
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 1

Java Caching:
State of the Union
Brian Oliver | Oracle Corporation
Greg Luck | Terracotta

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 3

Program Agenda

  Java Caching (JCache), JSR-107 and Caching

  JCache: More than your average Cache!

  JCache: By Example

 Available Implementations?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 4

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 5

Java Caching (JCache)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 6

Java Caching (JCache)

 What?
–  Java Caching (JCache) is an effort to standardize Caching for the Java

Platform*
–  A common mechanism to create, access, update and remove information

from Caches

 How?
–  JSR-107: Java Caching Specification (JCache)
–  Java Community Process (JCP) 2.9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 7

Java Caching (JCache)

 Why?
–  Standardize! Standardize! Standardize!

  Core Caching Concepts
  Core Caching API

–  Provide application portability between Caching solutions

  Big & Small, Open & Commercial

–  Caching is ubiquitous!

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 8

Java Caching (JCache)

 Who?
–  Joint Specification (LEADS)

  Greg Luck
  Brian Oliver (Oracle Corporation)

–  Expert Group (EG)

  10+ companies
  8+ individuals

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 9

Java Caching (JCache)
 When? (A Proposed Timetable)

Deliverable Start Finish
Public Review Ballot ✔ 27th August 2013 9th September 2013

Proposed Final Draft 30th September 2013

Completion of Reference Implementation (RI) &
Technology Compatibility Kit (TCK)

31st October 2013

Appeal Ballot (7 days) 31st October 2013 7th November 2013

Updated Deliverables 7th November 2013 14th November 2013

Final Approval Ballot 14th November 2013 28th November 2013

Final Release 28th November 2013 12th December 2013

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 10

Java Caching (JCache)

 Which Platform?

JCache Deliverable Target Platform
Specification (SPEC) Java 6+ (SE or EE)

Reference Implementation (RI) Java 7+ (SE or EE)

Technology Compatibility Kit (TCK) Java 7+ (SE or EE)

Demos and Samples Java 7+ (SE or EE)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 11

Java Caching (JCache)

–  JCP Project:

  http://jcp.org/en/jsr/detail?id=107
–  Source Code:

  https://github.com/jsr107
–  Forum:

  https://groups.google.com/forum/?fromgroups#!forum/jsr107

Project Hosting

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 12

Java Caching (JCache)

Apache Maven: (via Maven Central Repository)
 <dependency>

 <groupId>javax.cache</groupId>

 <artifactId>cache-api</artifactId>

 <version>0.10</version>

 </dependency>

How to get it.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 13

Caches and Caching

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 14

Caches and Caching

 Cache: A high-performance, low-latency data-structure* in which an
application places a temporary copy of information that is likely to be
used more than once

 When To Use Caches?
–  When applications use the same data more than once
–  When cost (time / resources) of making an initial copy is less than fetching

or producing the data again or when faster to request from a Cache

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 15

Caches and Caching

  Implications?
–  Caching is not a cure all!
–  Developers must know the costs (time and resources) to

determine Cache effectiveness

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 16

Caches and Caching: Maps v’s Cache APIs

Maps
  Key-Value Based API
  Supports Atomic Updates
  Entries Don’t Expire
  Entries Aren’t Evicted
  Entries Stored On-Heap

Caches
  Key-Value Based API
  Supports Atomic Updates
  Entries May Expire
  Entries May Be Evicted
  Entries Stored Anywhere (i.e.: topologies)

  Support Integration (through Loaders / Writers)
  Support Listeners (observer pattern)

  Entry Processors
  Statistics

Caches are not Maps!

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 17

JCache: More than your
average Cache!

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 18

JCache: Features

 java.util.ConcurrentMap like API
 Atomic Operations
 Lock-Free
 Read-Through / Write-Through Integration Support
 Cache Event Listeners
 Fully Generic API = type-safety
 Statistics
 Annotations (for frameworks and containers)
 Store-By-Value semantics (optional store-by-reference)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 19

JCache: Features

 Topology Agnostic
–  Topologies not defined or restricted by the specification

 Efficiently supports:
–  “local” in-memory Caching and
–  “distributed” server-based Caching

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 20

JCache: G’day World

// acquire a previously configured cache

Cache<Integer, String> cache =
 Caching.getCache(“my-cache”, Integer.class, String.class);

// put something in the cache

cache.put(123, “G’day World”);

// get something from the cache

String message = cache.get(123);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 21

API In Depth

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 22

JCache: Cache API

public interface Cache<K, V>

 extends Iterable<Cache.Entry<K, V>> {

 V get(K key);

 Map<K, V> getAll(Set<? extends K> keys);

 boolean containsKey(K key);

 void loadAll(Set<? extends K> keys,
 CompletionListener l);

 ...

(does not extend Map!)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 23

JCache: Cache API

 void put(K key, V value);

 V getAndPut(K key, V value);

 void putAll(Map<? extends K, ? extends V> map);

 boolean putIfAbsent(K key, V value);

 boolean remove(K key);

 boolean remove(K key, V oldValue);

 V getAndRemove(K key);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 24

JCache: Cache API

 boolean replace(K key, V oldValue, V newValue);

 boolean replace(K key, V value);

 V getAndReplace(K key, V value);

 void removeAll(Set<? extends K> keys);

 void removeAll();

 void clear();

 Configuration<K, V> getConfiguration();

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 25

JCache: Cache API

 void registerListener(

 CacheEntryListenerConfiguration<K, V> config);

 void unregisterListener(

 CacheEntryListenerConfiguration<K, V> config);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 26

JCache: Cache API

 <T> T invoke(K key,

 EntryProcessor<K, V, T> processor,

 Object... arguments);

 <T> Map<K, T> T invokeAll(Set<? Extends K> keys,

 EntryProcessor<K, V, T> processor,

 Object... arguments);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 27

JCache: Cache API

 String getName();

 CacheManager getCacheManager();
}

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 28

JCache: Cache Managers

 Establishes, configures, manages and owns named Caches
–  Caches may be pre-define or dynamically created at runtime

 Provides Cache infrastructure and resources

 Provides Cache “scoping” (say in a Cluster)

 Provides Cache ClassLoaders (important for store-by-value)

 Provides Cache lifecycle management

javax.cache.CacheManager

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 29

JCache: G’day World

// acquire the default CacheManager

CacheManager manager = Caching.getCacheManager();

// acquire a previously configured cache (via CacheManager)

Cache<Integer, String> cache =
 manager.getCache(“my-cache”, Integer.class, String.class);

// put something in the cache

cache.put(123, “G’day World”);

// get something from the cache

String message = cache.get(123);

(via a Cache Manager)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 30

JCache: Runtime Structure

Caching
“service loader”

CachingProvider
“SPI implementation”

CacheManager
“manager of caches”

Cache
“interface to a Cache”

Loads
& Tracks

*

*

*

Created
& Managed By

Created
& Managed By

“application”

Uses..

*

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 31

JCache: Gudday World

 MutableConfiguration<Integer, String> config =

 new MutableConfiguration<Integer, String>()

 .setStoreByReference(true)

 .setCacheEntryExpiryPolicy(
 new AccessedExpiryPolicy(5, TimeUnit.SECONDS));

(using programmatic configuration – fluent style)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 32

JCache: Gudday World

 // acquire the default CacheManager

 CacheManager manager = Caching.getCacheManager();

 // create cache with a custom configuration

 Cache<Integer, String> cache =

 manager.createCache(“my-cache”, config);

 // and perhaps later just…

 Cache<Integer, String> cache =

 manager.getCache(“my-cache”, Integer.class, String.class);

(using programmatic configuration – fluent style)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 33

Entry Processors

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 34

JCache: Entry Processors

 // acquire a cache

 Cache<String, Integer> cache =

 manager.getCache(“my-cache”, String.class, Integer.class);

 // increment a cached value by 42, returning the old value

 int value = cache.invoke(“key”, new IncrementProcessor<>(), 42);

(custom atomic operations for everyone!)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 35

JCache: Entry Processors

public class IncrementProcessor<K>
 implements EntryProcessor<K, Integer, Integer>, Serializable {

 @Override
 public Integer process(MutableEntry<K, Integer> entry, Object... arguments) {

 if (entry.exists()) {

 int amount = arguments.length == 0 ? 1 : (Integer)arguments[0];

 int current = entry.getValue();

 entry.setValue(count + amount);

 return current;

 } else {
 throw new IllegalStateException(“no entry exists”);
 }
}

(custom atomic operations for everyone)

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 36

JCache: Entry Processors

 Eliminate Round-Trips! (in distributed systems)

 Enable development of a Lock-Free API! (simplifies applications)
  *May need to be Serializable (in distributed systems)

(custom atomic operations!)

Cache

Application

Cache

Application

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 37

JCache: Entry Processors

 // using an entry processor?

 int value = cache.invoke(“key”, new IncrementProcessor<>(), 42);

 // using a lock based API?

 cache.lock(“key”);

 int current = cache.get(“key”);

 cache.put(“key”, current + 42);

 cache.unlock(“key”);

Which is better?

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 38 3
8

Annotations

  JSR107 introduces a standardized set of caching annotations, which
do method level caching interception on annotated classes running in
dependency injection containers.

 Caching annotations are becoming increasingly popular:
–  Ehcache Annotations for Spring
–  Spring 3’s caching annotations.

  JSR107 Annotations will be added to:
–  Java EE 8
–  Spring 4 (2014)

38	

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 39 3
9

Annotation Operations

 The JSR107 annotations cover the most common cache operations:

 @CacheResult
 @CachePut
 @CacheRemove
 @CacheRemoveAll

39	

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 40 4
0

Fully Annotated Class Example
@CacheDefaults(cacheName = "blogManager")

public class BlogManager {

 @CacheResult

 public Blog getBlogEntry(String title) {...}

 @CacheRemove

 public void removeBlogEntry(String title) {...}

 @CacheRemoveAll

 public void removeAllBlogs() {...}

 @CachePut

 public void createEntry(@CacheKey String title, @CacheValue Blog blog) {...}

 @CacheResult

 public Blog getEntryCached(String randomArg, @CacheKey String title){...}

}

40	

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 41 4
1

Specific Overrides

public class DomainDao {

 @CachePut(cacheName="domainCache")

 public void updateDomain(String domainId,

 @CacheKey int index,

 @CacheValue Domain domain) {

 ...

 }

 }

41	

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 42

Announcements

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 43

Fully Compliant JCache early 2014.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 44

 Oracle Coherence

Fully Compliant JCACHE in 2014

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 45

Graphic Section Divider

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 46

The preceding is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 47

