrapper(ServletRequest request)

Creates a ServletRequest adaptor wrapping the given request object.

Throws: java.lang.IllegalArgumentException - if the request is null

Methods

getAttribute(String)

public java.lang.Object getAttribute(java.lang.String name)

The default behavior of this method is to call getAttribute(String name) on the wrapped request obje

Specified By: getAttribute(String) in interfaceServletRequest

getAttributeNames()

public java.util.Enumeration getAttributeNames()

The default behavior of this method is to return getAttributeNames() on the wrapped request object.

Specified By: getAttributeNames() in interfaceServletRequest

getCharacterEncoding()

public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on the wrapped request ob

Specified By: getCharacterEncoding() in interfaceServletRequest

getContentLength()

public int getContentLength()

The default behavior of this method is to return getContentLength() on the wrapped request object.

Specified By: getContentLength() in interfaceServletRequest

getContentType()

public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the wrapped request object.

Specified By: getContentType() in interfaceServletRequest

getInputStream()

public ServletInputStream getInputStream()

The default behavior of this method is to return getInputStream() on the wrapped request object.
56

javax.servlet ServletRequestWrapper

getLocale()

 object.

ct.

request
Specified By: getInputStream() in interfaceServletRequest

Throws: IOException

getLocale()

public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapped request object.

Specified By: getLocale() in interfaceServletRequest

getLocales()

public java.util.Enumeration getLocales()

The default behavior of this method is to return getLocales() on the wrapped request object.

Specified By: getLocales() in interfaceServletRequest

getParameter(String)

public java.lang.String getParameter(java.lang.String name)

The default behavior of this method is to return getParameter(String name) on the wrapped request

Specified By: getParameter(String) in interfaceServletRequest

getParameterMap()

public java.util.Map getParameterMap()

The default behavior of this method is to return getParameterMap() on the wrapped request object.

Specified By: getParameterMap() in interfaceServletRequest

getParameterNames()

public java.util.Enumeration getParameterNames()

The default behavior of this method is to return getParameterNames() on the wrapped request obje

Specified By: getParameterNames() in interfaceServletRequest

getParameterValues(String)

public java.lang.String[] getParameterValues(java.lang.String name)

The default behavior of this method is to return getParameterValues(String name) on the wrapped
object.

Specified By: getParameterValues(String) in interfaceServletRequest

getProtocol()

public java.lang.String getProtocol()
57

ServletRequestWrapper javax.servlet

getReader()

ject.

equest
The default behavior of this method is to return getProtocol() on the wrapped request object.

Specified By: getProtocol() in interfaceServletRequest

getReader()

public java.io.BufferedReader getReader()

The default behavior of this method is to return getReader() on the wrapped request object.

Specified By: getReader() in interfaceServletRequest

Throws: IOException

getRealPath(String)

public java.lang.String getRealPath(java.lang.String path)

The default behavior of this method is to return getRealPath(String path) on the wrapped request ob

Specified By: getRealPath(String) in interfaceServletRequest

getRemoteAddr()

public java.lang.String getRemoteAddr()

The default behavior of this method is to return getRemoteAddr() on the wrapped request object.

Specified By: getRemoteAddr() in interfaceServletRequest

getRemoteHost()

public java.lang.String getRemoteHost()

The default behavior of this method is to return getRemoteHost() on the wrapped request object.

Specified By: getRemoteHost() in interfaceServletRequest

getRequest()

public ServletRequest getRequest()

Return the wrapped request object.

getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String path)

The default behavior of this method is to return getRequestDispatcher(String path) on the wrapped r
object.

Specified By: getRequestDispatcher(String) in interfaceServletRequest

getScheme()

public java.lang.String getScheme()
58

javax.servlet ServletRequestWrapper

getServerName()

object.

quest
The default behavior of this method is to return getScheme() on the wrapped request object.

Specified By: getScheme() in interfaceServletRequest

getServerName()

public java.lang.String getServerName()

The default behavior of this method is to return getServerName() on the wrapped request object.

Specified By: getServerName() in interfaceServletRequest

getServerPort()

public int getServerPort()

The default behavior of this method is to return getServerPort() on the wrapped request object.

Specified By: getServerPort() in interfaceServletRequest

isSecure()

public boolean isSecure()

The default behavior of this method is to return isSecure() on the wrapped request object.

Specified By: isSecure() in interfaceServletRequest

removeAttribute(String)

public void removeAttribute(java.lang.String name)

The default behavior of this method is to call removeAttribute(String name) on the wrapped request

Specified By: removeAttribute(String) in interfaceServletRequest

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object o)

The default behavior of this method is to return setAttribute(String name, Object o) on the wrapped re
object.

Specified By: setAttribute(String, Object) in interfaceServletRequest

setCharacterEncoding(String)

public void setCharacterEncoding(java.lang.String enc)

The default behavior of this method is to set the character encoding on the wrapped request object.

Specified By: setCharacterEncoding(String) in interfaceServletRequest

Throws: UnsupportedEncodingException

setRequest(ServletRequest)
59

ServletRequestWrapper javax.servlet

setRequest(ServletRequest)
public void setRequest(ServletRequest request)

Sets the request object being wrapped.

Throws: java.lang.IllegalArgumentException - if the request is null.
60

javax.servlet ServletResponse

setRequest(ServletRequest)

eates a

HTTP

or

ets
javax.servlet

ServletResponse
Syntax
public interface ServletResponse

All Known Subinterfaces: HttpServletResponse

All Known Implementing Classes: ServletResponseWrapper

Description
Defines an object to assist a servlet in sending a response to the client. The servlet container cr
ServletResponse object and passes it as an argument to the servlet’sservice method.

To send binary data in a MIME body response, use theServletOutputStream returned by
getOutputStream() . To send character data, use thePrintWriter object returned by
getWriter() . To mix binary and text data, for example, to create a multipart response, use aServlet-
OutputStream and manage the character sections manually.

The charset for the MIME body response can be specified withsetContentType(String) . For example,
“text/html; charset=Shift_JIS”. The charset can alternately be set usingsetLocale(Locale) . If no charset
is specified, ISO-8859-1 will be used. ThesetContentType or setLocale method must be called before
getWriter for the charset to affect the construction of the writer.

See the Internet RFCs such as RFC 2045 for more information on MIME. Protocols such as SMTP and
define profiles of MIME, and those standards are still evolving.

See Also: ServletOutputStream

Member Summary

Methods
flushBuffer() Forces any content in the buffer to be written to the client.
getBufferSize() Returns the actual buffer size used for the response.
getCharacterEncod-
ing()

Returns the name of the charset used for the MIME body sent in this response.

getLocale() Returns the locale assigned to the response.
getOutputStream() Returns aServletOutputStream suitable for writing binary data in the

response.
getWriter() Returns aPrintWriter object that can send character text to the client.
isCommitted() Returns a boolean indicating if the response has been committed.
reset() Clears any data that exists in the buffer as well as the status code and headers.
resetBuffer() Clears the content of the underlying buffer in the response without clearing headers

status code.
setBufferSize(int) Sets the preferred buffer size for the body of the response.
setContentLength(int) Sets the length of the content body in the response In HTTP servlets, this method s

the HTTP Content-Length header.
61

ServletResponse javax.servlet

flushBuffer()

s the

g and
Methods

flushBuffer()

public void flushBuffer()

Forces any content in the buffer to be written to the client. A call to this method automatically commit
response, meaning the status code and headers will be written.

Throws: IOException

See Also: setBufferSize(int) , getBufferSize() , isCommitted() , reset()

getBufferSize()

public int getBufferSize()

Returns the actual buffer size used for the response. If no buffering is used, this method returns 0.

Returns: the actual buffer size used

See Also: setBufferSize(int) , flushBuffer() , isCommitted() , reset()

getCharacterEncoding()

public java.lang.String getCharacterEncoding()

Returns the name of the charset used for the MIME body sent in this response.

If no charset has been assigned, it is implicitly set toISO-8859-1 (Latin-1).

See RFC 2047 (http://ds.internic.net/rfc/rfc2045.txt) for more information about character encodin
MIME.

Returns: aString specifying the name of the charset, for example,ISO-8859-1

getLocale()

public java.util.Locale getLocale()

Returns the locale assigned to the response.

See Also: setLocale(Locale)

getOutputStream()

public ServletOutputStream getOutputStream()

setContent-
Type(String)

Sets the content type of the response being sent to the client.

setLocale(Locale) Sets the locale of the response, setting the headers (including the Content-Type’s
charset) as appropriate.

Member Summary
62

javax.servlet ServletResponse

getWriter()

n-

ed is

y had its

een com-
Returns aServletOutputStream suitable for writing binary data in the response. The servlet co
tainer does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response. Either this method orgetWriter()
may be called to write the body, not both.

Returns: aServletOutputStream for writing binary data

Throws: IllegalStateException - if thegetWriter method has been called on this response

IOException - if an input or output exception occurred

See Also: getWriter()

getWriter()

public java.io.PrintWriter getWriter()

Returns aPrintWriter object that can send character text to the client. The character encoding us
the one specified in thecharset= property of thesetContentType(String) method, which must
be calledbefore calling this method for the charset to take effect.

If necessary, the MIME type of the response is modified to reflect the character encoding used.

Calling flush() on the PrintWriter commits the response.

Either this method orgetOutputStream() may be called to write the body, not both.

Returns: aPrintWriter object that can return character data to the client

Throws: UnsupportedEncodingException - if the charset specified insetContentType
cannot be used

IllegalStateException - if thegetOutputStream method has already been called for this
response object

IOException - if an input or output exception occurred

See Also: getOutputStream() , setContentType(String)

isCommitted()

public boolean isCommitted()

Returns a boolean indicating if the response has been committed. A commited response has alread
status code and headers written.

Returns: a boolean indicating if the response has been committed

See Also: setBufferSize(int) , getBufferSize() , flushBuffer() , reset()

reset()

public void reset()

Clears any data that exists in the buffer as well as the status code and headers. If the response has b
mitted, this method throws anIllegalStateException .

Throws: IllegalStateException - if the response has already been committed

See Also: setBufferSize(int) , getBufferSize() , flushBuffer() , isCommitted()
63

ServletResponse javax.servlet

resetBuffer()

. If the

east as

ervlet
ory load

n, this

ontent-

t-

of char-
resetBuffer()

public void resetBuffer()

Clears the content of the underlying buffer in the response without clearing headers or status code
response has been committed, this method throws anIllegalStateException .

Since: 2.3

See Also: setBufferSize(int) , getBufferSize() , isCommitted() , reset()

setBufferSize(int)

public void setBufferSize(int size)

Sets the preferred buffer size for the body of the response. The servlet container will use a buffer at l
large as the size requested. The actual buffer size used can be found usinggetBufferSize .

A larger buffer allows more content to be written before anything is actually sent, thus providing the s
with more time to set appropriate status codes and headers. A smaller buffer decreases server mem
and allows the client to start receiving data more quickly.

This method must be called before any response body content is written; if content has been writte
method throws anIllegalStateException .

Parameters:
size - the preferred buffer size

Throws: IllegalStateException - if this method is called after content has been written

See Also: getBufferSize() , flushBuffer() , isCommitted() , reset()

setContentLength(int)

public void setContentLength(int len)

Sets the length of the content body in the response In HTTP servlets, this method sets the HTTP C
Length header.

Parameters:
len - an integer specifying the length of the content being returned to the client; sets the Conten
Length header

setContentType(String)

public void setContentType(java.lang.String type)

Sets the content type of the response being sent to the client. The content type may include the type
acter encoding used, for example,text/html; charset=ISO-8859-4 .

If obtaining aPrintWriter , this method should be called first.

Parameters:
type - aString specifying the MIME type of the content

See Also: getOutputStream() , getWriter()
64

javax.servlet ServletResponse

setLocale(Locale)

ropriate.
e

setLocale(Locale)

public void setLocale(java.util.Locale loc)

Sets the locale of the response, setting the headers (including the Content-Type’s charset) as app
This method should be called before a call togetWriter() . By default, the response locale is th
default locale for the server.

Parameters:
loc - the locale of the response

See Also: getLocale()
65

ServletResponseWrapper javax.servlet

setLocale(Locale)

velopers
ethods

se

nse

d

se

ject.
se
javax.servlet

ServletResponseWrapper
Syntax
public class ServletResponseWrapper implements ServletResponse

java.lang.Object
|
+-- javax.servlet.ServletResponseWrapper

Direct Known Subclasses: HttpServletResponseWrapper

All Implemented Interfaces: ServletResponse

Description
Provides a convenient implementation of the ServletResponse interface that can be subclassed by de
wishing to adapt the response from a Servlet. This class implements the Wrapper or Decorator pattern. M
default to calling through to the wrapped response object.

Since: v 2.3

See Also: ServletResponse

Member Summary

Constructors
ServletResponseWrap-
per(ServletResponse)

Creates a ServletResponse adaptor wrapping the given response object.

Methods
flushBuffer() The default behavior of this method is to call flushBuffer() on the wrapped respon

object.
getBufferSize() The default behavior of this method is to return getBufferSize() on the wrapped

response object.
getCharacterEncod-
ing()

The default behavior of this method is to return getCharacterEncoding() on the
wrapped response object.

getLocale() The default behavior of this method is to return getLocale() on the wrapped respo
object.

getOutputStream() The default behavior of this method is to return getOutputStream() on the wrappe
response object.

getResponse() Return the wrapped ServletResponse object.
getWriter() The default behavior of this method is to return getWriter() on the wrapped respon

object.
isCommitted() The default behavior of this method is to return isCommitted() on the wrapped

response object.
reset() The default behavior of this method is to call reset() on the wrapped response ob
resetBuffer() The default behavior of this method is to call resetBuffer() on the wrapped respon

object.
66

javax.servlet ServletResponseWrapper

ServletResponseWrapper(ServletResponse)

d

d

Constructors

ServletResponseWrapper(ServletResponse)

public ServletResponseWrapper(ServletResponse response)

Creates a ServletResponse adaptor wrapping the given response object.

Throws: java.lang.IllegalArgumentException - if the response is null.

Methods

flushBuffer()

public void flushBuffer()

The default behavior of this method is to call flushBuffer() on the wrapped response object.

Specified By: flushBuffer() in interfaceServletResponse

Throws: IOException

getBufferSize()

public int getBufferSize()

The default behavior of this method is to return getBufferSize() on the wrapped response object.

setBufferSize(int) The default behavior of this method is to call setBufferSize(int size) on the wrappe
response object.

setContentLength(int) The default behavior of this method is to call setContentLength(int len) on the
wrapped response object.

setContent-
Type(String)

The default behavior of this method is to call setContentType(String type) on the
wrapped response object.

setLocale(Locale) The default behavior of this method is to call setLocale(Locale loc) on the wrappe
response object.

setResponse(Servlet-
Response)

Sets the response being wrapped.

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Member Summary
67

ServletResponseWrapper javax.servlet

getCharacterEncoding()

bject.

.

Specified By: getBufferSize() in interfaceServletResponse

getCharacterEncoding()

public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on the wrapped response o

Specified By: getCharacterEncoding() in interfaceServletResponse

getLocale()

public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapped response object.

Specified By: getLocale() in interfaceServletResponse

getOutputStream()

public ServletOutputStream getOutputStream()

The default behavior of this method is to return getOutputStream() on the wrapped response object

Specified By: getOutputStream() in interfaceServletResponse

Throws: IOException

getResponse()

public ServletResponse getResponse()

Return the wrapped ServletResponse object.

getWriter()

public java.io.PrintWriter getWriter()

The default behavior of this method is to return getWriter() on the wrapped response object.

Specified By: getWriter() in interfaceServletResponse

Throws: IOException

isCommitted()

public boolean isCommitted()

The default behavior of this method is to return isCommitted() on the wrapped response object.

Specified By: isCommitted() in interfaceServletResponse

reset()

public void reset()
68

javax.servlet ServletResponseWrapper

resetBuffer()

t.

ject.

 object.

.

The default behavior of this method is to call reset() on the wrapped response object.

Specified By: reset() in interfaceServletResponse

resetBuffer()

public void resetBuffer()

The default behavior of this method is to call resetBuffer() on the wrapped response object.

Specified By: resetBuffer() in interfaceServletResponse

setBufferSize(int)

public void setBufferSize(int size)

The default behavior of this method is to call setBufferSize(int size) on the wrapped response objec

Specified By: setBufferSize(int) in interfaceServletResponse

setContentLength(int)

public void setContentLength(int len)

The default behavior of this method is to call setContentLength(int len) on the wrapped response ob

Specified By: setContentLength(int) in interfaceServletResponse

setContentType(String)

public void setContentType(java.lang.String type)

The default behavior of this method is to call setContentType(String type) on the wrapped response

Specified By: setContentType(String) in interfaceServletResponse

setLocale(Locale)

public void setLocale(java.util.Locale loc)

The default behavior of this method is to call setLocale(Locale loc) on the wrapped response object

Specified By: setLocale(Locale) in interfaceServletResponse

setResponse(ServletResponse)

public void setResponse(ServletResponse response)

Sets the response being wrapped.

Throws: java.lang.IllegalArgumentException - if the response is null.
69

SingleThreadModel javax.servlet

setResponse(ServletResponse)

e
single
o a free

sources
javax.servlet

SingleThreadModel
Syntax
public interface SingleThreadModel

Description
Ensures that servlets handle only one request at a time. This interface has no methods.

If a servlet implements this interface, you areguaranteedthat no two threads will execute concurrently in th
servlet’sservice method. The servlet container can make this guarantee by synchronizing access to a
instance of the servlet, or by maintaining a pool of servlet instances and dispatching each new request t
servlet.

This interface does not prevent synchronization problems that result from servlets accessing shared re
such as static class variables or classes outside the scope of the servlet.
70

javax.servlet UnavailableException

setResponse(ServletResponse)

quests
e cor-

blem.
rage to

ng tem-
tainer
m until

 is

 is
javax.servlet

UnavailableException
Syntax
public class UnavailableException extends ServletException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+-- ServletException

|
+-- javax.servlet.UnavailableException

All Implemented Interfaces: java.io.Serializable

Description
Defines an exception that a servlet throws to indicate that it is permanently or temporarily unavailable.

When a servlet is permanently unavailable, something is wrong with the servlet, and it cannot handle re
until some action is taken. For example, the servlet might be configured incorrectly, or its state may b
rupted. A servlet should log both the error and the corrective action that is needed.

A servlet is temporarily unavailable if it cannot handle requests momentarily due to some system-wide pro
For example, a third-tier server might not be accessible, or there may be insufficient memory or disk sto
handle requests. A system administrator may need to take corrective action.

Servlet containers can safely treat both types of unavailable exceptions in the same way. However, treati
porary unavailability effectively makes the servlet container more robust. Specifically, the servlet con
might block requests to the servlet for a period of time suggested by the servlet, rather than rejecting the
the servlet container restarts.

Member Summary

Constructors
UnavailableExcep-
tion(int, Servlet,
String)
UnavailableExcep-
tion(Servlet, String)
UnavailableExcep-
tion(String)

Constructs a new exception with a descriptive message indicating that the servlet
permanently unavailable.

UnavailableExcep-
tion(String, int)

Constructs a new exception with a descriptive message indicating that the servlet
temporarily unavailable and giving an estimate of how long it will be unavailable.

Methods
getServlet()

getUnavailableSec-
onds()

Returns the number of seconds the servlet expects to be temporarily unavailable.
71

UnavailableException javax.servlet

UnavailableException(int, Servlet, String)

ro or

for
Constructors

UnavailableException(int, Servlet, String)

public UnavailableException(int seconds, Servlet servlet, java.lang.String msg)

Deprecated. As of Java Servlet API 2.2, useUnavailableException(String, int) instead.

Parameters:
seconds - an integer specifying the number of seconds the servlet expects to be unavailable; if ze
negative, indicates that the servlet can’t make an estimate

servlet - theServlet that is unavailable

msg - aString specifying the descriptive message, which can be written to a log file or displayed
the user.

UnavailableException(Servlet, String)

public UnavailableException(Servlet servlet, java.lang.String msg)

Deprecated. As of Java Servlet API 2.2, useUnavailableException(String) instead.

Parameters:
servlet - theServlet instance that is unavailable

msg - aString specifying the descriptive message

UnavailableException(String)

public UnavailableException(java.lang.String msg)

isPermanent() Returns aboolean indicating whether the servlet is permanently unavailable.

Inherited Member Summary

Methods inherited from interface ServletException

getRootCause()

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace, printStackTrace,
printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Member Summary
72

javax.servlet UnavailableException

UnavailableException(String, int)

navail-

ailable

erver it
s can

for

ro or

n esti-
ption

 a
Constructs a new exception with a descriptive message indicating that the servlet is permanently u
able.

Parameters:
msg - aString specifying the descriptive message

UnavailableException(String, int)

public UnavailableException(java.lang.String msg, int seconds)

Constructs a new exception with a descriptive message indicating that the servlet is temporarily unav
and giving an estimate of how long it will be unavailable.

In some cases, the servlet cannot make an estimate. For example, the servlet might know that a s
needs is not running, but not be able to report how long it will take to be restored to functionality. Thi
be indicated with a negative or zero value for theseconds argument.

Parameters:
msg - aString specifying the descriptive message, which can be written to a log file or displayed
the user.

seconds - an integer specifying the number of seconds the servlet expects to be unavailable; if ze
negative, indicates that the servlet can’t make an estimate

Methods

getServlet()

public Servlet getServlet()

Deprecated. As of Java Servlet API 2.2, with no replacement. Returns the servlet that is reporting its
unavailability.

Returns: theServlet object that is throwing theUnavailableException

getUnavailableSeconds()

public int getUnavailableSeconds()

Returns the number of seconds the servlet expects to be temporarily unavailable.

If this method returns a negative number, the servlet is permanently unavailable or cannot provide a
mate of how long it will be unavailable. No effort is made to correct for the time elapsed since the exce
was first reported.

Returns: an integer specifying the number of seconds the servlet will be temporarily unavailable, or
negative number if the servlet is permanently unavailable or cannot make an estimate

isPermanent()

public boolean isPermanent()
73

UnavailableException javax.servlet

isPermanent()

ong
Returns aboolean indicating whether the servlet is permanently unavailable. If so, something is wr
with the servlet, and the system administrator must take some corrective action.

Returns: true if the servlet is permanently unavailable;false if the servlet is available or temporarily
unavailable
74

Package

javax.servlet.http
eb

that

es-

r,

r a

n be

an

ion.

 web
Class Summary

Interfaces

HttpServletRequest Extends theServletRequest interface to provide request information for HTTP
servlets.

HttpServletResponse Extends theServletResponse interface to provide HTTP-specific functionality
in sending a response.

HttpSession Provides a way to identify a user across more than one page request or visit to a W
site and to store information about that user.

HttpSessionActiva-
tionListener

Objects that are bound to a session may listen to container events notifying them
sessions will be passivated and that session will be activated.

HttpSessionAt-
tributesListener

This listener interface can be implemented in order to get notifications of changes
made to sessions within this web application.

HttpSessionBind-
ingListener

Causes an object to be notified when it is bound to or unbound from a session.

HttpSessionContext

HttpSessionListener Implementations of this interface may are notified of changes to the list of active s
sions in a web application.

Classes

Cookie Creates a cookie, a small amount of information sent by a servlet to a Web browse
saved by the browser, and later sent back to the server.

HttpServlet Provides an abstract class to be subclassed to create an HTTP servlet suitable fo
Web site.

HttpServletRequest-
Wrapper

Provides a convenient implementation of the HttpServletRequest interface that ca
subclassed by developers wishing to adapt the request to a Servlet.

HttpServletResponse-
Wrapper

Provides a convenient implementation of the HttpServletResponse interface that c
be subclassed by developers wishing to adapt the response from a Servlet.

HttpSessionBindingEv-
ent

Either Sent to an object that implementsHttpSessionBindingListener when
it is bound or unbound from a session, or to a
HttpSessionAttributesListener that has been configured in the
deploymewnt descriptor when any attribute is bound, unbound or replaced in a sess

HttpSessionEvent This is the class representing event notifications for changes to sessions within a
application.

HttpUtils
75

Cookie javax.servlet.http

er, and
ed for

lifiers, a
tributes,

pport 20

etrieved
rent

kies cre-

ns. By
javax.servlet.http

Cookie
Syntax
public class Cookie implements java.lang.Cloneable

java.lang.Object
|
+-- javax.servlet.http.Cookie

All Implemented Interfaces: java.lang.Cloneable

Description
Creates a cookie, a small amount of information sent by a servlet to a Web browser, saved by the brows
later sent back to the server. A cookie’s value can uniquely identify a client, so cookies are commonly us
session management.

A cookie has a name, a single value, and optional attributes such as a comment, path and domain qua
maximum age, and a version number. Some Web browsers have bugs in how they handle the optional at
so use them sparingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using theaddCookie(Cookie) method, which adds fields to
HTTP response headers to send cookies to the browser, one at a time. The browser is expected to su
cookies for each Web server, 300 cookies total, and may limit cookie size to 4 KB each.

The browser returns cookies to the servlet by adding fields to HTTP request headers. Cookies can be r
from a request by using thegetCookies() method. Several cookies might have the same name but diffe
path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 does not cache pages that use coo
ated with this class. This class does not support the cache control defined with HTTP 1.1.

This class supports both the Version 0 (by Netscape) and Version 1 (by RFC 2109) cookie specificatio
default, cookies are created using Version 0 to ensure the best interoperability.

Member Summary

Constructors
Cookie(String,
String)

Constructs a cookie with a specified name and value.

Methods
clone() Overrides the standardjava.lang.Object.clone method to return a copy of

this cookie.
getComment() Returns the comment describing the purpose of this cookie, ornull if the cookie has

no comment.
getDomain() Returns the domain name set for this cookie.
getMaxAge() Returns the maximum age of the cookie, specified in seconds, By default,-1 indicat-

ing the cookie will persist until browser shutdown.
getName() Returns the name of the cookie.
getPath() Returns the path on the server to which the browser returns this cookie.
76

javax.servlet.http Cookie

Cookie(String, String)

rs and
cannot

er. The

hanged

e

roto-
Constructors

Cookie(String, String)

public Cookie(java.lang.String name, java.lang.String value)

Constructs a cookie with a specified name and value.

The name must conform to RFC 2109. That means it can contain only ASCII alphanumeric characte
cannot contain commas, semicolons, or white space or begin with a $ character. The cookie’s name
be changed after creation.

The value can be anything the server chooses to send. Its value is probably of interest only to the serv
cookie’s value can be changed after creation with thesetValue method.

By default, cookies are created according to the Netscape cookie specification. The version can be c
with thesetVersion method.

Parameters:
name - aString specifying the name of the cookie

value - aString specifying the value of the cookie

Throws: IllegalArgumentException - if the cookie name contains illegal characters (for
example, a comma, space, or semicolon) or it is one of the tokens reserved for use by the cooki
protocol

See Also: setValue(String) , setVersion(int)

getSecure() Returnstrue if the browser is sending cookies only over a secure protocol, or
false if the browser can send cookies using any protocol.

getValue() Returns the value of the cookie.
getVersion() Returns the version of the protocol this cookie complies with.
setComment(String) Specifies a comment that describes a cookie’s purpose.
setDomain(String) Specifies the domain within which this cookie should be presented.
setMaxAge(int) Sets the maximum age of the cookie in seconds.
setPath(String) Specifies a path for the cookie to which the client should return the cookie.
setSecure(boolean) Indicates to the browser whether the cookie should only be sent using a secure p

col, such as HTTPS or SSL.
setValue(String) Assigns a new value to a cookie after the cookie is created.
setVersion(int) Sets the version of the cookie protocol this cookie complies with.

Inherited Member Summary

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Member Summary
77

Cookie javax.servlet.http

clone()

ookie

bpaths
Methods

clone()

public java.lang.Object clone()

Overrides the standardjava.lang.Object.clone method to return a copy of this cookie.

Overrides: java.lang.Object.clone() in class java.lang.Object

getComment()

public java.lang.String getComment()

Returns the comment describing the purpose of this cookie, ornull if the cookie has no comment.

Returns: aString containing the comment, ornull if none

See Also: setComment(String)

getDomain()

public java.lang.String getDomain()

Returns the domain name set for this cookie. The form of the domain name is set by RFC 2109.

Returns: aString containing the domain name

See Also: setDomain(String)

getMaxAge()

public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, By default,-1 indicating the cookie will per-
sist until browser shutdown.

Returns: an integer specifying the maximum age of the cookie in seconds; if negative, means the c
persists until browser shutdown

See Also: setMaxAge(int)

getName()

public java.lang.String getName()

Returns the name of the cookie. The name cannot be changed after creation.

Returns: aString specifying the cookie’s name

getPath()

public java.lang.String getPath()

Returns the path on the server to which the browser returns this cookie. The cookie is visible to all su
on the server.
78

javax.servlet.http Cookie

getSecure()

ver-
owser

ith

ents the
Returns: aString specifying a path that contains a servlet name, for example,/catalog

See Also: setPath(String)

getSecure()

public boolean getSecure()

Returnstrue if the browser is sending cookies only over a secure protocol, orfalse if the browser can
send cookies using any protocol.

Returns: true if the browser can use any standard protocol; otherwise,false

See Also: setSecure(boolean)

getValue()

public java.lang.String getValue()

Returns the value of the cookie.

Returns: aString containing the cookie’s present value

See Also: setValue(String) , Cookie

getVersion()

public int getVersion()

Returns the version of the protocol this cookie complies with. Version 1 complies with RFC 2109, and
sion 0 complies with the original cookie specification drafted by Netscape. Cookies provided by a br
use and identify the browser’s cookie version.

Returns: 0 if the cookie complies with the original Netscape specification; 1 if the cookie complies w
RFC 2109

See Also: setVersion(int)

setComment(String)

public void setComment(java.lang.String purpose)

Specifies a comment that describes a cookie’s purpose. The comment is useful if the browser pres
cookie to the user. Comments are not supported by Netscape Version 0 cookies.

Parameters:
purpose - aString specifying the comment to display to the user

See Also: getComment()

setDomain(String)

public void setDomain(java.lang.String pattern)

Specifies the domain within which this cookie should be presented.
79

Cookie javax.servlet.http

setMaxAge(int)

exam-
ent

at the

rowser

he

ubdi-

s.

TPS or
The form of the domain name is specified by RFC 2109. A domain name begins with a dot (.foo.com)
and means that the cookie is visible to servers in a specified Domain Name System (DNS) zone (for
ple,www.foo.com , but nota.b.foo.com). By default, cookies are only returned to the server that s
them.

Parameters:
pattern - aString containing the domain name within which this cookie is visible; form is
according to RFC 2109

See Also: getDomain()

setMaxAge(int)

public void setMaxAge(int expiry)

Sets the maximum age of the cookie in seconds.

A positive value indicates that the cookie will expire after that many seconds have passed. Note th
value is themaximum age when the cookie will expire, not the cookie’s current age.

A negative value means that the cookie is not stored persistently and will be deleted when the Web b
exits. A zero value causes the cookie to be deleted.

Parameters:
expiry - an integer specifying the maximum age of the cookie in seconds; if negative, means t
cookie is not stored; if zero, deletes the cookie

See Also: getMaxAge()

setPath(String)

public void setPath(java.lang.String uri)

Specifies a path for the cookie to which the client should return the cookie.

The cookie is visible to all the pages in the directory you specify, and all the pages in that directory’s s
rectories. A cookie’s path must include the servlet that set the cookie, for example,/catalog, which makes
the cookie visible to all directories on the server under/catalog.

Consult RFC 2109 (available on the Internet) for more information on setting path names for cookie

Parameters:
uri - aString specifying a path

See Also: getPath()

setSecure(boolean)

public void setSecure(boolean flag)

Indicates to the browser whether the cookie should only be sent using a secure protocol, such as HT
SSL.

The default value isfalse .

Parameters:
flag - if true , sends the cookie from the browser to the server using only when using a secure
protocol; if false , sent on any protocol
80

javax.servlet.http Cookie

setValue(String)

to use

s, com-
ay not

ginal

uction
See Also: getSecure()

setValue(String)

public void setValue(java.lang.String newValue)

Assigns a new value to a cookie after the cookie is created. If you use a binary value, you may want
BASE64 encoding.

With Version 0 cookies, values should not contain white space, brackets, parentheses, equals sign
mas, double quotes, slashes, question marks, at signs, colons, and semicolons. Empty values m
behave the same way on all browsers.

Parameters:
newValue - aString specifying the new value

See Also: getValue() , Cookie

setVersion(int)

public void setVersion(int v)

Sets the version of the cookie protocol this cookie complies with. Version 0 complies with the ori
Netscape cookie specification. Version 1 complies with RFC 2109.

Since RFC 2109 is still somewhat new, consider version 1 as experimental; do not use it yet on prod
sites.

Parameters:
v - 0 if the cookie should comply with the original Netscape specification; 1 if the cookie should
comply with RFC 2109

See Also: getVersion()
81

HttpServlet javax.servlet.http

setVersion(int)

class of

s-

ests and
s instance
. See the

pro-
javax.servlet.http

HttpServlet
Syntax
public abstract class HttpServlet extends GenericServlet implements java.io.Serializable

java.lang.Object
|
+-- GenericServlet

|
+-- javax.servlet.http.HttpServlet

All Implemented Interfaces: java.io.Serializable,Servlet , ServletConfig

Description
Provides an abstract class to be subclassed to create an HTTP servlet suitable for a Web site. A sub
HttpServlet must override at least one method, usually one of these:

• doGet , if the servlet supports HTTP GET requests
• doPost , for HTTP POST requests
• doPut , for HTTP PUT requests
• doDelete , for HTTP DELETE requests
• init anddestroy , to manage resources that are held for the life of the servlet
• getServletInfo , which the servlet uses to provide information about itself

There’s almost no reason to override theservice method.service handles standard HTTP requests by di
patching them to the handler methods for each HTTP request type (thedoXXX methods listed above).

Likewise, there’s almost no reason to override thedoOptions anddoTrace methods.

Servlets typically run on multithreaded servers, so be aware that a servlet must handle concurrent requ
be careful to synchronize access to shared resources. Shared resources include in-memory data such a
or class variables and external objects such as files, database connections, and network connections
Java Tutorial on Multithreaded Programming for more information on handling multiple threads in a Java
gram.

Member Summary

Constructors
HttpServlet() Does nothing, because this is an abstract class.

Methods
doDelete(HttpServle-
tRequest, HttpServle-
tResponse)

Called by the server (via theservice method) to allow a servlet to handle a
DELETE request.

doGet(HttpServletRe-
quest, HttpServletRe-
sponse)

Called by the server (via theservice method) to allow a servlet to handle a GET
request.

doHead(HttpServletRe-
quest, HttpServletRe-
sponse)

Receives an HTTP HEAD request from the protectedservice method and handles
the request.
82

javax.servlet.http HttpServlet

HttpServlet()
Constructors

HttpServlet()

public HttpServlet()

Does nothing, because this is an abstract class.

Methods

doDelete(HttpServletRequest, HttpServletResponse)

doOptions(HttpServle-
tRequest, HttpServle-
tResponse)

Called by the server (via theservice method) to allow a servlet to handle a
OPTIONS request.

doPost(HttpServletRe-
quest, HttpServletRe-
sponse)

Called by the server (via theservice method) to allow a servlet to handle a POST
request.

doPut(HttpServletRe-
quest, HttpServletRe-
sponse)

Called by the server (via theservice method) to allow a servlet to handle a PUT
request.

doTrace(HttpServle-
tRequest, HttpServle-
tResponse)

Called by the server (via theservice method) to allow a servlet to handle a TRACE
request.

getLastModi-
fied(HttpServletRe-
quest)

Returns the time theHttpServletRequest object was last modified, in millisec-
onds since midnight January 1, 1970 GMT.

service(HttpServle-
tRequest, HttpServle-
tResponse)

Receives standard HTTP requests from the publicservice method and dispatches
them to thedoXXX methods defined in this class.

service(ServletRe-
quest, ServletRe-
sponse)

Dispatches client requests to the protectedservice method.

Inherited Member Summary

Methods inherited from classGenericServlet

destroy() , getInitParameter(String) , getInitParameterNames() , getServletConfig() ,
getServletContext() , getServletInfo() , init(ServletConfig) , init() , log(String) ,
log(String, Throwable) , getServletName()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Member Summary
83

HttpServlet javax.servlet.http

doGet(HttpServletRequest, HttpServletResponse)

he

TE can
to save

-

t

e

est. A
.

writer or
oding.
g the

headers

perfor-

le. For
ata, the

aking a
but buy-

rvlet

lient
protected void doDelete(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theservice method) to allow a servlet to handle a DELETE request. T
DELETE operation allows a client to remove a document or Web page from the server.

This method does not need to be either safe or idempotent. Operations requested through DELE
have side effects for which users can be held accountable. When using this method, it may be useful
a copy of the affected URL in temporary storage.

If the HTTP DELETE request is incorrectly formatted,doDelete returns an HTTP “Bad Request” mes
sage.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servle

resp - theHttpServletResponse object that contains the response the servlet returns to th
client

Throws: IOException - if an input or output error occurs while the servlet is handling the DELETE
request

ServletException - if the request for the DELETE cannot be handled

doGet(HttpServletRequest, HttpServletResponse)

protected void doGet(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theservice method) to allow a servlet to handle a GET request.

Overriding this method to support a GET request also automatically supports an HTTP HEAD requ
HEAD request is a GET request that returns no body in the response, only the request header fields

When overriding this method, read the request data, write the response headers, get the response’s
output stream object, and finally, write the response data. It’s best to include content type and enc
When using aPrintWriter object to return the response, set the content type before accessin
PrintWriter object.

The servlet container must write the headers before committing the response, because in HTTP the
must be sent before the response body.

Where possible, set the Content-Length header (with thesetContentLength(int) method), to allow
the servlet container to use a persistent connection to return its response to the client, improving
mance. The content length is automatically set if the entire response fits inside the response buffer.

The GET method should be safe, that is, without any side effects for which users are held responsib
example, most form queries have no side effects. If a client request is intended to change stored d
request should use some other HTTP method.

The GET method should also be idempotent, meaning that it can be safely repeated. Sometimes m
method safe also makes it idempotent. For example, repeating queries is both safe and idempotent,
ing a product online or modifying data is neither safe nor idempotent.

If the request is incorrectly formatted,doGet returns an HTTP “Bad Request” message.

Parameters:
req - anHttpServletRequest object that contains the request the client has made of the se

resp - anHttpServletResponse object that contains the response the servlet sends to the c

Throws: IOException - if an input or output error is detected when the servlet handles the GET
request
84

javax.servlet.http HttpServlet

doHead(HttpServletRequest, HttpServletResponse)

nt
or Con-
ength

eaders
t

he
header.

d those

t

e

S

TP
useful
ServletException - if the request for the GET could not be handled

See Also: setContentType(String)

doHead(HttpServletRequest, HttpServletResponse)

protected void doHead(HttpServletRequest req, HttpServletResponse resp)

Receives an HTTP HEAD request from the protectedservice method and handles the request. The clie
sends a HEAD request when it wants to see only the headers of a response, such as Content-Type
tent-Length. The HTTP HEAD method counts the output bytes in the response to set the Content-L
header accurately.

If you override this method, you can avoid computing the response body and just set the response h
directly to improve performance. Make sure that thedoHead method you write is both safe and idempoten
(that is, protects itself from being called multiple times for one HTTP HEAD request).

If the HTTP HEAD request is incorrectly formatted,doHead returns an HTTP “Bad Request” message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headers to the clien

Throws: IOException - if an input or output error occurs

ServletException - if the request for the HEAD could not be handled

doOptions(HttpServletRequest, HttpServletResponse)

protected void doOptions(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theservice method) to allow a servlet to handle a OPTIONS request. T
OPTIONS request determines which HTTP methods the server supports and returns an appropriate
For example, if a servlet overridesdoGet , this method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There’s no need to override this method unless the servlet implements new HTTP methods, beyon
implemented by HTTP 1.1.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servle

resp - theHttpServletResponse object that contains the response the servlet returns to th
client

Throws: IOException - if an input or output error occurs while the servlet is handling the OPTION
request

ServletException - if the request for the OPTIONS cannot be handled

doPost(HttpServletRequest, HttpServletResponse)

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theservice method) to allow a servlet to handle a POST request. The HT
POST method allows the client to send data of unlimited length to the Web server a single time and is
when posting information such as credit card numbers.
85

HttpServlet javax.servlet.http

doPut(HttpServletRequest, HttpServletResponse)

writer or
oding.
g the

headers

perfor-

eader),

an have
g items

rvlet

lient

st

er-

ntent-
guage,
der, it
mation

a copy

t

e

est
When overriding this method, read the request data, write the response headers, get the response’s
output stream object, and finally, write the response data. It’s best to include content type and enc
When using aPrintWriter object to return the response, set the content type before accessin
PrintWriter object.

The servlet container must write the headers before committing the response, because in HTTP the
must be sent before the response body.

Where possible, set the Content-Length header (with thesetContentLength(int) method), to allow
the servlet container to use a persistent connection to return its response to the client, improving
mance. The content length is automatically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has a Transfer-Encoding h
do not set the Content-Length header.

This method does not need to be either safe or idempotent. Operations requested through POST c
side effects for which the user can be held accountable, for example, updating stored data or buyin
online.

If the HTTP POST request is incorrectly formatted,doPost returns an HTTP “Bad Request” message.

Parameters:
req - anHttpServletRequest object that contains the request the client has made of the se

resp - anHttpServletResponse object that contains the response the servlet sends to the c

Throws: IOException - if an input or output error is detected when the servlet handles the reque

ServletException - if the request for the POST could not be handled

See Also: ServletOutputStream , setContentType(String)

doPut(HttpServletRequest, HttpServletResponse)

protected void doPut(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theservice method) to allow a servlet to handle a PUT request. The PUT op
ation allows a client to place a file on the server and is similar to sending a file by FTP.

When overriding this method, leave intact any content headers sent with the request (including Co
Length, Content-Type, Content-Transfer-Encoding, Content-Encoding, Content-Base, Content-Lan
Content-Location, Content-MD5, and Content-Range). If your method cannot handle a content hea
must issue an error message (HTTP 501 - Not Implemented) and discard the request. For more infor
on HTTP 1.1, see RFC 2068 .

This method does not need to be either safe or idempotent. Operations thatdoPut performs can have side
effects for which the user can be held accountable. When using this method, it may be useful to save
of the affected URL in temporary storage.

If the HTTP PUT request is incorrectly formatted,doPut returns an HTTP “Bad Request” message.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servle

resp - theHttpServletResponse object that contains the response the servlet returns to th
client

Throws: IOException - if an input or output error occurs while the servlet is handling the PUT requ

ServletException - if the request for the PUT cannot be handled
86

javax.servlet.http HttpServlet

doTrace(HttpServletRequest, HttpServletResponse)

E
ugging.

t

e

ht

hould
ad on

t

e

doTrace(HttpServletRequest, HttpServletResponse)

protected void doTrace(HttpServletRequest req, HttpServletResponse resp)

Called by the server (via theservice method) to allow a servlet to handle a TRACE request. A TRAC
returns the headers sent with the TRACE request to the client, so that they can be used in deb
There’s no need to override this method.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servle

resp - theHttpServletResponse object that contains the response the servlet returns to th
client

Throws: IOException - if an input or output error occurs while the servlet is handling the TRACE
request

ServletException - if the request for the TRACE cannot be handled

getLastModified(HttpServletRequest)

protected long getLastModified(HttpServletRequest req)

Returns the time theHttpServletRequest object was last modified, in milliseconds since midnig
January 1, 1970 GMT. If the time is unknown, this method returns a negative number (the default).

Servlets that support HTTP GET requests and can quickly determine their last modification time s
override this method. This makes browser and proxy caches work more effectively, reducing the lo
server and network resources.

Parameters:
req - theHttpServletRequest object that is sent to the servlet

Returns: a long integer specifying the time theHttpServletRequest object was last modified, in
milliseconds since midnight, January 1, 1970 GMT, or -1 if the time is not known

service(HttpServletRequest, HttpServletResponse)

protected void service(HttpServletRequest req, HttpServletResponse resp)

Receives standard HTTP requests from the publicservice method and dispatches them to thedoXXX
methods defined in this class. This method is an HTTP-specific version of theservice(ServletRe-
quest, ServletResponse) method. There’s no need to override this method.

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servle

resp - theHttpServletResponse object that contains the response the servlet returns to th
client

Throws: IOException - if an input or output error occurs while the servlet is handling the TRACE
request

ServletException - if the request for the TRACE cannot be handled

See Also: service(ServletRequest, ServletResponse)
87

HttpServlet javax.servlet.http

service(ServletRequest, ServletResponse)

t

e

service(ServletRequest, ServletResponse)

public void service(ServletRequest req, ServletResponse res)

Dispatches client requests to the protectedservice method. There’s no need to override this method.

Specified By: service(ServletRequest, ServletResponse) in interfaceServlet

Overrides: service(ServletRequest, ServletResponse) in classGenericServlet

Parameters:
req - theHttpServletRequest object that contains the request the client made of the servle

resp - theHttpServletResponse object that contains the response the servlet returns to th
client

Throws: IOException - if an input or output error occurs while the servlet is handling the TRACE
request

ServletException - if the request for the TRACE cannot be handled

See Also: service(ServletRequest, ServletResponse)
88

javax.servlet.http HttpServletRequest

service(ServletRequest, ServletResponse)

t’s

m-

it

ing,

, or

ng
javax.servlet.http

HttpServletRequest
Syntax
public interface HttpServletRequest extends ServletRequest

All Superinterfaces: ServletRequest

All Known Implementing Classes: HttpServletRequestWrapper

Description
Extends theServletRequest interface to provide request information for HTTP servlets.

The servlet container creates anHttpServletRequest object and passes it as an argument to the servle
service methods (doGet , doPost , etc).

Member Summary

Fields
BASIC_AUTH String identifier for Basic authentication.
CLIENT_CERT_AUTH String identifier for Basic authentication.
DIGEST_AUTH String identifier for Basic authentication.
FORM_AUTH String identifier for Basic authentication.

Methods
getAuthType() Returns the name of the authentication scheme used to protect the servlet.
getContextPath() Returns the portion of the request URI that indicates the context of the request.
getCookies() Returns an array containing all of theCookie objects the client sent with this

request.
getDateHeader(String) Returns the value of the specified request header as along value that represents a

Date object.
getHeader(String) Returns the value of the specified request header as aString .
getHeaderNames() Returns an enumeration of all the header names this request contains.
getHeaders(String) Returns all the values of the specified request header as anEnumeration of

String objects.
getIntHeader(String) Returns the value of the specified request header as anint .
getMethod() Returns the name of the HTTP method with which this request was made, for exa

ple, GET, POST, or PUT.
getPathInfo() Returns any extra path information associated with the URL the client sent when

made this request.
getPathTranslated() Returns any extra path information after the servlet name but before the query str

and translates it to a real path.
getQueryString() Returns the query string that is contained in the request URL after the path.
getRemoteUser() Returns the login of the user making this request, if the user has been authenticated

null if the user has not been authenticated.
getRequestedSes-
sionId()

Returns the session ID specified by the client.

getRequestURI() Returns the part of this request’s URL from the protocol name up to the query stri
in the first line of the HTTP request.
89

HttpServletRequest javax.servlet.http

BASIC_AUTH

have

eci-
Fields

BASIC_AUTH

public static final java.lang.String BASIC_AUTH

String identifier for Basic authentication. Value “BASIC”

CLIENT_CERT_AUTH

public static final java.lang.String CLIENT_CERT_AUTH

String identifier for Basic authentication. Value “CERT-CLIENT”

DIGEST_AUTH

getRequestURL() Reconstructs the URL the client used to make the request.
getServletPath() Returns the part of this request’s URL that calls the servlet.
getSession() Returns the current session associated with this request, or if the request does not

a session, creates one.
getSession(boolean) Returns the currentHttpSession associated with this request or, if if there is no

current session andcreate is true, returns a new session.
getUserPrincipal() Returns ajava.security.Principal object containing the name of the cur-

rent authenticated user.
isRequestedSessionId-
FromCookie()

Checks whether the requested session ID came in as a cookie.

isRequestedSessionId-
FromUrl()
isRequestedSessionId-
FromURL()

Checks whether the requested session ID came in as part of the request URL.

isRequestedSessionId-
Valid()

Checks whether the requested session ID is still valid.

isUserInRole(String) Returns a boolean indicating whether the authenticated user is included in the sp
fied logical “role”.

Inherited Member Summary

Methods inherited from interface ServletRequest

getAttribute(String) , getAttributeNames() , getCharacterEncoding() , setCharacterEncod-
ing(String) , getContentLength() , getContentType() , getInputStream() , getParame-
ter(String) , getParameterNames() , getParameterValues(String) , getParameterMap() ,
getProtocol() , getScheme() , getServerName() , getServerPort() , getReader() , getRem-
oteAddr() , getRemoteHost() , setAttribute(String, Object) , removeAttribute(String) ,
getLocale() , getLocales() , isSecure() , getRequestDispatcher(String) , getReal-
Path(String)

Member Summary
90

javax.servlet.http HttpServletRequest

FORM_AUTH

support
e

always
r. For
g.

st

rns

is case
public static final java.lang.String DIGEST_AUTH

String identifier for Basic authentication. Value “DIGEST”

FORM_AUTH

public static final java.lang.String FORM_AUTH

String identifier for Basic authentication. Value “FORM”

Methods

getAuthType()

public java.lang.String getAuthType()

Returns the name of the authentication scheme used to protect the servlet. All servlet containers
BASIC_AUTH, FORM_AUTH, and CLIENT_CERT_AUTH and may support DIGEST_AUTH. If th
servlet is not authenticatednull is returned.

Same as the value of the CGI variable AUTH_TYPE.

Returns: aString specifying the name of the authentication scheme, ornull if the request was not
authenticated

getContextPath()

public java.lang.String getContextPath()

Returns the portion of the request URI that indicates the context of the request. The context path
comes first in a request URI. The path starts with a “/” character but does not end with a “/” characte
servlets in the default (root) context, this method returns “”. The container does not decode this strin

Returns: aString specifying the portion of the request URI that indicates the context of the reque

getCookies()

public Cookie [] getCookies()

Returns an array containing all of theCookie objects the client sent with this request. This method retu
null if no cookies were sent.

Returns: an array of all theCookies included with this request, ornull if the request has no cookies

getDateHeader(String)

public long getDateHeader(java.lang.String name)

Returns the value of the specified request header as along value that represents aDate object. Use this
method with headers that contain dates, such asIf-Modified-Since .

The date is returned as the number of milliseconds since January 1, 1970 GMT. The header name
insensitive.
91

HttpServletRequest javax.servlet.http

getHeader(String)

be con-

qest

e
thod

ers, this

which

ers, an

rent

ave
header
If the request did not have a header of the specified name, this method returns -1. If the header can’t
verted to a date, the method throws anIllegalArgumentException .

Parameters:
name - aString specifying the name of the header

Returns: a long value representing the date specified in the header expressed as the number of
milliseconds since January 1, 1970 GMT, or -1 if the named header was not included with the re

Throws: IllegalArgumentException - If the header value can’t be converted to a date

getHeader(String)

public java.lang.String getHeader(java.lang.String name)

Returns the value of the specified request header as aString . If the request did not include a header of th
specified name, this method returnsnull . The header name is case insensitive. You can use this me
with any request header.

Parameters:
name - aString specifying the header name

Returns: aString containing the value of the requested header, ornull if the request does not have a
header of that name

getHeaderNames()

public java.util.Enumeration getHeaderNames()

Returns an enumeration of all the header names this request contains. If the request has no head
method returns an empty enumeration.

Some servlet containers do not allow do not allow servlets to access headers using this method, in
case this method returnsnull

Returns: an enumeration of all the header names sent with this request; if the request has no head
empty enumeration; if the servlet container does not allow servlets to use this method,null

getHeaders(String)

public java.util.Enumeration getHeaders(java.lang.String name)

Returns all the values of the specified request header as anEnumeration of String objects.

Some headers, such asAccept-Language can be sent by clients as several headers each with a diffe
value rather than sending the header as a comma separated list.

If the request did not include any headers of the specified name, this method returns an emptyEnumera-
tion . The header name is case insensitive. You can use this method with any request header.

Parameters:
name - aString specifying the header name

Returns: anEnumeration containing the values of the requested header. If the request does not h
any headers of that name return an empty enumeration. If the container does not allow access to
information, return null
92

javax.servlet.http HttpServletRequest

getIntHeader(String)

he
hrows a

ader of

ST, or

t. The

r the

it to a
getIntHeader(String)

public int getIntHeader(java.lang.String name)

Returns the value of the specified request header as anint . If the request does not have a header of t
specified name, this method returns -1. If the header cannot be converted to an integer, this method t
NumberFormatException .

The header name is case insensitive.

Parameters:
name - aString specifying the name of a request header

Returns: an integer expressing the value of the request header or -1 if the request doesn’t have a he
this name

Throws: NumberFormatException - If the header value can’t be converted to anint

getMethod()

public java.lang.String getMethod()

Returns the name of the HTTP method with which this request was made, for example, GET, PO
PUT. Same as the value of the CGI variable REQUEST_METHOD.

Returns: aString specifying the name of the method with which this request was made

getPathInfo()

public java.lang.String getPathInfo()

Returns any extra path information associated with the URL the client sent when it made this reques
extra path information follows the servlet path but precedes the query string. This method returnsnull if
there was no extra path information.

Same as the value of the CGI variable PATH_INFO.

Returns: aString , decoded by the web container, specifying extra path information that comes afte
servlet path but before the query string in the request URL; ornull if the URL does not have any extra
path information

getPathTranslated()

public java.lang.String getPathTranslated()

Returns any extra path information after the servlet name but before the query string, and translates
real path. Same as the value of the CGI variable PATH_TRANSLATED.

If the URL does not have any extra path information, this method returnsnull . The web container does
not decode thins string.

Returns: aString specifying the real path, ornull if the URL does not have any extra path
information

getQueryString()

public java.lang.String getQueryString()
93

HttpServletRequest javax.servlet.http

getRemoteUser()

e browser

sion in
ew ses-
ethod

f the
Returns the query string that is contained in the request URL after the path. This method returnsnull if
the URL does not have a query string. Same as the value of the CGI variable QUERY_STRING.

Returns: aString containing the query string ornull if the URL contains no query string. The value
is not decoded by the container.

getRemoteUser()

public java.lang.String getRemoteUser()

Returns the login of the user making this request, if the user has been authenticated, ornull if the user has
not been authenticated. Whether the user name is sent with each subsequent request depends on th
and type of authentication. Same as the value of the CGI variable REMOTE_USER.

Returns: aString specifying the login of the user making this request, ornull</code if the
user login is not known

getRequestedSessionId()

public java.lang.String getRequestedSessionId()

Returns the session ID specified by the client. This may not be the same as the ID of the actual ses
use. For example, if the request specified an old (expired) session ID and the server has started a n
sion, this method gets a new session with a new ID. If the request did not specify a session ID, this m
returnsnull .

Returns: aString specifying the session ID, ornull if the request did not specify a session ID

See Also: isRequestedSessionIdValid()

getRequestURI()

public java.lang.String getRequestURI()

Returns the part of this request’s URL from the protocol name up to the query string in the first line o
HTTP request. The web container does not decode this String. For example:

To reconstruct an URL with a scheme and host, usegetRequestURL(HttpServletRequest) .

Returns: aString containing the part of the URL from the protocol name up to the query string

See Also: getRequestURL(HttpServletRequest)

First line of HTTP request Returned
Value POST /some/path.html HTTP/1.1/
some/path.html GET http://foo.bar/
a.html HTTP/1.0 /a.html HEAD /xyz?a=b
HTTP/1.1/xyz
94

javax.servlet.http HttpServletRequest

getRequestURL()

server

,

a path
of the

est

, creates

and

ommit-
getRequestURL()

public java.lang.StringBuffer getRequestURL()

Reconstructs the URL the client used to make the request. The returned URL contains a protocol,
name, port number, and server path, but it does not include query string parameters.

Because this method returns aStringBuffer , not a string, you can modify the URL easily, for example
to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Returns: aStringBuffer object containing the reconstructed URL

getServletPath()

public java.lang.String getServletPath()

Returns the part of this request’s URL that calls the servlet. This includes either the servlet name or
to the servlet, but does not include any extra path information or a query string. Same as the value
CGI variable SCRIPT_NAME.

Returns: aString containing the name or path of the servlet being called, as specified in the requ
URL, decoded.

getSession()

public HttpSession getSession()

Returns the current session associated with this request, or if the request does not have a session
one.

Returns: theHttpSession associated with this request

See Also: getSession(boolean)

getSession(boolean)

public HttpSession getSession(boolean create)

Returns the currentHttpSession associated with this request or, if if there is no current session
create is true, returns a new session.

If create is false and the request has no validHttpSession , this method returnsnull .

To make sure the session is properly maintained, you must call this method before the response is c
ted.

Parameters:
<code>true</code> - to create a new session for this request if necessary;false to returnnull
if there’s no current session

Returns: theHttpSession associated with this request ornull if create is false and the request
has no valid session

See Also: getSession()
95

HttpServletRequest javax.servlet.http

getUserPrincipal()

r. If

“role”.
uthenti-
getUserPrincipal()

public java.security.Principal getUserPrincipal()

Returns ajava.security.Principal object containing the name of the current authenticated use
the user has not been authenticated, the method returnsnull .

Returns: a java.security.Principal containing the name of the user making this request;null
if the user has not been authenticated

isRequestedSessionIdFromCookie()

public boolean isRequestedSessionIdFromCookie()

Checks whether the requested session ID came in as a cookie.

Returns: true if the session ID came in as a cookie; otherwise,false

See Also: getSession(boolean)

isRequestedSessionIdFromUrl()

public boolean isRequestedSessionIdFromUrl()

Deprecated. As of Version 2.1 of the Java Servlet API, useisRequestedSessionIdFromURL()
instead.

isRequestedSessionIdFromURL()

public boolean isRequestedSessionIdFromURL()

Checks whether the requested session ID came in as part of the request URL.

Returns: true if the session ID came in as part of a URL; otherwise,false

See Also: getSession(boolean)

isRequestedSessionIdValid()

public boolean isRequestedSessionIdValid()

Checks whether the requested session ID is still valid.

Returns: true if this request has an id for a valid session in the current session context;false
otherwise

See Also: getRequestedSessionId() , getSession(boolean) , HttpSessionContext

isUserInRole(String)

public boolean isUserInRole(java.lang.String role)

Returns a boolean indicating whether the authenticated user is included in the specified logical
Roles and role membership can be defined using deployment descriptors. If the user has not been a
cated, the method returnsfalse .

Parameters:
96

javax.servlet.http HttpServletRequest

isUserInRole(String)
role - aString specifying the name of the role

Returns: aboolean indicating whether the user making this request belongs to a given role;false if
the user has not been authenticated
97

HttpServletRequestWrapper javax.servlet.http

isUserInRole(String)

velopers
ethods

est

he

d

javax.servlet.http

HttpServletRequestWrapper
Syntax
public class HttpServletRequestWrapper extends ServletRequestWrapper implements

HttpServletRequest

java.lang.Object
|
+-- ServletRequestWrapper

|
+-- javax.servlet.http.HttpServletRequestWrapper

All Implemented Interfaces: HttpServletRequest , ServletRequest

Description
Provides a convenient implementation of the HttpServletRequest interface that can be subclassed by de
wishing to adapt the request to a Servlet. This class implements the Wrapper or Decorator pattern. M
default to calling through to the wrapped request object.

Since: v 2.3

See Also: HttpServletRequest

Member Summary

Constructors
HttpServletRequest-
Wrapper(HttpServle-
tRequest)

Constructs a request object wrapping the given request.

Methods
getAuthType() The default behavior of this method is to return getAuthType() on the wrapped

request object.
getContextPath() The default behavior of this method is to return getContextPath() on the wrapped

request object.
getCookies() The default behavior of this method is to return getCookies() on the wrapped requ

object.
getDateHeader(String) The default behavior of this method is to return getDateHeader(String name) on t

wrapped request object.
getHeader(String) The default behavior of this method is to return getHeader(String name) on the

wrapped request object.
getHeaderNames() The default behavior of this method is to return getHeaderNames() on the wrappe

request object.
getHeaders(String) The default behavior of this method is to return getHeaders(String name) on the

wrapped request object.
getIntHeader(String) The default behavior of this method is to return getIntHeader(String name) on the

wrapped request object.
98

javax.servlet.http HttpServletRequestWrapper

isUserInRole(String)

est

est

ed

est

e()

n

 on

e

getMethod() The default behavior of this method is to return getMethod() on the wrapped requ
object.

getPathInfo() The default behavior of this method is to return getPathInfo() on the wrapped requ
object.

getPathTranslated() The default behavior of this method is to return getPathTranslated() on the wrapp
request object.

getQueryString() The default behavior of this method is to return getQueryString() on the wrapped
request object.

getRemoteUser() The default behavior of this method is to return getRemoteUser() on the wrapped
request object.

getRequestedSes-
sionId()

The default behavior of this method is to return getRequestedSessionId() on the
wrapped request object.

getRequestURI() The default behavior of this method is to return getRequestURI() on the wrapped
request object.

getRequestURL() The default behavior of this method is to return getRequestURL() on the wrapped
request object.

getServletPath() The default behavior of this method is to return getServletPath() on the wrapped
request object.

getSession() The default behavior of this method is to return getSession() on the wrapped requ
object.

getSession(boolean) The default behavior of this method is to return getSession(boolean create) on the
wrapped request object.

getUserPrincipal() The default behavior of this method is to return getUserPrincipal() on the wrapped
request object.

isRequestedSessionId-
FromCookie()

The default behavior of this method is to return isRequestedSessionIdFromCooki
on the wrapped request object.

isRequestedSessionId-
FromUrl()

The default behavior of this method is to return isRequestedSessionIdFromUrl() o
the wrapped request object.

isRequestedSessionId-
FromURL()

The default behavior of this method is to return isRequestedSessionIdFromURL()
the wrapped request object.

isRequestedSessionId-
Valid()

The default behavior of this method is to return isRequestedSessionIdValid() on th
wrapped request object.

isUserInRole(String) The default behavior of this method is to return isUserInRole(String role) on the
wrapped request object.

Inherited Member Summary

Fields inherited from interface HttpServletRequest

BASIC_AUTH, FORM_AUTH, CLIENT_CERT_AUTH, DIGEST_AUTH

Methods inherited from classServletRequestWrapper

getRequest() , setRequest(ServletRequest) , getAttribute(String) , getAttributeNames() ,
getCharacterEncoding() , setCharacterEncoding(String) , getContentLength() , getContent-
Type() , getInputStream() , getParameter(String) , getParameterMap() , getParameter-
Names() , getParameterValues(String) , getProtocol() , getScheme() , getServerName() ,
getServerPort() , getReader() , getRemoteAddr() , getRemoteHost() , setAttribute(String,
Object) , removeAttribute(String) , getLocale() , getLocales() , isSecure() , getRequest-
Dispatcher(String) , getRealPath(String)

Methods inherited from class java.lang.Object

Member Summary
99

HttpServletRequestWrapper javax.servlet.http

HttpServletRequestWrapper(HttpServletRequest)
Constructors

HttpServletRequestWrapper(HttpServletRequest)

public HttpServletRequestWrapper(HttpServletRequest request)

Constructs a request object wrapping the given request.

Throws: java.lang.IllegalArgumentException - if the request is null

Methods

getAuthType()

public java.lang.String getAuthType()

The default behavior of this method is to return getAuthType() on the wrapped request object.

Specified By: getAuthType() in interfaceHttpServletRequest

getContextPath()

public java.lang.String getContextPath()

The default behavior of this method is to return getContextPath() on the wrapped request object.

Specified By: getContextPath() in interfaceHttpServletRequest

getCookies()

public Cookie [] getCookies()

The default behavior of this method is to return getCookies() on the wrapped request object.

Specified By: getCookies() in interfaceHttpServletRequest

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface ServletRequest

getAttribute(String) , getAttributeNames() , getCharacterEncoding() , setCharacterEncod-
ing(String) , getContentLength() , getContentType() , getInputStream() , getParame-
ter(String) , getParameterNames() , getParameterValues(String) , getParameterMap() ,
getProtocol() , getScheme() , getServerName() , getServerPort() , getReader() , getRem-
oteAddr() , getRemoteHost() , setAttribute(String, Object) , removeAttribute(String) ,
getLocale() , getLocales() , isSecure() , getRequestDispatcher(String) , getReal-
Path(String)

Inherited Member Summary
100

javax.servlet.http HttpServletRequestWrapper

getDateHeader(String)

object.

ject.

bject.

object.
getDateHeader(String)

public long getDateHeader(java.lang.String name)

The default behavior of this method is to return getDateHeader(String name) on the wrapped request

Specified By: getDateHeader(String) in interfaceHttpServletRequest

getHeader(String)

public java.lang.String getHeader(java.lang.String name)

The default behavior of this method is to return getHeader(String name) on the wrapped request ob

Specified By: getHeader(String) in interfaceHttpServletRequest

getHeaderNames()

public java.util.Enumeration getHeaderNames()

The default behavior of this method is to return getHeaderNames() on the wrapped request object.

Specified By: getHeaderNames() in interfaceHttpServletRequest

getHeaders(String)

public java.util.Enumeration getHeaders(java.lang.String name)

The default behavior of this method is to return getHeaders(String name) on the wrapped request o

Specified By: getHeaders(String) in interfaceHttpServletRequest

getIntHeader(String)

public int getIntHeader(java.lang.String name)

The default behavior of this method is to return getIntHeader(String name) on the wrapped request

Specified By: getIntHeader(String) in interfaceHttpServletRequest

getMethod()

public java.lang.String getMethod()

The default behavior of this method is to return getMethod() on the wrapped request object.

Specified By: getMethod() in interfaceHttpServletRequest

getPathInfo()

public java.lang.String getPathInfo()

The default behavior of this method is to return getPathInfo() on the wrapped request object.

Specified By: getPathInfo() in interfaceHttpServletRequest
101

HttpServletRequestWrapper javax.servlet.http

getPathTranslated()

bject.
getPathTranslated()

public java.lang.String getPathTranslated()

The default behavior of this method is to return getPathTranslated() on the wrapped request object.

Specified By: getPathTranslated() in interfaceHttpServletRequest

getQueryString()

public java.lang.String getQueryString()

The default behavior of this method is to return getQueryString() on the wrapped request object.

Specified By: getQueryString() in interfaceHttpServletRequest

getRemoteUser()

public java.lang.String getRemoteUser()

The default behavior of this method is to return getRemoteUser() on the wrapped request object.

Specified By: getRemoteUser() in interfaceHttpServletRequest

getRequestedSessionId()

public java.lang.String getRequestedSessionId()

The default behavior of this method is to return getRequestedSessionId() on the wrapped request o

Specified By: getRequestedSessionId() in interfaceHttpServletRequest

getRequestURI()

public java.lang.String getRequestURI()

The default behavior of this method is to return getRequestURI() on the wrapped request object.

Specified By: getRequestURI() in interfaceHttpServletRequest

getRequestURL()

public java.lang.StringBuffer getRequestURL()

The default behavior of this method is to return getRequestURL() on the wrapped request object.

Specified By: getRequestURL() in interfaceHttpServletRequest

getServletPath()

public java.lang.String getServletPath()

The default behavior of this method is to return getServletPath() on the wrapped request object.

Specified By: getServletPath() in interfaceHttpServletRequest
102

javax.servlet.http HttpServletRequestWrapper

getSession()

 object.

request

equest

equest

object.
getSession()

public HttpSession getSession()

The default behavior of this method is to return getSession() on the wrapped request object.

Specified By: getSession() in interfaceHttpServletRequest

getSession(boolean)

public HttpSession getSession(boolean create)

The default behavior of this method is to return getSession(boolean create) on the wrapped request

Specified By: getSession(boolean) in interfaceHttpServletRequest

getUserPrincipal()

public java.security.Principal getUserPrincipal()

The default behavior of this method is to return getUserPrincipal() on the wrapped request object.

Specified By: getUserPrincipal() in interfaceHttpServletRequest

isRequestedSessionIdFromCookie()

public boolean isRequestedSessionIdFromCookie()

The default behavior of this method is to return isRequestedSessionIdFromCookie() on the wrapped
object.

Specified By: isRequestedSessionIdFromCookie() in interfaceHttpServletRequest

isRequestedSessionIdFromUrl()

public boolean isRequestedSessionIdFromUrl()

The default behavior of this method is to return isRequestedSessionIdFromUrl() on the wrapped r
object.

Specified By: isRequestedSessionIdFromUrl() in interfaceHttpServletRequest

isRequestedSessionIdFromURL()

public boolean isRequestedSessionIdFromURL()

The default behavior of this method is to return isRequestedSessionIdFromURL() on the wrapped r
object.

Specified By: isRequestedSessionIdFromURL() in interfaceHttpServletRequest

isRequestedSessionIdValid()

public boolean isRequestedSessionIdValid()

The default behavior of this method is to return isRequestedSessionIdValid() on the wrapped request
103

HttpServletRequestWrapper javax.servlet.http

isUserInRole(String)

ject.
Specified By: isRequestedSessionIdValid() in interfaceHttpServletRequest

isUserInRole(String)

public boolean isUserInRole(java.lang.String role)

The default behavior of this method is to return isUserInRole(String role) on the wrapped request ob

Specified By: isUserInRole(String) in interfaceHttpServletRequest
104

javax.servlet.http HttpServletResponse

isUserInRole(String)

For

t’s

 not

a

ect.
flict

n the

in

ll it.
the

and

t the

m

javax.servlet.http

HttpServletResponse
Syntax
public interface HttpServletResponse extends ServletResponse

All Superinterfaces: ServletResponse

All Known Implementing Classes: HttpServletResponseWrapper

Description
Extends theServletResponse interface to provide HTTP-specific functionality in sending a response.
example, it has methods to access HTTP headers and cookies.

The servlet container creates anHttpServletRequest object and passes it as an argument to the servle
service methods (doGet , doPost , etc).

See Also: ServletResponse

Member Summary

Fields
SC_ACCEPTED Status code (202) indicating that a request was accepted for processing, but was

completed.
SC_BAD_GATEWAY Status code (502) indicating that the HTTP server received an invalid response from

server it consulted when acting as a proxy or gateway.
SC_BAD_REQUEST Status code (400) indicating the request sent by the client was syntactically incorr
SC_CONFLICT Status code (409) indicating that the request could not be completed due to a con

with the current state of the resource.
SC_CONTINUE Status code (100) indicating the client can continue.
SC_CREATED Status code (201) indicating the request succeeded and created a new resource o

server.
SC_EXPECTATION_FAILED Status code (417) indicating that the server could not meet the expectation given

the Expect request header.
SC_FORBIDDEN Status code (403) indicating the server understood the request but refused to fulfi
SC_GATEWAY_TIMEOUT Status code (504) indicating that the server did not receive a timely response from

upstream server while acting as a gateway or proxy.
SC_GONE Status code (410) indicating that the resource is no longer available at the server

no forwarding address is known.
SC_HTTP_VERSION_NOT_S
UPPORTED

Status code (505) indicating that the server does not support or refuses to suppor
HTTP protocol version that was used in the request message.

SC_INTERNAL_SERVER_ER
ROR

Status code (500) indicating an error inside the HTTP server which prevented it fro
fulfilling the request.

SC_LENGTH_REQUIRED Status code (411) indicating that the request cannot be handled without a defined
Content-Length .

SC_METHOD_NOT_ALLOWED Status code (405) indicating that the method specified in theRequest-Line is not
allowed for the resource identified by theRequest-URI .
105

HttpServletResponse javax.servlet.http

isUserInRole(String)

ca-

oca-
rce.
of a

w

 not

ble

rce

r

st-

ause

e

use

e.

 a dif-

e

use
the
SC_MOVED_PERMANENTLY Status code (301) indicating that the resource has permanently moved to a new lo
tion, and that future references should use a new URI with their requests.

SC_MOVED_TEMPORARILY Status code (302) indicating that the resource has temporarily moved to another l
tion, but that future references should still use the original URI to access the resou

SC_MULTIPLE_CHOICES Status code (300) indicating that the requested resource corresponds to any one
set of representations, each with its own specific location.

SC_NO_CONTENT Status code (204) indicating that the request succeeded but that there was no ne
information to return.

SC_NON_AUTHORITATIVE_
INFORMATION

Status code (203) indicating that the meta information presented by the client did
originate from the server.

SC_NOT_ACCEPTABLE Status code (406) indicating that the resource identified by the request is only capa
of generating response entities which have content characteristics not acceptable
according to the accept headerssent in the request.

SC_NOT_FOUND Status code (404) indicating that the requested resource is not available.
SC_NOT_IMPLEMENTED Status code (501) indicating the HTTP server does not support the functionality

needed to fulfill the request.
SC_NOT_MODIFIED Status code (304) indicating that a conditional GET operation found that the resou

was available and not modified.
SC_OK Status code (200) indicating the request succeeded normally.
SC_PARTIAL_CONTENT Status code (206) indicating that the server has fulfilled the partial GET request fo

the resource.
SC_PAYMENT_REQUIRED Status code (402) reserved for future use.
SC_PRECONDITION_FAILE
D

Status code (412) indicating that the precondition given in one or more of the reque
header fields evaluated to false when it was tested on the server.

SC_PROXY_AUTHENTICATI
ON_REQUIRED

Status code (407) indicating that the clientMUST first authenticate itself with the
proxy.

SC_REQUEST_ENTITY_TOO
_LARGE

Status code (413) indicating that the server is refusing to process the request bec
the request entity is larger than the server is willing or able to process.

SC_REQUEST_TIMEOUT Status code (408) indicating that the client did not produce a requestwithin the tim
that the server was prepared to wait.

SC_REQUEST_URI_TOO_LO
NG

Status code (414) indicating that the server is refusing to service the request beca
theRequest-URI is longer than the server is willing to interpret.

SC_REQUESTED_RANGE_NO
T_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested byte rang

SC_RESET_CONTENT Status code (205) indicating that the agentSHOULD reset the document view which
caused the request to be sent.

SC_SEE_OTHER Status code (303) indicating that the response to the request can be found under
ferent URI.

SC_SERVICE_UNAVAILABL
E

Status code (503) indicating that the HTTP server is temporarily overloaded, and
unable to handle the request.

SC_SWITCHING_PROTOCOL
S

Status code (101) indicating the server is switching protocols according to Upgrad
header.

SC_UNAUTHORIZED Status code (401) indicating that the request requires HTTP authentication.
SC_UNSUPPORTED_MEDIA_
TYPE

Status code (415) indicating that the server is refusing to service the request beca
the entity of the request is in a format not supported by the requested resource for
requested method.

SC_USE_PROXY Status code (305) indicating that the requested resourceMUST be accessed through
the proxy given by theLocation field.

Methods
addCookie(Cookie) Adds the specified cookie to the response.
addDate-
Header(String, long)

Adds a response header with the given name and date-value.

addHeader(String,
String)

Adds a response header with the given name and value.

Member Summary
106

javax.servlet.http HttpServletResponse

SC_ACCEPTED

sulted

n set.

r.
tive

tion
Fields

SC_ACCEPTED

public static final int SC_ACCEPTED

Status code (202) indicating that a request was accepted for processing, but was not completed.

SC_BAD_GATEWAY

public static final int SC_BAD_GATEWAY

Status code (502) indicating that the HTTP server received an invalid response from a server it con
when acting as a proxy or gateway.

addIntHeader(String,
int)

Adds a response header with the given name and integer value.

contains-
Header(String)

Returns a boolean indicating whether the named response header has already bee

encodeRedirec-
tUrl(String)
encodeRedirec-
tURL(String)

Encodes the specified URL for use in thesendRedirect method or, if encoding is
not needed, returns the URL unchanged.

encodeUrl(String)

encodeURL(String) Encodes the specified URL by including the session ID in it, or, if encoding is not
needed, returns the URL unchanged.

sendError(int) Sends an error response to the client using the specified status clearing the buffe
sendError(int,
String)

Sends an error response to the client using the specified status code and descrip
message.

sendRedirect(String) Sends a temporary redirect response to the client using the specified redirect loca
URL.

setDate-
Header(String, long)

Sets a response header with the given name and date-value.

setHeader(String,
String)

Sets a response header with the given name and value.

setIntHeader(String,
int)

Sets a response header with the given name and integer value.

setStatus(int) Sets the status code for this response.
setStatus(int,
String)

Inherited Member Summary

Methods inherited from interface ServletResponse

getCharacterEncoding() , getOutputStream() , getWriter() , setContentLength(int) , set-
ContentType(String) , setBufferSize(int) , getBufferSize() , flushBuffer() , reset-
Buffer() , isCommitted() , reset() , setLocale(Locale) , getLocale()

Member Summary
107

HttpServletResponse javax.servlet.http

SC_BAD_REQUEST

t state

equest

server

ddress
SC_BAD_REQUEST

public static final int SC_BAD_REQUEST

Status code (400) indicating the request sent by the client was syntactically incorrect.

SC_CONFLICT

public static final int SC_CONFLICT

Status code (409) indicating that the request could not be completed due to a conflict with the curren
of the resource.

SC_CONTINUE

public static final int SC_CONTINUE

Status code (100) indicating the client can continue.

SC_CREATED

public static final int SC_CREATED

Status code (201) indicating the request succeeded and created a new resource on the server.

SC_EXPECTATION_FAILED

public static final int SC_EXPECTATION_FAILED

Status code (417) indicating that the server could not meet the expectation given in the Expect r
header.

SC_FORBIDDEN

public static final int SC_FORBIDDEN

Status code (403) indicating the server understood the request but refused to fulfill it.

SC_GATEWAY_TIMEOUT

public static final int SC_GATEWAY_TIMEOUT

Status code (504) indicating that the server did not receive a timely response from the upstream
while acting as a gateway or proxy.

SC_GONE

public static final int SC_GONE

Status code (410) indicating that the resource is no longer available at the server and no forwarding a
is known. This conditionSHOULD be considered permanent.
108

javax.servlet.http HttpServletResponse

SC_HTTP_VERSION_NOT_SUPPORTED

ol ver-

uest.

ure ref-

re ref-

ntations,

turn.
SC_HTTP_VERSION_NOT_SUPPORTED

public static final int SC_HTTP_VERSION_NOT_SUPPORTED

Status code (505) indicating that the server does not support or refuses to support the HTTP protoc
sion that was used in the request message.

SC_INTERNAL_SERVER_ERROR

public static final int SC_INTERNAL_SERVER_ERROR

Status code (500) indicating an error inside the HTTP server which prevented it from fulfilling the req

SC_LENGTH_REQUIRED

public static final int SC_LENGTH_REQUIRED

Status code (411) indicating that the request cannot be handled without a definedContent-Length .

SC_METHOD_NOT_ALLOWED

public static final int SC_METHOD_NOT_ALLOWED

Status code (405) indicating that the method specified in theRequest-Line is not allowed for the
resource identified by theRequest-URI .

SC_MOVED_PERMANENTLY

public static final int SC_MOVED_PERMANENTLY

Status code (301) indicating that the resource has permanently moved to a new location, and that fut
erences should use a new URI with their requests.

SC_MOVED_TEMPORARILY

public static final int SC_MOVED_TEMPORARILY

Status code (302) indicating that the resource has temporarily moved to another location, but that futu
erences should still use the original URI to access the resource.

SC_MULTIPLE_CHOICES

public static final int SC_MULTIPLE_CHOICES

Status code (300) indicating that the requested resource corresponds to any one of a set of represe
each with its own specific location.

SC_NO_CONTENT

public static final int SC_NO_CONTENT

Status code (204) indicating that the request succeeded but that there was no new information to re
109

HttpServletResponse javax.servlet.http

SC_NON_AUTHORITATIVE_INFORMATION

m the

rating
rssent in

ll the

nd not
SC_NON_AUTHORITATIVE_INFORMATION

public static final int SC_NON_AUTHORITATIVE_INFORMATION

Status code (203) indicating that the meta information presented by the client did not originate fro
server.

SC_NOT_ACCEPTABLE

public static final int SC_NOT_ACCEPTABLE

Status code (406) indicating that the resource identified by the request is only capable of gene
response entities which have content characteristics not acceptable according to the accept heade
the request.

SC_NOT_FOUND

public static final int SC_NOT_FOUND

Status code (404) indicating that the requested resource is not available.

SC_NOT_IMPLEMENTED

public static final int SC_NOT_IMPLEMENTED

Status code (501) indicating the HTTP server does not support the functionality needed to fulfi
request.

SC_NOT_MODIFIED

public static final int SC_NOT_MODIFIED

Status code (304) indicating that a conditional GET operation found that the resource was available a
modified.

SC_OK

public static final int SC_OK

Status code (200) indicating the request succeeded normally.

SC_PARTIAL_CONTENT

public static final int SC_PARTIAL_CONTENT

Status code (206) indicating that the server has fulfilled the partial GET request for the resource.

SC_PAYMENT_REQUIRED

public static final int SC_PAYMENT_REQUIRED

Status code (402) reserved for future use.
110

javax.servlet.http HttpServletResponse

SC_PRECONDITION_FAILED

evalu-

entity is

as pre-

t to
SC_PRECONDITION_FAILED

public static final int SC_PRECONDITION_FAILED

Status code (412) indicating that the precondition given in one or more of the request-header fields
ated to false when it was tested on the server.

SC_PROXY_AUTHENTICATION_REQUIRED

public static final int SC_PROXY_AUTHENTICATION_REQUIRED

Status code (407) indicating that the clientMUST first authenticate itself with the proxy.

SC_REQUEST_ENTITY_TOO_LARGE

public static final int SC_REQUEST_ENTITY_TOO_LARGE

Status code (413) indicating that the server is refusing to process the request because the request
larger than the server is willing or able to process.

SC_REQUEST_TIMEOUT

public static final int SC_REQUEST_TIMEOUT

Status code (408) indicating that the client did not produce a requestwithin the time that the server w
pared to wait.

SC_REQUEST_URI_TOO_LONG

public static final int SC_REQUEST_URI_TOO_LONG

Status code (414) indicating that the server is refusing to service the request because theRequest-URI is
longer than the server is willing to interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE

public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested byte range.

SC_RESET_CONTENT

public static final int SC_RESET_CONTENT

Status code (205) indicating that the agentSHOULDreset the document view which caused the reques
be sent.

SC_SEE_OTHER

public static final int SC_SEE_OTHER

Status code (303) indicating that the response to the request can be found under a different URI.
111

HttpServletResponse javax.servlet.http

SC_SERVICE_UNAVAILABLE

le the

of the

e

an one
SC_SERVICE_UNAVAILABLE

public static final int SC_SERVICE_UNAVAILABLE

Status code (503) indicating that the HTTP server is temporarily overloaded, and unable to hand
request.

SC_SWITCHING_PROTOCOLS

public static final int SC_SWITCHING_PROTOCOLS

Status code (101) indicating the server is switching protocols according to Upgrade header.

SC_UNAUTHORIZED

public static final int SC_UNAUTHORIZED

Status code (401) indicating that the request requires HTTP authentication.

SC_UNSUPPORTED_MEDIA_TYPE

public static final int SC_UNSUPPORTED_MEDIA_TYPE

Status code (415) indicating that the server is refusing to service the request because the entity
request is in a format not supported by the requested resource for the requested method.

SC_USE_PROXY

public static final int SC_USE_PROXY

Status code (305) indicating that the requested resourceMUSTbe accessed through the proxy given by th
Location field.

Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

Adds the specified cookie to the response. This method can be called multiple times to set more th
cookie.

Parameters:
cookie - the Cookie to return to the client

addDateHeader(String, long)

public void addDateHeader(java.lang.String name, long date)
112

javax.servlet.http HttpServletResponse

addHeader(String, String)

econds

ave mul-

aders to
Adds a response header with the given name and date-value. The date is specified in terms of millis
since the epoch. This method allows response headers to have multiple values.

Parameters:
name - the name of the header to set

value - the additional date value

See Also: setDateHeader(String, long)

addHeader(String, String)

public void addHeader(java.lang.String name, java.lang.String value)

Adds a response header with the given name and value. This method allows response headers to h
tiple values.

Parameters:
name - the name of the header

value - the additional header value

See Also: setHeader(String, String)

addIntHeader(String, int)

public void addIntHeader(java.lang.String name, int value)

Adds a response header with the given name and integer value. This method allows response he
have multiple values.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: setIntHeader(String, int)

containsHeader(String)

public boolean containsHeader(java.lang.String name)

Returns a boolean indicating whether the named response header has already been set.

Parameters:
name - the header name

Returns: true if the named response header has already been set;false otherwise

encodeRedirectUrl(String)

public java.lang.String encodeRedirectUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeRedirectURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.
113

HttpServletResponse javax.servlet.http

encodeRedirectURL(String)

s
e ses-
r from

URL
ion ID
turned

rwise,

s to cre-
“text/
for the
e sug-
encodeRedirectURL(String)

public java.lang.String encodeRedirectURL(java.lang.String url)

Encodes the specified URL for use in thesendRedirect method or, if encoding is not needed, return
the URL unchanged. The implementation of this method includes the logic to determine whether th
sion ID needs to be encoded in the URL. Because the rules for making this determination can diffe
those used to decide whether to encode a normal link, this method is seperate from theencodeURL
method.

All URLs sent to theHttpServletResponse.sendRedirect method should be run through this
method. Otherwise, URL rewriting cannot be used with browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

See Also: sendRedirect(String) , encodeUrl(String)

encodeUrl(String)

public java.lang.String encodeUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

encodeURL(String)

public java.lang.String encodeURL(java.lang.String url)

Encodes the specified URL by including the session ID in it, or, if encoding is not needed, returns the
unchanged. The implementation of this method includes the logic to determine whether the sess
needs to be encoded in the URL. For example, if the browser supports cookies, or session tracking is
off, URL encoding is unnecessary.

For robust session tracking, all URLs emitted by a servlet should be run through this method. Othe
URL rewriting cannot be used with browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL otherwise.

sendError(int)

public void sendError(int sc)

Sends an error response to the client using the specified status clearing the buffer. The server default
ating the response to look like an HTML-formatted server error page, setting the content type to
html”, leaving cookies and other headers unmodified. If an error-page declaration has been made
web application corresponding to the status code passed in, it will be served back in preference to th
gested msg parameter.
114

javax.servlet.http HttpServletResponse

sendError(int, String)

ng this

e server

ng this

ethod
efore

s it as
it as

ng this

econds
e. The

.

If the response has already been committed, this method throws an IllegalStateException. After usi
method, the response should be considered to be committed and should not be written to.

Parameters:
sc - the error status code

Throws: IOException - If an input or output exception occurs

IllegalStateException - If the response was committed

sendError(int, String)

public void sendError(int sc, java.lang.String msg)

Sends an error response to the client using the specified status code and descriptive message. Th
generally creates the response to look like a normal server error page.

If the response has already been committed, this method throws an IllegalStateException. After usi
method, the response should be considered to be committed and should not be written to.

Parameters:
sc - the error status code

msg - the descriptive message

Throws: IOException - If an input or output exception occurs

IllegalStateException - If the response was committed before this method call

sendRedirect(String)

public void sendRedirect(java.lang.String location)

Sends a temporary redirect response to the client using the specified redirect location URL. This m
can accept relative URLs; the servlet container must convert the relative URL to an absolute URL b
sending the response to the client. If the location is relative without a leading ’/’ the container interpret
relative to the current request URI. If the location is relative with a leading ’/’ the container interprets
relative to the servlet container root.

If the response has already been committed, this method throws an IllegalStateException. After usi
method, the response should be considered to be committed and should not be written to.

Parameters:
location - the redirect location URL

Throws: IOException - If an input or output exception occurs

IllegalStateException - If the response was committed

setDateHeader(String, long)

public void setDateHeader(java.lang.String name, long date)

Sets a response header with the given name and date-value. The date is specified in terms of millis
since the epoch. If the header had already been set, the new value overwrites the previous on
containsHeader method can be used to test for the presence of a header before setting its value

Parameters:
name - the name of the header to set
115

HttpServletResponse javax.servlet.http

setHeader(String, String)

ew value
f a

, the new
of

re is no
and

.

s code
value - the assigned date value

See Also: containsHeader(String) , addDateHeader(String, long)

setHeader(String, String)

public void setHeader(java.lang.String name, java.lang.String value)

Sets a response header with the given name and value. If the header had already been set, the n
overwrites the previous one. ThecontainsHeader method can be used to test for the presence o
header before setting its value.

Parameters:
name - the name of the header

value - the header value

See Also: containsHeader(String) , addHeader(String, String)

setIntHeader(String, int)

public void setIntHeader(java.lang.String name, int value)

Sets a response header with the given name and integer value. If the header had already been set
value overwrites the previous one. ThecontainsHeader method can be used to test for the presence
a header before setting its value.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: containsHeader(String) , addIntHeader(String, int)

setStatus(int)

public void setStatus(int sc)

Sets the status code for this response. This method is used to set the return status code when the
error (for example, for the status codes SC_OK or SC_MOVED_TEMPORARILY). If there is an error,
the caller wishes to invoke an error-page defined in the web applicaion, thesendError method should be
used instead.

The container clears the buffer and sets the Location header, preserving cookies and other headers

Parameters:
sc - the status code

See Also: sendError(int, String)

setStatus(int, String)

public void setStatus(int sc, java.lang.String sm)

Deprecated. As of version 2.1, due to ambiguous meaning of the message parameter. To set a statu
usesetStatus(int) , to send an error with a description usesendError(int, String) . Sets
the status code and message for this response.
116

javax.servlet.http HttpServletResponse

setStatus(int, String)
Parameters:
sc - the status code

sm - the status message
117

HttpServletResponseWrapper javax.servlet.http

setStatus(int, String)

evelop-
pattern.

te)

e)

on

he
javax.servlet.http

HttpServletResponseWrapper
Syntax
public class HttpServletResponseWrapper extends ServletResponseWrapper implements

HttpServletResponse

java.lang.Object
|
+-- ServletResponseWrapper

|
+-- javax.servlet.http.HttpServletResponseWrapper

All Implemented Interfaces: HttpServletResponse , ServletResponse

Description
Provides a convenient implementation of the HttpServletResponse interface that can be subclassed by d
ers wishing to adapt the response from a Servlet. This class implements the Wrapper or Decorator
Methods default to calling through to the wrapped response object.

Since: v 2.3

See Also: HttpServletResponse

Member Summary

Constructors
HttpServletResponse-
Wrapper(HttpServlet-
Response)

Constructs a response adaptor wrapping the given response.

Methods
addCookie(Cookie) The default behavior of this method is to call addCookie(Cookie cookie) on the

wrapped response object.
addDate-
Header(String, long)

The default behavior of this method is to call addDateHeader(String name, long da
on the wrapped response object.

addHeader(String,
String)

The default behavior of this method is to return addHeader(String name, String valu
on the wrapped response object.

addIntHeader(String,
int)

The default behavior of this method is to call addIntHeader(String name, int value)
the wrapped response object.

contains-
Header(String)

The default behavior of this method is to call containsHeader(String name) on the
wrapped response object.

encodeRedirec-
tUrl(String)

The default behavior of this method is to return encodeRedirectUrl(String url) on t
wrapped response object.

encodeRedirec-
tURL(String)

The default behavior of this method is to return encodeRedirectURL(String url) on
the wrapped response object.

encodeUrl(String) The default behavior of this method is to call encodeUrl(String url) on the wrapped
response object.
118

javax.servlet.http HttpServletResponseWrapper

setStatus(int, String)

ed

he

te)

e)

on
encodeURL(String) The default behavior of this method is to call encodeURL(String url) on the wrapp
response object.

sendError(int) The default behavior of this method is to call sendError(int sc) on the wrapped
response object.

sendError(int,
String)

The default behavior of this method is to call sendError(int sc, String msg) on the
wrapped response object.

sendRedirect(String) The default behavior of this method is to return sendRedirect(String location) on t
wrapped response object.

setDate-
Header(String, long)

The default behavior of this method is to call setDateHeader(String name, long da
on the wrapped response object.

setHeader(String,
String)

The default behavior of this method is to return setHeader(String name, String valu
on the wrapped response object.

setIntHeader(String,
int)

The default behavior of this method is to call setIntHeader(String name, int value)
the wrapped response object.

setStatus(int) The default behavior of this method is to call setStatus(int sc) on the wrapped
response object.

setStatus(int,
String)

The default behavior of this method is to call setStatus(int sc, String sm) on the
wrapped response object.

Inherited Member Summary

Fields inherited from interface HttpServletResponse

SC_CONTINUE, SC_SWITCHING_PROTOCOLS, SC_OK, SC_CREATED, SC_ACCEPTED,
SC_NON_AUTHORITATIVE_INFORMATION, SC_NO_CONTENT, SC_RESET_CONTENT,
SC_PARTIAL_CONTENT, SC_MULTIPLE_CHOICES, SC_MOVED_PERMANENTLY, SC_MOVED_TEMPORARILY,
SC_SEE_OTHER, SC_NOT_MODIFIED, SC_USE_PROXY, SC_BAD_REQUEST, SC_UNAUTHORIZED,
SC_PAYMENT_REQUIRED, SC_FORBIDDEN, SC_NOT_FOUND, SC_METHOD_NOT_ALLOWED,
SC_NOT_ACCEPTABLE, SC_PROXY_AUTHENTICATION_REQUIRED, SC_REQUEST_TIMEOUT, SC_CONFLICT,
SC_GONE, SC_LENGTH_REQUIRED, SC_PRECONDITION_FAILED, SC_REQUEST_ENTITY_TOO_LARGE,
SC_REQUEST_URI_TOO_LONG, SC_UNSUPPORTED_MEDIA_TYPE,
SC_REQUESTED_RANGE_NOT_SATISFIABLE, SC_EXPECTATION_FAILED, SC_INTERNAL_SERVER_ERROR,
SC_NOT_IMPLEMENTED, SC_BAD_GATEWAY, SC_SERVICE_UNAVAILABLE, SC_GATEWAY_TIMEOUT,
SC_HTTP_VERSION_NOT_SUPPORTED

Methods inherited from classServletResponseWrapper

getResponse() , setResponse(ServletResponse) , getCharacterEncoding() , getOutput-
Stream() , getWriter() , setContentLength(int) , setContentType(String) , setBuffer-
Size(int) , getBufferSize() , flushBuffer() , isCommitted() , reset() , resetBuffer() ,
setLocale(Locale) , getLocale()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Methods inherited from interface ServletResponse

getCharacterEncoding() , getOutputStream() , getWriter() , setContentLength(int) , set-
ContentType(String) , setBufferSize(int) , getBufferSize() , flushBuffer() , reset-
Buffer() , isCommitted() , reset() , setLocale(Locale) , getLocale()

Member Summary
119

HttpServletResponseWrapper javax.servlet.http

HttpServletResponseWrapper(HttpServletResponse)

bject.

apped

apped

pped

object.
Constructors

HttpServletResponseWrapper(HttpServletResponse)

public HttpServletResponseWrapper(HttpServletResponse response)

Constructs a response adaptor wrapping the given response.

Throws: java.lang.IllegalArgumentException - if the response is null

Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

The default behavior of this method is to call addCookie(Cookie cookie) on the wrapped response o

Specified By: addCookie(Cookie) in interfaceHttpServletResponse

addDateHeader(String, long)

public void addDateHeader(java.lang.String name, long date)

The default behavior of this method is to call addDateHeader(String name, long date) on the wr
response object.

Specified By: addDateHeader(String, long) in interfaceHttpServletResponse

addHeader(String, String)

public void addHeader(java.lang.String name, java.lang.String value)

The default behavior of this method is to return addHeader(String name, String value) on the wr
response object.

Specified By: addHeader(String, String) in interfaceHttpServletResponse

addIntHeader(String, int)

public void addIntHeader(java.lang.String name, int value)

The default behavior of this method is to call addIntHeader(String name, int value) on the wra
response object.

Specified By: addIntHeader(String, int) in interfaceHttpServletResponse

containsHeader(String)

public boolean containsHeader(java.lang.String name)

The default behavior of this method is to call containsHeader(String name) on the wrapped response
120

javax.servlet.http HttpServletResponseWrapper

encodeRedirectUrl(String)

ponse

ponse

t.

object.
Specified By: containsHeader(String) in interfaceHttpServletResponse

encodeRedirectUrl(String)

public java.lang.String encodeRedirectUrl(java.lang.String url)

The default behavior of this method is to return encodeRedirectUrl(String url) on the wrapped res
object.

Specified By: encodeRedirectUrl(String) in interfaceHttpServletResponse

encodeRedirectURL(String)

public java.lang.String encodeRedirectURL(java.lang.String url)

The default behavior of this method is to return encodeRedirectURL(String url) on the wrapped res
object.

Specified By: encodeRedirectURL(String) in interfaceHttpServletResponse

encodeUrl(String)

public java.lang.String encodeUrl(java.lang.String url)

The default behavior of this method is to call encodeUrl(String url) on the wrapped response object.

Specified By: encodeUrl(String) in interfaceHttpServletResponse

encodeURL(String)

public java.lang.String encodeURL(java.lang.String url)

The default behavior of this method is to call encodeURL(String url) on the wrapped response objec

Specified By: encodeURL(String) in interfaceHttpServletResponse

sendError(int)

public void sendError(int sc)

The default behavior of this method is to call sendError(int sc) on the wrapped response object.

Specified By: sendError(int) in interfaceHttpServletResponse

Throws: IOException

sendError(int, String)

public void sendError(int sc, java.lang.String msg)

The default behavior of this method is to call sendError(int sc, String msg) on the wrapped response

Specified By: sendError(int, String) in interfaceHttpServletResponse

Throws: IOException
121

HttpServletResponseWrapper javax.servlet.http

sendRedirect(String)

ponse

apped

apped

ponse

bject.
sendRedirect(String)

public void sendRedirect(java.lang.String location)

The default behavior of this method is to return sendRedirect(String location) on the wrapped res
object.

Specified By: sendRedirect(String) in interfaceHttpServletResponse

Throws: IOException

setDateHeader(String, long)

public void setDateHeader(java.lang.String name, long date)

The default behavior of this method is to call setDateHeader(String name, long date) on the wr
response object.

Specified By: setDateHeader(String, long) in interfaceHttpServletResponse

setHeader(String, String)

public void setHeader(java.lang.String name, java.lang.String value)

The default behavior of this method is to return setHeader(String name, String value) on the wr
response object.

Specified By: setHeader(String, String) in interfaceHttpServletResponse

setIntHeader(String, int)

public void setIntHeader(java.lang.String name, int value)

The default behavior of this method is to call setIntHeader(String name, int value) on the wrapped res
object.

Specified By: setIntHeader(String, int) in interfaceHttpServletResponse

setStatus(int)

public void setStatus(int sc)

The default behavior of this method is to call setStatus(int sc) on the wrapped response object.

Specified By: setStatus(int) in interfaceHttpServletResponse

setStatus(int, String)

public void setStatus(int sc, java.lang.String sm)

The default behavior of this method is to call setStatus(int sc, String sm) on the wrapped response o

Specified By: setStatus(int, String) in interfaceHttpServletResponse
122

javax.servlet.http HttpSession

setStatus(int, String)

nforma-

ver. The
user. A

ssion in

nd last

ther the
s
or ses-

.

imple-

s when

mid-
javax.servlet.http

HttpSession
Syntax
public interface HttpSession

Description
Provides a way to identify a user across more than one page request or visit to a Web site and to store i
tion about that user.

The servlet container uses this interface to create a session between an HTTP client and an HTTP ser
session persists for a specified time period, across more than one connection or page request from the
session usually corresponds to one user, who may visit a site many times. The server can maintain a se
many ways such as using cookies or rewriting URLs.

This interface allows servlets to

• View and manipulate information about a session, such as the session identifier, creation time, a
accessed time

• Bind objects to sessions, allowing user information to persist across multiple user connections
When an application stores an object in or removes an object from a session, the session checks whe
object implementsHttpSessionBindingListener . If it does, the servlet notifies the object that it ha
been bound to or unbound from the session. Notifications are sent after the binding methods complete. F
sion that are invalidated or expire, notifications are sent after the session has been invalidatd or expired

When container migrates a session between VMs in a distributed container setting, all session atributes
menting theHttpSessionActivationListener interface are notified.

A servlet should be able to handle cases in which the client does not choose to join a session, such a
cookies are intentionally turned off. Until the client joins the session,isNew returns true . If the client
chooses not to join the session,getSession will return a different session on each request, andisNew will
always returntrue .

Session information is scoped only to the current web application (ServletContext), so information stored
in one context will not be directly visible in another.

See Also: HttpSessionBindingListener , HttpSessionContext

Member Summary

Methods
getAttribute(String) Returns the object bound with the specified name in this session, ornull if no object

is bound under the name.
getAttributeNames() Returns anEnumeration of String objects containing the names of all the

objects bound to this session.
getCreationTime() Returns the time when this session was created, measured in milliseconds since

night January 1, 1970 GMT.
getId() Returns a string containing the unique identifier assigned to this session.
123

HttpSession javax.servlet.http

getAttribute(String)

es-

num-
he

p

s

er
Methods

getAttribute(String)

public java.lang.Object getAttribute(java.lang.String name)

Returns the object bound with the specified name in this session, ornull if no object is bound under the
name.

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws: IllegalStateException - if this method is called on an invalidated session

getAttributeNames()

public java.util.Enumeration getAttributeNames()

Returns anEnumeration of String objects containing the names of all the objects bound to this s
sion.

Returns: anEnumeration of String objects specifying the names of all the objects bound to this
session

Throws: IllegalStateException - if this method is called on an invalidated session

getCreationTime()

getLastAccessedTime() Returns the last time the client sent a request associated with this session, as the
ber of milliseconds since midnight January 1, 1970 GMT, and marked by the time t
container recieved the request.

getMaxInactiveInter-
val()

Returns the maximum time interval, in seconds, that the servlet container will kee
this session open between client accesses.

getSessionContext()

getValue(String)

getValueNames()

invalidate() Invalidates this session then unbinds any objects bound to it.
isNew() Returnstrue if the client does not yet know about the session or if the client choose

not to join the session.
putValue(String,
Object)
removeAt-
tribute(String)

Removes the object bound with the specified name from this session.

removeValue(String)

setAttribute(String,
Object)

Binds an object to this session, using the name specified.

setMaxInactiveInter-
val(int)

Specifies the time, in seconds, between client requests before the servlet contain
will invalidate this session.

Member Summary
124

javax.servlet.http HttpSession

getId()

1, 1970

70

by the

econds

do not

ressed

open
imum

quests

d in a
public long getCreationTime()

Returns the time when this session was created, measured in milliseconds since midnight January
GMT.

Returns: a long specifying when this session was created, expressed in milliseconds since 1/1/19
GMT

Throws: IllegalStateException - if this method is called on an invalidated session

getId()

public java.lang.String getId()

Returns a string containing the unique identifier assigned to this session. The identifier is assigned
servlet container and is implementation dependent.

Returns: a string specifying the identifier assigned to this session

getLastAccessedTime()

public long getLastAccessedTime()

Returns the last time the client sent a request associated with this session, as the number of millis
since midnight January 1, 1970 GMT, and marked by the time the container recieved the request.

Actions that your application takes, such as getting or setting a value associated with the session,
affect the access time.

Returns: a long representing the last time the client sent a request associated with this session, exp
in milliseconds since 1/1/1970 GMT

getMaxInactiveInterval()

public int getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the servlet container will keep this session
between client accesses. After this interval, the servlet container will invalidate the session. The max
time interval can be set with thesetMaxInactiveInterval method. A negative time indicates the
session should never timeout.

Returns: an integer specifying the number of seconds this session remains open between client re

See Also: setMaxInactiveInterval(int)

getSessionContext()

public HttpSessionContext getSessionContext()

Deprecated. As of Version 2.1, this method is deprecated and has no replacement. It will be remove
future version of the Java Servlet API.

getValue(String)

public java.lang.Object getValue(java.lang.String name)
125

HttpSession javax.servlet.http

getValueNames()

ses-
use of

n object
Deprecated. As of Version 2.2, this method is replaced bygetAttribute(String) .

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws: IllegalStateException - if this method is called on an invalidated session

getValueNames()

public java.lang.String[] getValueNames()

Deprecated. As of Version 2.2, this method is replaced bygetAttributeNames()

Returns: an array ofString objects specifying the names of all the objects bound to this session

Throws: IllegalStateException - if this method is called on an invalidated session

invalidate()

public void invalidate()

Invalidates this session then unbinds any objects bound to it.

Throws: IllegalStateException - if this method is called on an already invalidated session

isNew()

public boolean isNew()

Returnstrue if the client does not yet know about the session or if the client chooses not to join the
sion. For example, if the server used only cookie-based sessions, and the client had disabled the
cookies, then a session would be new on each request.

Returns: true if the server has created a session, but the client has not yet joined

Throws: IllegalStateException - if this method is called on an already invalidated session

putValue(String, Object)

public void putValue(java.lang.String name, java.lang.Object value)

Deprecated. As of Version 2.2, this method is replaced bysetAttribute(String, Object)

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws: IllegalStateException - if this method is called on an invalidated session

removeAttribute(String)

public void removeAttribute(java.lang.String name)

Removes the object bound with the specified name from this session. If the session does not have a
bound with the specified name, this method does nothing.
126

javax.servlet.http HttpSession

removeValue(String)

ound to

is ses-
After this method executes, and if the object implementsHttpSessionBindingListener , the con-
tainer callsHttpSessionBindingListener.valueUnbound .

Parameters:
name - the name of the object to remove from this session

Throws: IllegalStateException - if this method is called on an invalidated session

removeValue(String)

public void removeValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced byremoveAttribute(String)

Parameters:
name - the name of the object to remove from this session

Throws: IllegalStateException - if this method is called on an invalidated session

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object value)

Binds an object to this session, using the name specified. If an object of the same name is already b
the session, the object is replaced.

After this method executes, and if the new object implementsHttpSessionBindingListener , the
container callsHttpSessionBindingListener.valueBound .

If an object was already bound to this session of this name that implementsHttpSessionBinding-
Listener , its HttpSessionBindingListener.valueUnbound method is called.

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws: IllegalStateException - if this method is called on an invalidated session

setMaxInactiveInterval(int)

public void setMaxInactiveInterval(int interval)

Specifies the time, in seconds, between client requests before the servlet container will invalidate th
sion. A negative time indicates the session should never timeout.

Parameters:
interval - An integer specifying the number of seconds
127

HttpSessionActivationListener javax.servlet.http

sessionDidActivate(HttpSessionEvent)

ssivated
ions is
javax.servlet.http

HttpSessionActivationListener
Syntax
public interface HttpSessionActivationListener

Description
Objects that are bound to a session may listen to container events notifying them that sessions will be pa
and that session will be activated. A container that migrates session between VMs or persists sess
required to notify all attributes bound to sessions implementing HttpSessionActivationListener.

Since: 2.3

Methods

sessionDidActivate(HttpSessionEvent)

public void sessionDidActivate(HttpSessionEvent se)

Notification that the session has just been activated.

sessionWillPassivate(HttpSessionEvent)

public void sessionWillPassivate(HttpSessionEvent se)

Notification that the session is about to be passivated.

Member Summary

Methods
sessionDidActi-
vate(HttpSession-
Event)

Notification that the session has just been activated.

sessionWillPassi-
vate(HttpSession-
Event)

Notification that the session is about to be passivated.
128

javax.servlet.http HttpSessionAttributesListener

attributeAdded(HttpSessionBindingEvent)

hin this
javax.servlet.http

HttpSessionAttributesListener
Syntax
public interface HttpSessionAttributesListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Description
This listener interface can be implemented in order to get notifications of changes made to sessions wit
web application.

Since: v 2.3

Methods

attributeAdded(HttpSessionBindingEvent)

public void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session.

attributeRemoved(HttpSessionBindingEvent)

public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session.

attributeReplaced(HttpSessionBindingEvent)

public void attributeReplaced(HttpSessionBindingEvent se)

Member Summary

Methods
attributeAd-
ded(HttpSessionBind-
ingEvent)

Notification that an attribute has been added to a session.

attributeRe-
moved(HttpSession-
BindingEvent)

Notification that an attribute has been removed from a session.

attributeRe-
placed(HttpSession-
BindingEvent)

Notification that an attribute has been replaced in a session.
129

HttpSessionAttributesListener javax.servlet.http

attributeReplaced(HttpSessionBindingEvent)
Notification that an attribute has been replaced in a session.
130

javax.servlet.http HttpSessionBindingEvent

attributeReplaced(HttpSessionBindingEvent)

nt

m a

m a
javax.servlet.http

HttpSessionBindingEvent
Syntax
public class HttpSessionBindingEvent extends HttpSessionEvent

java.lang.Object
|
+--java.util.EventObject

|
+-- HttpSessionEvent

|
+-- javax.servlet.http.HttpSessionBindingEvent

All Implemented Interfaces: java.io.Serializable

Description
Either Sent to an object that implementsHttpSessionBindingListener when it is bound or unbound
from a session, or to aHttpSessionAttributesListener that has been configured in the deploymew
descriptor when any attribute is bound, unbound or replaced in a session.

Yhe session binds the object by a call toHttpSession.putValue and unbinds the object by a call to
HttpSession.removeValue .

Since: v2.3

See Also: HttpSession , HttpSessionBindingListener , HttpSessionAttributesLis-
tener

Member Summary

Constructors
HttpSessionBindingEv-
ent(HttpSession,
String)

Constructs an event that notifies an object that it has been bound to or unbound fro
session.

HttpSessionBindingEv-
ent(HttpSession,
String, Object)

Constructs an event that notifies an object that it has been bound to or unbound fro
session.

Methods
getName() Returns the name with which the object is bound to or unbound from the session.
getSession() Return the session that changed.
getValue() Returns the value of the attribute being added, removed or replaced.
131

HttpSessionBindingEvent javax.servlet.http

HttpSessionBindingEvent(HttpSession, String)

receive

receive
Constructors

HttpSessionBindingEvent(HttpSession, String)

public HttpSessionBindingEvent(HttpSession session, java.lang.String name)

Constructs an event that notifies an object that it has been bound to or unbound from a session. To
the event, the object must implementHttpSessionBindingListener .

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName() , getSession()

HttpSessionBindingEvent(HttpSession, String, Object)

public HttpSessionBindingEvent(HttpSession session, java.lang.String name,

java.lang.Object value)

Constructs an event that notifies an object that it has been bound to or unbound from a session. To
the event, the object must implementHttpSessionBindingListener .

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName() , getSession()

Methods

getName()

public java.lang.String getName()

Returns the name with which the object is bound to or unbound from the session.

Inherited Member Summary

Fields inherited from class java.util.EventObject

source

Methods inherited from class java.util.EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
132

javax.servlet.http HttpSessionBindingEvent

getSession()

n

ound),
oved
Returns: a string specifying the name with which the object is bound to or unbound from the sessio

getSession()

public HttpSession getSession()

Return the session that changed.

Overrides: getSession() in classHttpSessionEvent

getValue()

public java.lang.Object getValue()

Returns the value of the attribute being added, removed or replaced. If the attribute was added (or b
this is the value of the attribute. If the attrubute was removed (or unbound), this is the value of the rem
attribute. If the attribute was replaced, this is the old value of the attribute.
133

HttpSessionBindingListener javax.servlet.http

valueBound(HttpSessionBindingEvent)

by an
ing

on.
javax.servlet.http

HttpSessionBindingListener
Syntax
public interface HttpSessionBindingListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Description
Causes an object to be notified when it is bound to or unbound from a session. The object is notified
HttpSessionBindingEvent object. This may be as a result of a servlet programmer explicitly unbind
an attribute from a session, due to a session being invalidated, or die to a session timing out.

See Also: HttpSession , HttpSessionBindingEvent

Methods

valueBound(HttpSessionBindingEvent)

public void valueBound(HttpSessionBindingEvent event)

Notifies the object that it is being bound to a session and identifies the session.

Parameters:
event - the event that identifies the session

See Also: valueUnbound(HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)

public void valueUnbound(HttpSessionBindingEvent event)

Notifies the object that it is being unbound from a session and identifies the session.

Parameters:
event - the event that identifies the session

See Also: valueBound(HttpSessionBindingEvent)

Member Summary

Methods
valueBound(HttpSes-
sionBindingEvent)

Notifies the object that it is being bound to a session and identifies the session.

valueUnbound(HttpSes-
sionBindingEvent)

Notifies the object that it is being unbound from a session and identifies the sessi
134

javax.servlet.http HttpSessionContext

getIds()

ll be

e

javax.servlet.http

HttpSessionContext
Syntax
public interface HttpSessionContext

Description

Deprecated. As of Java(tm) Servlet API 2.1 for security reasons, with no replacement. This interface wi
removed in a future version of this API.

See Also: HttpSession , HttpSessionBindingEvent , HttpSessionBindingListener

Methods

getIds()

public java.util.Enumeration getIds()

Deprecated. As of Java Servlet API 2.1 with no replacement. This method must return an empty
Enumeration and will be removed in a future version of this API.

getSession(String)

public HttpSession getSession(java.lang.String sessionId)

Deprecated. As of Java Servlet API 2.1 with no replacement. This method must return null and will b
removed in a future version of this API.

Member Summary

Methods
getIds()

getSession(String)
135

HttpSessionEvent javax.servlet.http

getSession(String)
javax.servlet.http

HttpSessionEvent
Syntax
public class HttpSessionEvent extends java.util.EventObject

java.lang.Object
|
+--java.util.EventObject

|
+-- javax.servlet.http.HttpSessionEvent

Direct Known Subclasses: HttpSessionBindingEvent

All Implemented Interfaces: java.io.Serializable

Description
This is the class representing event notifications for changes to sessions within a web application.

Since: v 2.3

Constructors

Member Summary

Constructors
HttpSession-
Event(HttpSession)

Construct a session event from the given source.

Methods
getSession() Return the session that changed.

Inherited Member Summary

Fields inherited from class java.util.EventObject

source

Methods inherited from class java.util.EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
136

javax.servlet.http HttpSessionEvent

HttpSessionEvent(HttpSession)
HttpSessionEvent(HttpSession)

public HttpSessionEvent(HttpSession source)

Construct a session event from the given source.

Methods

getSession()

public HttpSession getSession()

Return the session that changed.
137

HttpSessionListener javax.servlet.http

sessionCreated(HttpSessionEvent)

cation.
for the
javax.servlet.http

HttpSessionListener
Syntax
public interface HttpSessionListener

Description
Implementations of this interface may are notified of changes to the list of active sessions in a web appli
To recieve notification events, the implementation class must be configured in the deployment descriptor
web application.

Since: v 2.3

See Also: HttpSessionEvent

Methods

sessionCreated(HttpSessionEvent)

public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

Parameters:
se - the notification event

sessionDestroyed(HttpSessionEvent)

public void sessionDestroyed(HttpSessionEvent se)

Notification that a session was invalidated.

Parameters:
se - the notification event

Member Summary

Methods
sessionCre-
ated(HttpSession-
Event)

Notification that a session was created.

sessionDe-
stroyed(HttpSession-
Event)

Notification that a session was invalidated.
138

javax.servlet.http HttpUtils

HttpUtils()

and

e

P

javax.servlet.http

HttpUtils
Syntax
public class HttpUtils

java.lang.Object
|
+-- javax.servlet.http.HttpUtils

Description

Deprecated. As of Java(tm) Servlet API 2.3. These methods were only useful with the default encoding
have been moved to the request interfaces.

Constructors

HttpUtils()

public HttpUtils()

Constructs an emptyHttpUtils object.

Member Summary

Constructors
HttpUtils() Constructs an emptyHttpUtils object.

Methods
getRequestURL(HttpS-
ervletRequest)

Reconstructs the URL the client used to make the request, using information in th
HttpServletRequest object.

parsePostData(int,
ServletInputStream)

Parses data from an HTML form that the client sends to the server using the HTT
POST method and theapplication/x-www-form-urlencoded MIME type.

parseQue-
ryString(String)

Parses a query string passed from the client to the server and builds aHashTable
object with key-value pairs.

Inherited Member Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait
139

HttpUtils javax.servlet.http

getRequestURL(HttpServletRequest)

, but it

,

nd the

e POST
ing an

erted to

t is, it
r.

s only
by the

erted to
Methods

getRequestURL(HttpServletRequest)

public static java.lang.StringBuffer getRequestURL(HttpServletRequest req)

Reconstructs the URL the client used to make the request, using information in theHttpServlet-
Request object. The returned URL contains a protocol, server name, port number, and server path
does not include query string parameters.

Because this method returns aStringBuffer , not a string, you can modify the URL easily, for example
to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Parameters:
req - aHttpServletRequest object containing the client’s request

Returns: aStringBuffer object containing the reconstructed URL

parsePostData(int, ServletInputStream)

public static java.util.Hashtable parsePostData(int len, ServletInputStream in)

Parses data from an HTML form that the client sends to the server using the HTTP POST method a
application/x-www-form-urlencoded MIME type.

The data sent by the POST method contains key-value pairs. A key can appear more than once in th
data with different values. However, the key appears only once in the hashtable, with its value be
array of strings containing the multiple values sent by the POST method.

The keys and values in the hashtable are stored in their decoded form, so any + characters are conv
spaces, and characters sent in hexadecimal notation (like%xx) are converted to ASCII characters.

Parameters:
len - an integer specifying the length, in characters, of theServletInputStream object that is
also passed to this method

in - theServletInputStream object that contains the data sent from the client

Returns: aHashTable object built from the parsed key-value pairs

Throws: IllegalArgumentException - if the data sent by the POST method is invalid

parseQueryString(String)

public static java.util.Hashtable parseQueryString(java.lang.String s)

Parses a query string passed from the client to the server and builds aHashTable object with key-value
pairs. The query string should be in the form of a string packaged by the GET or POST method, tha
should have key-value pairs in the formkey=value, with each pair separated from the next by a & characte

A key can appear more than once in the query string with different values. However, the key appear
once in the hashtable, with its value being an array of strings containing the multiple values sent
query string.

The keys and values in the hashtable are stored in their decoded form, so any + characters are conv
spaces, and characters sent in hexadecimal notation (like%xx) are converted to ASCII characters.
140

javax.servlet.http HttpUtils

parseQueryString(String)
Parameters:
s - a string containing the query to be parsed

Returns: aHashTable object built from the parsed key-value pairs

Throws: IllegalArgumentException - if the query string is invalid
141

HttpUtils javax.servlet.http

parseQueryString(String)
142

Deployment Descriptor Version 2.2

This appendix defines the deployment descriptor for version 2.2. All web containers are
required to support web applications using the 2.2 deployment descriptor.

Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following DOCTYPE
declaration:
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

DTD

The DTD that follows defines the XML grammar for a web application deployment
descriptor.
<!--
The web-app element is the root of the deployment descriptor for
a web application
-->

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?,
context-param*, servlet*, servlet-mapping*, session-config?,
mime-mapping*, welcome-file-list?, error-page*, taglib*,
resource-ref*, security-constraint*, login-config?, security-role*,
env-entry*, ejb-ref*)>

<!--
The icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small
and
large image used to represent the web application in a GUI tool. At a
 Deployment Descriptor Version 2.2 236

minimum, tools must accept GIF and JPEG format images.
-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--
The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-->

<!ELEMENT small-icon (#PCDATA)>

<!--
The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-->

<!ELEMENT large-icon (#PCDATA)>

<!--
The display-name element contains a short name that is intended
to be displayed by GUI tools
-->

<!ELEMENT display-name (#PCDATA)>

<!--
The description element is used to provide descriptive text about
the parent element.
-->

<!ELEMENT description (#PCDATA)>

<!--
The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container
-->

<!ELEMENT distributable EMPTY>

<!--
The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-->

<!ELEMENT context-param (param-name, param-value, description?)>
237 Java Servlet 2.3 Specification • October 20, 2000

<!--
The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--
The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--
The servlet element contains the declarative data of a
servlet. If a jsp-file is specified and the load-on-startup element
is
present, then the JSP should be precompiled and loaded.
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, security-
role-ref*)>

<!--
The servlet-name element contains the canonical name of the
servlet.
-->

<!ELEMENT servlet-name (#PCDATA)>

<!--
The servlet-class element contains the fully qualified class name
of the servlet.
-->

<!ELEMENT servlet-class (#PCDATA)>

<!--
The jsp-file element contains the full path to a JSP file within
the web application.
-->

<!ELEMENT jsp-file (#PCDATA)>

<!--
The init-param element contains a name/value pair as an
initialization param of the servlet
-->
Deployment Descriptor Version 2.2 238

<!ELEMENT init-param (param-name, param-value, description?)>

<!--
The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application. The optional contents
of
these element must be a positive integer indicating the order in
which
the servlet should be loaded. Lower integers are loaded before
higher
integers. If no value is specified, or if the value specified is not
a
positive integer, the container is free to load it at any time in the
startup sequence.
-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--
The servlet-mapping element defines a mapping between a servlet
and a url pattern
-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--
The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 10 of the
Servlet
API Specification.
-->

<!ELEMENT url-pattern (#PCDATA)>

<!--
The session-config element defines the session parameters for
this web application.
-->

<!ELEMENT session-config (session-timeout?)>

<!--
The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
-->

<!ELEMENT session-timeout (#PCDATA)>
239 Java Servlet 2.3 Specification • October 20, 2000

<!--
The mime-mapping element defines a mapping between an extension
and a mime type.
-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--
The extension element contains a string describing an
extension. example: "txt"
-->

<!ELEMENT extension (#PCDATA)>

<!--
The mime-type element contains a defined mime type. example:
"text/plain"
-->

<!ELEMENT mime-type (#PCDATA)>

<!--
The welcome-file-list contains an ordered list of welcome files
elements.
-->

<!ELEMENT welcome-file-list (welcome-file+)>

<!--
The welcome-file element contains file name to use as a default
welcome file, such as index.html
-->

<!ELEMENT welcome-file (#PCDATA)>

<!--
The taglib element is used to describe a JSP tag library.
-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--
The taglib-uri element describes a URI, relative to the location
of the web.xml document, identifying a Tag Library used in the Web
Application.
-->

<!ELEMENT taglib-uri (#PCDATA)>
Deployment Descriptor Version 2.2 240

<!--
the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.
-->

<!ELEMENT taglib-location (#PCDATA)>

<!--
The error-page element contains a mapping between an error code
or exception type to the path of a resource in the web application
-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--
The error-code contains an HTTP error code, ex: 404
-->

<!ELEMENT error-code (#PCDATA)>

<!--
The exception type contains a fully qualified class name of a
Java exception type.
-->

<!ELEMENT exception-type (#PCDATA)>

<!--
The location element contains the location of the resource in the
web application
-->

<!ELEMENT location (#PCDATA)>

<!--
The resource-ref element contains a declaration of a Web
Applic ation’s reference to an external resource.
-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth)>

<!--
The res-ref-name element specifies the name of the resource
factory reference name.
-->

<!ELEMENT res-ref-name (#PCDATA)>
241 Java Servlet 2.3 Specification • October 20, 2000

<!--
The res-type element specifies the (Java class) type of the data
source.
-->

<!ELEMENT res-type (#PCDATA)>

<!--
The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer. Must be CONTAINER or SERVLET
-->

<!ELEMENT res-auth (#PCDATA)>

<!--
The security-constraint element is used to associate security
constraints with one or more web resource collections
-->

<!ELEMENT security-constraint (web-resource-collection+,
auth-constraint?, user-data-constraint?)>

<!--
The web-resource-collection element is used to identify a subset
of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP
methods
are specified, then the security constraint applies to all HTTP
methods.
-->

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>

<!--
The web-resource-name contains the name of this web resource
collection
-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--
The http-method contains an HTTP method (GET | POST |...)
-->

<!ELEMENT http-method (#PCDATA)>
Deployment Descriptor Version 2.2 242

<!--
The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--
The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means
that the application requires that the data be transmitted in a
fashion that prevents other entities from observing the contents of
the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.
-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--
The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role used here
must appear in a security-role-ref element.
-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--
The role-name element contains the name of a security role.
-->

<!ELEMENT role-name (#PCDATA)>

<!--
The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login
mechanism.
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-
config?)>

<!--
243 Java Servlet 2.3 Specification • October 20, 2000

The realm name element specifies the realm name to use in HTTP
Basic authorization
-->

<!ELEMENT realm-name (#PCDATA)>

<!--
The form-login-config element specifies the login and error pages
that should be used in form based login. If form based
authentication
is not used, these elements are ignored.
-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>

<!--
The form-login-page element defines the location in the web app
where the page that can be used for login can be found
-->

<!ELEMENT form-login-page (#PCDATA)>

<!--
The form-error-page element defines the location in the web app
where the error page that is displayed when login is not successful
can be found
-->

<!ELEMENT form-error-page (#PCDATA)>

<!--
The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining
access
to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".
-->

<!ELEMENT auth-method (#PCDATA)>

<!--
The security-role element contains the declaration of a security
role which is used in the security-constraints placed on the web
application.
-->

<!ELEMENT security-role (description?, role-name)>
Deployment Descriptor Version 2.2 244

<!--
The role-name element contains the name of a role. This element
must contain a non-empty string.
-->

<!ELEMENT security-role-ref (description?, role-name, role-link)>

<!--
The role-link element is used to link a security role reference
to a defined security role. The role-link element must contain the
name of one of the security roles defined in the security-role
elements.
-->

<!ELEMENT role-link (#PCDATA)>

<!--
The env-entry element contains the declaration of an
application’s environment entry. This element is required to be
honored on in J2EE compliant servlet containers.
-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-value?,
env-entry-type)>

<!--
The env-entry-name contains the name of an application’s
environment entry
-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-value element contains the value of an
application’s environment entry
-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--
The env-entry-type element contains the fully qualified Java type
of the environment entry value that is expected by the application
code. The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.
-->

<!ELEMENT env-entry-type (#PCDATA)>
245 Java Servlet 2.3 Specification • October 20, 2000

<!--
The ejb-ref element is used to declare a reference to an
enterprise bean.
-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote,
ejb-link?)>

<!--
The ejb-ref-name element contains the name of an EJB
reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.
-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--
The ejb-ref-type element contains the expected java class type of
the referenced EJB.
-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--
The ejb-home element contains the fully qualified name of the
EJB’s home interface
-->

<!ELEMENT home (#PCDATA)>

<!--
The ejb-remote element contains the fully qualified name of the
EJB’s remote interface
-->

<!ELEMENT remote (#PCDATA)>

<!--
The ejb-link element is used in the ejb-ref element to specify
that an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package. The value of the
ejb-link element must be the ejb-name of and EJB in the J2EE
application package.
-->

<!ELEMENT ejb-link (#PCDATA)>
Deployment Descriptor Version 2.2 246

<!--
The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor. This allows
tools that produce additional deployment information (i.e
information
beyond the standard deployment descriptor information) to store the
non-standard information in a separate file, and easily refer from
these tools-specific files to the information in the standard web-
app
deployment descriptor.
-->

<!ATTLIST web-app id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST distributable id ID #IMPLIED>
<!ATTLIST context-param id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>
<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST servlet id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST mime-mapping id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST mime-type id ID #IMPLIED>
<!ATTLIST welcome-file-list id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>
<!ATTLIST taglib id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>
<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST location id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST security-constraint id ID #IMPLIED>
247 Java Servlet 2.3 Specification • October 20, 2000

<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>
<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
Deployment Descriptor Version 2.2 248

249 Java Servlet 2.3 Specification • October 20, 2000

of
as

e
ing

nit.
ML
of
en

ols

nt

end

ay
Glossary

Application Developer The producer of a web application. The output of an Application Developer is a set
servlet classes, JSP pages, HTML pages, and supporting libraries and files (such
images, compressed archive files, etc.) for the web application. The Application
Developer is typically an application domain expert. The developer is required to b
aware of the servlet environment and its consequences when programming, includ
concurrency considerations, and create the web application accordingly.

Application Assembler Takes the output of the Application Developer and ensures that it is a deployable u
Thus, the input of the Application Assembler is the servlet classes, JSP pages, HT
pages, and other supporting libraries and files for the web application. The output
the Application Assembler is a web application archive or a web application in an op
directory structure.

Deployer The Deployer takes one or more web application archive files or other directory
structures provided by an Application Developer and deploys the application into a
specific operational environment. The operational environment includes a specific
servlet container and web server. The Deployer must resolve all the external
dependencies declared by the developer. To perform his role, the deployer uses to
provided by the Servlet Container Provider.

The Deployer is an expert in a specific operational environment. For example, the
Deployer is responsible for mapping the security roles defined by the Application
Developer to the user groups and accounts that exist in the operational environme
where the web application is deployed.

principal A principal is an entity that can be authenticated by an authentication protocol. A
principal is identified by aprincipal nameand authenticated by usingauthentication
data. The content and format of the principal name and the authentication data dep
on the authentication protocol.

role (development) The actions and responsibilities taken by various parties during the development,
deployment, and running of a web application. In some scenarios, a single party m
perform several roles; in others, each role may be performed by a different party.

role (security) An abstract notion used by an Application Developer in an application that can be
mapped by the Deployer to a user, or group of users, in a security policy domain.
 Glossary 250

sary

t
ed

the
let

n.
vlet

iner
g of

nt
asks.
security policy domain The scope over which security policies are defined and enforced by a security
administrator of the security service. A security policy domain is also sometimes
referred to as arealm.

security technology
domain The scope over which the same security mechanism, such as Kerberos, is used to

enforce a security policy. Multiple security policy domains can exist within a single
technology domain.

Servlet Container
Provider A vendor that provides the runtime environment, namely the servlet container and

possibly the web server, in which a web application runs as well as the tools neces
to deploy web applications.

The expertise of the Container Provider is in HTTP-level programming. Since this
specification does not specify the interface between the web server and the servle
container, it is left to the Container Provider to split the implementation of the requir
functionality between the container and the server.

servlet definition A unique name associated with a fully qualified class name of a class implementing
Servlet interface. A set of initialization parameters can be associated with a serv
definition.

servlet mapping A servlet definition that is associated by a servlet container with a URL path patter
All requests to that path pattern are handled by the servlet associated with the ser
definition.

System Administrator The person responsible for the configuration and administration of the servlet conta
and web server. The administrator is also responsible for overseeing the well-bein
the deployed web applications at run time.

This specification does not define the contracts for system management and
administration. The administrator typically uses runtime monitoring and manageme
tools provided by the Container Provider and server vendors to accomplish these t
251 Java Servlet 2.3 Specification • October 20, 2000

Ls

hich
may

run
ll
ular

ile
nts

et
I to
for

rent
uniform resource locator
(URL) A compact string representation of resources available via the network. Once the

resource represented by a URL has been accessed, various operations may be
performed on that resource.1 A URL is a type of uniform resource identifier (URI).
URLs are typically of the form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTT- based UR
which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/servlet/index.html

https://javashop.sun.com/purchase

In HTTP-based URLs, the‘/’ character is reserved to separate a hierarchical path
structure in the URL-path portion of the URL. The server is responsible for
determining the meaning of the hierarchical structure. There is no correspondence
between a URL-path and a given file system path.

web application A collection of servlets, JSP pages , HTML documents, and other web resources w
might include image files, compressed archives, and other data. A web application
be packaged into an archive or exist in an open directory structure.

All compatible servlet containers must accept a web application and perform a
deployment of its contents into their runtime. This may mean that a container can
the application directly from a web application archive file or it may mean that it wi
move the contents of a web application into the appropriate locations for that partic
container.

web application
archive A single file that contains all of the components of a web application. This archive f

is created by using standard JAR tools which allow any or all of the web compone
to be signed.

Web application archive files are identified by the.war extension. A new extension is
used instead of.jar because that extension is reserved for files which contain a s
of class files and that can be placed in the classpath or double clicked using a GU
launch an application. As the contents of a web application archive are not suitable
such use, a new extension was in order.

web application,
distributable A web application that is written so that it can be deployed in a web container

distributed across multiple Java virtual machines running on the same host or diffe
hosts. The deployment descriptor for such an application uses thedistributable
element.

1. See RFC 1738
Glossary 252

253 Java Servlet 2.3 Specification • October 20, 2000

	Contents
	Chapter 1: Overview 18
	Chapter 2: The Servlet Interface 22
	Chapter 3: Servlet Context 28
	Chapter 4: The Request 32
	Chapter 5: The Response 38
	Chapter 6: Servlet Filtering 42
	Chapter 7: Sessions 48
	Chapter 8: Dispatching Requests 54
	Chapter 9: Web Applications 58
	Chapter 10: Application Lifecycle Events 66
	Chapter 11: Mapping Requests to Servlets 70
	Chapter 12: Security 74
	Chapter 13: Deployment Descriptor 82
	Chapter 14: API Details 100
	Appendix A: Deployment Descriptor Version 2.2 236
	Appendix B: Glossary 250

	Status
	Preface
	Overview
	1.1 What is a Servlet?
	1.2 What is a Servlet Container?
	1.3 An Example
	1.4 Comparing Servlets with Other Technologies
	1.5 Relationship to Java 2 Platform Enterprise Edition

	The Servlet Interface
	2.1 Request Handling Methods
	2.1.1 HTTP Specific Request Handling Methods
	2.1.2 Conditional GET Support

	2.2 Number of Instances
	2.2.1 Note about SingleThreadModel

	2.3 Servlet Life Cycle
	2.3.1 Loading and Instantiation
	2.3.2 Initialization
	2.3.3 Request Handling
	2.3.4 End of Service

	Servlet Context
	3.1 Scope of a ServletContext
	3.2 Initialization Parameters
	3.3 Context Attributes
	3.3.1 Context Attributes in a Distributed Container

	3.4 Resources
	3.5 Multiple Hosts and Servlet Contexts
	3.6 Reloading Considerations
	3.7 Temporary Working Directories

	The Request
	4.1 Parameters
	4.2 Attributes
	4.3 Headers
	4.4 Request Path Elements
	4.5 Path Translation Methods
	4.6 Cookies
	4.7 SSL Attributes
	4.8 Internationalization
	4.9 Request data encoding

	The Response
	5.1 Buffering
	5.2 Headers
	5.3 Convenience Methods
	5.4 Internationalization
	5.5 Closure of Response Object

	Filtering
	6.1 What is a filter?
	6.1.1 Examples of Filtering Components

	6.2 Main Concepts
	6.2.1 Filter Lifecycle
	6.2.2 Filter environment
	6.2.3 Configuration of Filters in a Web Application

	Sessions
	7.1 Session Tracking Mechanisms
	7.1.1 URL Rewriting
	7.1.2 Cookies
	7.1.3 SSL Sessions
	7.1.4 Session Integrity

	7.2 Creating a Session
	7.3 Session Scope
	7.4 Binding Attributes into a Session
	7.5 Session Timeouts
	7.6 Last Accessed Times
	7.7 Important Session Semantics
	7.7.1 Threading Issues
	7.7.2 Distributed Environments
	7.7.3 Client Semantics

	Dispatching Requests
	8.1 Obtaining a RequestDispatcher
	8.1.1 Query Strings in Request Dispatcher Paths

	8.2 Using a Request Dispatcher
	8.3 Include
	8.3.1 Included Request Parameters

	8.4 Forward
	8.4.1 Query String

	8.5 Error Handling

	Web Applications
	9.1 Relationship to ServletContext
	9.2 Elements of a Web Application
	9.3 Distinction Between Representations
	9.4 Directory Structure
	9.4.1 Sample Web Application Directory Structure

	9.5 Web Application Archive File
	9.6 Web Application Configuration Descriptor
	9.6.1 Dependencies on extensions: Container Library Files
	9.6.2 Web Application Classloader

	9.7 Replacing a Web Application
	9.8 Error Handling
	9.9 Welcome Files
	9.10 Web Application Environment

	Application Lifecycle Events
	10.1 Introduction
	10.2 Event Listeners
	10.3 Configuration of Listener Classes
	10.4 Listener Instances and Threading
	10.5 Distributed Containers
	10.6 Session Events- Invalidation vs. Timeout

	Mapping Requests to Servlets
	11.1 Use of URL Paths
	11.2 Specification of Mappings
	11.2.1 Implicit Mappings
	11.2.2 Example Mapping Set

	Security
	12.1 Introduction
	12.2 Declarative Security
	12.3 Programmatic Security
	12.4 Roles
	12.5 Authentication
	12.5.1 HTTP Basic Authentication
	12.5.2 HTTP Digest Authentication
	12.5.3 Form Based Authentication
	12.5.4 HTTPS Client Authentication

	12.6 Server Tracking of Authentication Information
	12.7 Propagation of Security Identity
	12.8 Specifying Security Constraints
	12.8.1 Default Policies

	Deployment Descriptor
	13.1 Deployment Descriptor Elements
	13.1.1 General Rules for Processing the Deployment Descriptor
	13.1.2 Deployment Descriptor DOCTYPE

	13.2 DTD
	13.3 Examples
	13.3.1 A Basic Example
	13.3.2 An Example of Security

	API Details
	javax.servlet
	Config
	Filter
	FilterChain
	FilterConfig
	GenericServlet
	RequestDispatcher
	Servlet
	ServletConfig
	ServletContext
	ServletContextAttributeEvent
	ServletContextAttributesListener
	ServletContextEvent
	ServletContextListener
	ServletException
	ServletInputStream
	ServletOutputStream
	ServletRequest
	ServletRequestWrapper
	ServletResponse
	ServletResponseWrapper
	SingleThreadModel
	UnavailableException

	javax.servlet.http
	Cookie
	HttpServlet
	HttpServletRequest
	HttpServletRequestWrapper
	HttpServletResponse
	HttpServletResponseWrapper
	HttpSession
	HttpSessionActivationListener
	HttpSessionAttributesListener
	HttpSessionBindingEvent
	HttpSessionBindingListener
	HttpSessionContext
	HttpSessionEvent
	HttpSessionListener
	HttpUtils

	Deployment Descriptor Version 2.2
	Glossary

