
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Java™ Technology Test Suite
Development Guide 1.2

For Java Compatibility Test Suite Developers

November 2003

Please

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Sun, the Sun logo, Sun Microsystems, Java, the Java Coffee Cup logo, JavaTest, Java Community Process, JCP, J2SE, Solaris and Javadoc are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The Adobe®logo is a registered trademark of
Adobe Systems, Incorporated.

This distribution may include materials developed by third parties. Third-party software, including font technology, is copyrighted and
licensed from Sun suppliers. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company,
Ltd. The Adobe® logo is a registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, iCRITE ET
PRiALABLE DE SUN MICROSYSTEMS, INC.

Droits du gouvernement amiricain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat
de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des
suppliments ` celles-ci.

Sun, le logo Sun, Sun Microsystems, Java, le log Java Coffee Cup, JavaTest, Java Community Process, JCP, J2SE, Solaris et Javadoc sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Le logo Adobe® est une marque
déposée de Adobe Systems, Incorporated.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Le logo Adobe® est une marque déposée de Adobe Systems, Incorporated.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFAÇON.

iii

Contents

Preface xi

Who Should Use This Book xi

How This Book Is Organized xi

Typographic Conventions xii

Related Documentation xiii

Accessing Sun Documentation Online xiii

Sun Welcomes Your Comments xiv

1. Introduction 1

2. Test Development Processes and Infrastructure 3

Process Management Components 3

Accurate and Complete API Specification 4

Test Plan Document 4

Test Design Document 5

Test Integration Plan 5

Test Case Specifications 6

Test Descriptions with the JavaTest Harness 6

Tests 7

General Time Line and Planning Considerations 7

3. Test Case Planning and Design 9

iv Java™ Technology Test Suite Development Guide 1.2 • November 2003

Behavior-Based Testing of the Specification 9

Compatibility Testing vs. Product Testing 10

Test Development Strategy 12

Step 1: Identify Assertions in the Specification 12

Step 2: Develop Test Cases for the Assertions 12

4. Analyzing Java API Specifications 15

Specification Assertions Must Be Clearly Stated 16

Identifying Specification Assertions 16

Testable 17

Testable Assertions in Examples or Sample Code 17

Required 18

Implementation-Specific 18

Ambiguous 19

Not an Assertion 19

Insufficient Specification Coverage 20

Implied Assertions 21

Refining the Specification 21

5. Writing Java API Compatibility Tests 25

Test Development Process 25

Writing Compatibility Test Code 26

Observing Source Code Conventions 26

General Source Code Requirements 26

Building Robust Portable Tests 27

Test Case Development Techniques 28

Equivalence Class Partitioning 29

Equivalence Class Partitioning Example:
Color (int, int, int) 30

Boundary Value Analysis 31

Contents v

Boundary Value Analysis Example:
Color (int, int, int) 31

Writing the Test Code 32

Example 1: TCK Tests for Integer.toString(int, int) 33

Example 2: TCK Tests for Class.getModifiers() 37

Common Errors in Writing TCK Tests. 42

Common Error: Use of Platform-Specific Data 42

Common Error: Modification of the System State 43

Common Error: Stress Tests 44

Common Error: Hard-Coded System-Specific Values 45

Common Error: Thread Synchronization 45

Special Class and Method Testing Issues 46

Testing Exception Classes 46

Testing Abstract Classes 47

Testing Using a Stub Class 47

Testing Interfaces 48

Testing Inherited Methods 48

Testing API Signatures 49

Test Writing Exercises 50

Exercise 1: java.lang.Integer 50

Exercise 2: java.lang.Class 50

6. Writing Tests for Execution by a Test Harness 51

JavaTest Harness 51

JavaTest Harness Agent 52

How Tests Are Executed by the Harness 53

How Tests Are Selected for a Test Run 53

How Tests Are Executed 54

Test Results 55

Test Components Required by the JavaTest Harness 57

vi Java™ Technology Test Suite Development Guide 1.2 • November 2003

Writing Test Descriptions for the JavaTest Harness 57

Running Tests with the Test Finder 58

Test Description Form and Content 58

Creating JavaTest Harness HTML Test Description Tables 58

Test Description Field Examples 61

JavaTest Validation of Test Descriptions 62

Using Keywords in Test Descriptions 62

Using the JavaTest API Test Libraries 63

The Test Interface 63

Using the Status Class 64

Using the MultiTest Class. 64

Integrating Test Case Code with the JavaTest API 65

Example 1: Integrating the Integer.toString(int, int) Test with the
JavaTest Harness 65

toString.html Test Description File 68

Example 2: Integrating the Class.getModifiers() Test with the
JavaTest Harness 70

getModifiers.html Test Description File 74

Test Writing Exercises 77

7. Test Integration and Quality Assurance (QA) 79

Product Testing the TCK Tests 79

Testing Against the Reference Implementation (RI) 79

Avoiding Overlap When Testing the RI and the TCK 82

Testing the Integration of the TCK 82

Integration Testing Issues 83

Reviewing and Inspecting the Tests 83

Reviews and Inspections 84

Review 84

Inspection 84

Review vs. Inspection 84

Contents vii

8. TCK Maintenance 85

TCK Anomaly Analysis 85

Test Appeals Process 85

Exclude List for TCK Maintenance 86

TCK Patches 86

Maintenance Releases 87

TCK Evolution 87

Maintaining Multiple TCK Releases 87

A. Test Writing Exercise Answers 89

Exercise Answer: ToHexStringTests.java 90

Exercise Answer: ToHexStringTests.html Test Description 92

Exercise Answer: GetSuperclassTests.java 93

Exercise Answer: getSuperclass.html Test Description 98

B. HTML Test Description Code Listings 101

toString.html Test Description Code 101

getModifiers.html Test Description Code 104

ToHexStringTests.html Test Description Code 108

getSuperclass.html Test Description Code 109

C. Introduction to Java Technology API Specifications 113

Specification Users 113

Components of an API Specification 114

Top-Level Specification 114

Package Specification 115

Class and Interface Specifications 115

Field Specification 117

Method Specification 117

References to External Specifications 119

 Java TCK and CTT Glossary 121

viii Java™ Technology Test Suite Development Guide 1.2 • November 2003

Index 131

ix

Figures

FIGURE 1 Refining the specification within the test development process 23

FIGURE 2 JavaTest harness with the agent hosted on a target device 52

FIGURE 3 Run-time test flow diagram 56

FIGURE 4 toString.html test description file 68

FIGURE 5 getModifiers.html test description file 75

FIGURE 6 Components of a Java technology release 80

FIGURE 7 TCK/RI refinement within the test development process 81

x Java™ Technology Test Suite Development Guide 1.2 • November 2003

xi

Preface

This document describes methods to develop a test suite for a Technology
Compatibility Kit (TCK). A TCK is defined as the suite of tests, tools, and
documentation that allows an implementor of a Java technology specification to
determine if the implementation is compliant with the specification.

Who Should Use This Book
This book is meant for software engineers who are developing Java compatibility
tests suites for a TCK. Its purpose is to assist expert groups working within the
worldwide Java Community ProcessSM (JCPSM) program to create API tests for a
new TCK.

How This Book Is Organized
Chapter 1, “Introduction” provides a brief introduction on how to use this
document.

Chapter 2, “Test Development Processes and Infrastructure” describes the
processes, infrastructure and steps in developing compatibility tests.

Chapter 3, “Test Case Planning and Design” describes the specialized
requirements and techniques for specifying API test cases for the purpose of
planning and designing compatibility tests.

Chapter 4, “Analyzing Java API Specifications” describes the requirements and
techniques for analyzing API specifications for the purpose of developing
compatibility tests.

xii Java™ Technology Test Suite Development Guide 1.2 • November 2003

Chapter 5, “Writing Java API Compatibility Tests” describes the techniques used
by Sun for writing Java API compatibility tests.

Chapter 6, “Writing Tests for Execution by a Test Harness” describes how to write
tests which will be executed by a test harness.

Chapter 7, “Test Integration and Quality Assurance (QA)” describes the general
processes and procedures used at Sun to integrate compatibility tests into a TCK
and perform QA testing of the TCK product.

Chapter 8, “TCK Maintenance” describes techniques for improving tests,
analyzing test failures from the field, and excluding tests.

Appendix A, “Test Writing Exercise Answers” provides answers to the test
writing exercises.

Appendix B, “HTML Test Description Code Listings” lists the actual test
description code from the examples and exercises.

Appendix C, “Introduction to Java Technology API Specifications” briefly
introduces the structural levels of an API specification.

“Java TCK and CTT Glossary” contains definitions of key terms for all Java CTT
products.

Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

xiii

Related Documentation
To become familiar with the formal process of developing a Java specification
within the Java Community ProcessSM program, see the following URL:

http://www.jcp.org/

Note – References to specific Web URLs are subject to change.

Also see the following support and tool documentation which are included in the
Java CTT distribution:

■ TCK Project Planning and Development Guide

■ Java Technology Compatibility Kit User’s Guide Template

■ Spec Tool User’s Guide

■ Signature Test User’s Guide

■ Java API Coverage Tool User’s Guide

■ JavaTest User’s Guide and Reference

Note – The top most Java CTT installation directory is referred to as CTT_HOME
throughout this document.

The following titles are a good basic resource on the Java programming language:

■ The Java Programming Language

■ The Java Language Specification Second Edition

■ The Java Virtual Machine Specification 2nd Edition, Java 2 Platform

They can be found at this URL:

http://java.sun.com/docs/books/

Accessing Sun Documentation Online
The Java Developer ConnectionSM web site enables you to access Java™ platform
technical documentation on the Web:

http://developer.java.sun.com/developer/infodocs/

xiv Java™ Technology Test Suite Development Guide 1.2 • November 2003

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

docs@java.sun.com

1

CHAPTER 1

Introduction

This chapter briefly describes how to use this document to learn the concepts and
techniques used to develop Java compatibility test suites for a TCK product.

Before using this document, you should be familiar with the general guidelines for
TCK development according to the Java Community Process (JCP) program as
described in the TCK Development Guidelines. See “Related Documentation” in the
Preface.

The chapters in this document are presented in an order most beneficial to readers
new to TCK test suite development techniques.

This document will also be helpful to those who need an overview of test
development techniques for planning or management purposes.

Detailed reference material describing the techniques used at Sun to develop TCK
test suites is included for those writing test code. This document also includes test
writing examples based on sample code, and hands-on exercises. If you will be
developing tests for a finished TCK, you should read this entire document in the
order presented and complete the test development exercises.

For a complete summary of the topics covered see “How This Book Is Organized”
on page xi.

2 Java™ Technology Test Suite Development Guide 1.2 • November 2003

3

CHAPTER 2

Test Development Processes and
Infrastructure

This chapter describes the processes and infrastructure that could be used to
develop compatibility tests for a new API library.

The entire process of developing compatibility tests for a fairly large API is usually
a multi-month process that includes the development of a number of related
components. This chapter describes the process along with the various components
that can be used to help plan a large scale project and make it more manageable.

Compatibility testing differs from product testing which can begin as soon as some
part of the program is written. Compatibility testing requires both a working
implementation and an accurate, complete specification in order to complete the
test development process.

A large-sized test suite might include many thousands of tests. This requires using
a test harness to manage the test execution and reporting of results. Compatibility
testing at Sun is accomplished using its JavaTest™ test harness and tools. As a
result, this document uses the JavaTest harness when depicting examples of test
harness usage.

Process Management Components
The following bullets briefly list the components used by many test organizations
to manage and implement a large test suite development project. Subsequent
sections describe them in more detail. In addition, other chapters will further refine
the process of developing a number of these components. Note that some of these
components might be considered required and some optional, depending on the
complexity of a particular project.

4 Java™ Technology Test Suite Development Guide 1.2 • November 2003

The components used at Sun within the JCP program to manage and implement a
large scale compatibility test suite project are as follows:

For planning

■ Accurate and complete API specification

■ Test plan document

■ Test design document

■ Test integration plan

For test suite development

■ Test case specifications

■ Test descriptions (for the JavaTest harness)

■ Tests

Accurate and Complete API Specification
Compatibility testing is based on a written specification of the technology.
Fundamentally, it verifies that the behavior of an implementation of the
specification conforms to behavior that is accurately and completely described in
the specification. Developing a compatibility test suite begins with a written
specification document that is both accurate and complete.

Note that Sun recommends that a Java technology-based API specification be
defined as the Javadoc™ tag comments for a given API, and any supporting
documents that are linked into the Javadoc tag comments.

Chapter 4, “Analyzing Java API Specifications” further describe show to analyze a
specification for accuracy and completeness.

Test Plan Document
Responsibility for development of the required TCK is assigned to the Specification
Lead of the related Expert Group within the JCP program. Once the specification is
drafted, a test plan document should be written to describe how the tests within
the TCK test suite will be developed. The test plan document should provide a
comprehensive description of the TCK as a test suite product, including these
items:

■ What is being tested by the TCK.

■ Who is responsible for developing tests.

■ Who is responsible for ongoing maintenance of the tests.

■ What resources are required to develop the TCK test suite.

■ What are the milestones for test development and product development.

■ What are the risks.

Chapter 2 Test Development Processes and Infrastructure 5

Test Design Document
Test design documentation addresses the following types of factors:

■ Any items to be included in the API implementation under test in order to
execute the tests, such as any special TCK related hardware or software.

■ The types of tests that are being developed and whether they will be
differentiated based on class, API functionality, or other test classification
characteristics.

■ The level of test coverage that will be completed by the planned product
shipment date. Ideally, the goal is to write both class-based and functionally-
based tests for the entire implementation of the Java technology API
specification.

■ The type of test development that will be proposed for the API, described in
detail, including sources for test case development methodology and
completeness metrics.

■ How the test results will be verified.
■ How test cases or areas of functionality to be tested will be grouped into tests

for the test suite.
■ Any necessary enhancements to the existing test development or test execution

tools that are being used; for example, if there is a need for unique or specialized
hardware due to an unusual characteristic or limitation of the technology under
test.

■ Any issues that must be addressed due to a special TCK related hardware or
software characteristic, such as support of a limited number of files or limited
file name length.

■ Any changes in the usual testing process that will be required by the planned
test suite.

■ Any planned standard test library code that will be needed.

It may not be necessary to provide a separate test design document in every case. If
the test design information is not very complicated or lengthy, it can optionally be
put in either the test plan or the test specification documentation, described in
“Test Case Specifications” on page 6. However, for the purpose of clarity it should
not be divided between both forms of documentation.

If you are developing compatibility tests that are similar to existing tests developed
for a previous version of a technology, it is acceptable to provide the test design
information in the test plan document. However, if you are writing test types that
have not been developed for a compatibility test suite before, you should provide a
separate test design document.

Test Integration Plan
Test integration is the process of incorporating individual test cases into the larger
whole of the test suite. Options include either making each test case an individual
test, or grouping related test cases into a test.

6 Java™ Technology Test Suite Development Guide 1.2 • November 2003

The integration plan will be dependent on the software development processes and
practices at a particular test development site. For example, when using the
JavaTest harness Sun follows these guidelines. All of the tests, test case
specifications, and test descriptions are developed in a prescribed format that can
be easily integrated into the appropriate compatibility kit workspace. The
workspace stores the files used to develop, compile and build the test suite. TCKs
developed by Sun are usually distributed as a single ZIP file archive containing the
test suite, test harness, and all associated documentation.

The integration process that is used depends on the requirements of the test
harness in use. In general, the integration stage is first accomplished through
carefully planned procedures, and then verified for accuracy and completeness
with some related integration tests. Both the integration procedures and the tests to
be used for this purpose should be appropriately documented in some form.

See Chapter 7, “Test Integration and Quality Assurance (QA).”

Test Case Specifications
Test case specifications describe in logical terms what a test does and the expected
results. A test case specification refers to one or more assertions that a particular
test case is to verify, as derived from the related API specification. For a detailed
description see Chapter 4, “Analyzing Java API Specifications.”

If adequate test case specification information can be incorporated into the test
design document, then it is not necessary to develop exhaustive test case
specifications for each test in separate documentation.

A specific test harness will usually exhibit its own documentation placement
options. For example, when using the JavaTest harness with a test suite it is
recommended to provide the individual test case specifications in HTML within
the test suite test directory tree (because it is portable). If they are straightforward
then you can locate them within the same HTML file as the test description,
discussed next; if not, use separate HTML files with links to the appropriate test
description files. Writing test case specifications is discussed further in Chapter 3,
“Test Case Planning and Design.”

Test Descriptions with the JavaTest Harness
In this context, test descriptions are defined as the structured HTML or Javadoc tag
comments that are used by the JavaTest harness when executing the tests. Another
test harness might use a different method to obtain the data necessary to run
individual tests. When using the JavaTest harness, all tests, test case specifications,
and test descriptions must conform to the format that it uses.

Chapter 2 Test Development Processes and Infrastructure 7

Tests
Tests are the source code and any accompanying information that exercise a
particular feature or part of a feature to perform the compatibility testing functions
of a test suite. Some interactive tests are a combination of code and manual
procedures.

Writing tests is described in Chapter 5, “Writing Java API Compatibility Tests.”

General Time Line and Planning
Considerations
This section lists a number of time line and planning considerations.The estimates
loosely describe the time lines for the processes used at Sun. We emphasize that
they are only for the purpose of example because they vary across projects.

■ The time line for test development depends on the complexity of the API feature
being tested. As a rough estimate, budget one engineer-hour in TCK test
development for each engineer-hour spent on developing the technology
implementation. If the implementation is not complicated, also include
engineering time spent on design.

■ Get the test development team trained in compatibility testing early. The sooner
your test development team is trained about compatibility testing, the better
they will be able to leverage their own test development work.

■ Deliver the test plan for review to the responsible parties as early as possible in
the development cycle, and encourage feedback.

■ On a large scale project, consider having the test design decided upon and
reviewed about 3–4 months before final source code shipment.

■ Attempt to ensure that the specification team and the reference implementation
development team contact the test suite development team early and often with
design issues. Keep test suite developers informed if there are changes in what
needs to be tested, or if issues are arising.

■ Have a test ready for formal inspection several months before the technology
release date. We recommend having the first test inspected as soon as it is ready
as there could be much re-work required which could affect the schedule.

■ An inspection and review process is usually scheduled as a series of in-depth
meetings held over a one to two week period. A thorough source code
inspection or review will generally take a significant amount of time. However,
a well executed inspection or review will reveal many significant issues, and is
well worth the time.

■ At around the first inspection, begin integration into the appropriate test suite
workspace. Initial time required for this might be about one week.

8 Java™ Technology Test Suite Development Guide 1.2 • November 2003

■ At Sun, we start running what is termed partial builds of the compatibility kit in
order to test selected parts of the build process for errors. This starts close in
time to the first inspection and after workspace integration begins. The initial
time required for setting this up is about one week, but this and the exact
method of running a partial build depends on the build process in use. Partial
builds allow continual testing as development progresses, uncovering problems
earlier in the cycle.

■ On a daily basis during the last month before source code shipment, we also
update the test suite and run partial builds of the compatibility kit. This makes
sure it is functioning properly.

■ During the last month before the finished product ships, have a final review by
the test suite development team. This should go fairly quickly if these
recommendations have been followed as outlined. This final review will include
verifying the correctness of the test suite contents, and its packaging and test
coverage.

Within the JCP program a technology compatibility kit is released at the same time
as the related reference implementation and specification.

9

CHAPTER 3

Test Case Planning and Design

This chapter describes the specialized requirements and techniques for specifying
API test cases for the purpose of planning and designing compatibility tests.

Behavior-Based Testing of the
Specification
Compatibility testing is a behavior-based testing activity. Is purpose is to test written
specified behavior with a minimum knowledge or concern for the underlying
structure of the code. Other synonyms for behavior-based testing are:

■ Black-box testing
■ Functional testing
■ Data-driven or input/output-driven testing

In direct contrast to behavior-based testing, structure-based testing requires a
knowledge of the logic of the code to guide the selection of test data without the
specification in mind. Other synonyms for structure-based testing are white-box
testing or internals-based testing. Some of the methods used to test code directly
are:

■ Statement coverage
■ Decision coverage
■ Condition coverage

This document deals only with the behavior-based testing strategies collectively
known as compatibility testing.

10 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Compatibility Testing vs. Product
Testing
Compatibility testing differs from traditional product testing in a number of ways.

■ Unlike product testing, compatibility testing is not primarily concerned with
robustness, performance, or ease of use.

■ The primary purpose of compatibility testing is to determine whether an
implementation of a technology is compliant with the specification of that
technology.

■ The primary goal of compatibility testing is to provide the assurance that an
application will run in a consistent manner across all implementations of a
technology that were certified as compatible.

■ Compatibility test development for a given feature relies on a complete
specification and reference implementation for that feature.

■ Compatibility testing is a means of ensuring correctness, completeness, and
consistency across all implementations of a technology specification that are
developed.

The fundamental differences between TCK tests and product tests are further
summarized in TABLE 1.

TABLE 1 TCK testing versus product testing

TCK Testing Product Testing

Compatibility testing is behavior-
based. It tests written specified
behavior with a minimum knowledge
or concern for the underlying structure
of the code. Termed black-box or
functional testing, or data-driven or
input/output-driven testing.

Product testing is structure-based. It
relies on a knowledge of the logic of
the underlying implementation specific
code to guide the selection of test data.
It does not consider the specification.
Termed white-box or internals-based
testing.

Chapter 3 Test Case Planning and Design 11

Typical TCK tests do not contain any
stress tests or performance
measurement code. Performance and
other related limitations can vary with
the particular implementation of the
technology. This type of testing is
usually outside the scope of the Java
technology specification.

An exception is when the related Java
technology specification clearly defines
certain limitations or requirements on
resources. In this case the TCK should
test these assertions accordingly.

Product performance tests should
attempt to make full use of all
available resources. They attempt to
reach certain predefined limitations on
the particular implementation under
test. For example, stress tests might
include opening a large number of
windows, files or sockets, or launching
a large number of threads or processes.
They might also attempt to allocate all
or most of the available memory.

TCK tests must be written for a wide
spectrum of implementations. They are
used on potentially different operating
systems with varying requirements for
resources.

Predefined configuration parameters
are typically beyond the scope of the
Java technology specification; no
assumptions can be made about them
in TCK tests.

Product tests are typically written for a
specific software product. They can
make assumptions about how the
product is configured and running
based on consistent values—for
example, in configuration files and
command-line parameters. The
product itself typically has predefined
requirements, such as a specific
underlying OS or CPU, or specific
memory or disk space allocations.
Product tests can rely on this product-
specific information.

TCK tests are validated by running
them against a reference
implementation (RI).

Note that TCK tests should not rely on
any RI-specific resources or
configuration information. This
includes items such as file or class
names and locations, or other
implementation-specific features or
details.

Product tests are validated using a
particular version of the product and
should fully test product-specific
features and details.

TABLE 1 TCK testing versus product testing

TCK Testing Product Testing

12 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Test Development Strategy
As previously described, API compatibility testing is based on testing the behavior
that is specified by the assertions made in the API specification. Compatibility test
development involves these basic steps:

1. Identify all the assertions contained in the specification.

2. Develop the appropriate test cases for each assertion.

Step 1: Identify Assertions in the Specification
An assertion is a statement that specifies some necessary aspect of the API. It is a
statement that a developer must adhere to when implementing the specified Java
technology. It is also a statement that application developers can rely upon.
Examples of testable assertions in a specification are statements such as Returns the
name of the stock or Constructs a GetQuoteException with the specified detail message and
nested exception.

Assertions are critical to both the implementation of a Java technology specification
and its subsequent compatibility testing. At this point in test development, it is
critical that assertions have been clearly and concisely stated in the finished
specification. They must be stated so that implementors, application developers,
and compatibility test developers all derive the same meaning from them. Details
on how to identify well defined assertions in the specification are covered in
Chapter 4, “Analyzing Java API Specifications.”

Note – The Java programming language is strongly typed. It is not necessary to
test data type assertions for method arguments and return values. You can assume
that type checking of input and output conditions is performed by a correctly
functioning Java compiler and/or Java virtual machine.

Analyzing specification assertions is described in more detail in Chapter 4,
“Analyzing Java API Specifications."

Step 2: Develop Test Cases for the Assertions
A test case is the source code and accompanying information designed to exercise
one aspect of a specified assertion. Accompanying information may include test
documentation, auxiliary data files and other resources used by the source code.

Chapter 3 Test Case Planning and Design 13

In order to be complete, a test suite must include a test case to verify each and
every testable assertion that is made by the API specification. Test developers
should review the actual specification document and generate at least one test case
for each testable assertion that appears in the API specification.

How to recognize testable assertions is further discussed in Chapter 4, “Analyzing
Java API Specifications.”

Test cases are usually documented during development within the test case
specification sections of the finished TCK. In some instances, specification
assertions and their resulting test cases are combined in a separate document.

Developing test cases for assertions is described in Chapter 5, “Writing Java API
Compatibility Tests."

The Java CTT distribution includes the following tools and documentation to assist
in identifying and tracking specification assertions, and measure the completeness
of TCK test coverage. See the user’s guide included in the Java CTT distribution for
details:

■ Java API Coverage Tool. Provides a quick way to estimate TCK test coverage
without doing any additional assertion markup when the TCK tests and the
specification are under development. It is also useful to gauge completeness of a
finished TCK.

■ Spec Trac Tool. Helps to identify, classify, and track assertions and their related
tests.

14 Java™ Technology Test Suite Development Guide 1.2 • November 2003

15

CHAPTER 4

Analyzing Java API Specifications

Compatibility testing demonstrates either compliance or lack of compliance to a
written specification. An accurate and complete specification is the prominent
requirement, and without it meaningful compatibility test cases cannot be
developed. This chapter describes the requirements for analyzing API
specifications for compatibility testing of a Java technology (see footnote1).

There has been much discussion about exactly what a specification for a Java
technology API library should consist of. Sun recommends that the Javadoc tag
comments comprise the specification for each Java technology API library, along
with any additional supporting documentation that is referenced as necessary.

For information on the Sun conventions for writing Javadoc tag comments, see How
to Write Doc Comments for the Javadoc™ Tool on the Web at this URL:

http://java.sun.com/products/jdk/javadoc/writingdoccomments.html

For a brief introduction to the basic components of an API specification see
Appendix C, “Introduction to Java Technology API Specifications."

Note that an API under test and the implementation that it is part of must provide
enough resources to enable testing. Resources include things like the following:

■ Input and output that both the JavaTest harness and a test can use to
communicate with each other

■ Enough methods on the API under test to allow tests to interact with the API

For example, consider the situation if a String object had no methods, but only
constructors. In this case, we would not be able to test whether the String object
was created correctly because we would have no way of getting any data from it.

1. The fundamental principles covered in this section are based on the Object Class Specification by Edward V.
Berard, Essays on Object-Oriented Software Engineering, 1993 Simon & Schuster, Englewood Cliffs, NJ; pp.
131-162.

16 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Specification Assertions Must Be
Clearly Stated
API compatibility testing is based on testing the behavior that is specified by the
assertions made in the API specification. Compatibility test development involves
identifying all the testable assertions made in the specification, and formulating
appropriate test cases for each of them.

An assertion is a statement that specifies some necessary aspect of the API. A
developer must adhere to an assertion when implementing the Java technology
that is specified. An assertion is also a specification statement that application
developers can rely upon.

Because of this, assertions are critical to both the implementation of a Java
technology specification and its subsequent compatibility testing. They should be
clearly and concisely stated so that implementors, application developers, and
compatibility test developers will all derive the same meaning from them.

Examples of testable assertions in a specification are statements such as Returns the
name of the stock or Constructs a GetQuoteException.

Identifying Specification Assertions
Prior to the test design stage, the test developer should scan through the
specification and split the entire text into logical statements. Each logical statement
should then be examined by type to indicate if it is a testable assertion.

The Java CTT distribution includes the Spec Trac Tool which helps to identify,
classify, and track assertions and their related tests. Using Spec Trac you can mark
up assertions and save the specification results with the following attributes:

■ Testable

■ Required

■ Implementation-Specific

■ Ambiguous

■ Not an assertion

The following sections describe these assertion attributes here as they relate to test
development. Also see the Spec Trac Tool User’s Guide included in the Java CTT
distribution.

Chapter 4 Analyzing Java API Specifications 17

Testable
Statements are considered testable assertions if they are intended to describe any
behavior of the API which can be tested by the TCK.

■ Example 1: java.lang.Integer.toString(int i, int radix) method
description

“If the radix is smaller than Character.MIN_RADIX or larger than
Character.MAX_RADIX, then the radix 10 is used instead.”

Test development for this sample assertion is described in detail in “Example
1: TCK Tests for Integer.toString(int, int)” on page 33.

■ Example 2: java.lang.Class.getModifiers() method description

“Returns the Java language modifiers for this class or interface, encoded in an
integer.”

Test development for this sample assertion is described in detail in “Example
2: TCK Tests for Class.getModifiers()” on page 37.

Testable Assertions in Examples or Sample Code

Statements forming examples or sample code pieces that are provided in the
specification are typically testable and should be verified by the TCK. In this sense,
examples or sample code are generally considered testable assertions.

■ Example 1: java.lang.Integer.parseInt(String s, int radix)
method description

“parseInt("1100110", 2) returns 102”

A TCK test can be developed to verify that the parseInt("1100110", 2)
method call returns an Integer whose int decimal value is 102.

■ Example 2: java.lang.Class.forName(String className) method
description

“For example, the following code fragment returns the runtime Class
descriptor for the class named java.lang.Thread:

Class t = Class.forName("java.lang.Thread")”

A TCK test can be developed to verify that the
Class.forName("java.lang.Thread") method call successfully
completes and the value of the t variable is a Class object representing the
java.lang.Thread class. Possible ways to verify this are to check that
t.getName() returns "java.lang.Thread" and t.newInstance()
creates a new instance of a java.lang.Thread class.

■ Example 3: Quote.convert(int) method description

“Convert an int to a String with the decimal placed back in (divide by
10000).

18 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Example: -100 -> ‘-0.01’ ”

A TCK test can be developed to verify that the convert(-100) method call
returns a string with value "-0.01". See sampleTCK tests for
Quote.convert(int) at this location in the Java CTT (test Quote2008):

CTT_HOME/examples/sampleTCK/tck/tests/api/com_sun/tdk/
sampleapi/Quote/index.html#Public

■ Example 4: Quote.makeInt(string) method description

“Takes a String representation of a floating point number and makes an int out
of it.
...
Example: 345.67 -> 3456700 (/10000 = 345.67)”

A TCK test can be developed to verify that the makeInt("345.67") method
call returns an Integer whose int decimal value is 3456700. See sampleTCK
tests for Quote.makeInt(string) at this location in the Java CTT (test
Quote2009):

CTT_HOME/examples/sampleTCK/tck/tests/api/com_sun/tdk/
sampleapi/Quote/index.html#Public

Required
A Required assertion indicates simply that the functionality must be implemented.
This is independent of the other attributes as follows: a Required functionality may
or may not be Testable, and it may or may not describe Implementation-Specific
behavior, and it may or may not be Ambiguous.

Implementation-Specific
Implementation-Specific assertions occur when the precise details of the behavior
are deliberately unspecified; how they are implemented is left to the discretion of
the implementor. This attribute is independent of the other attributes in that it may
or may not be Testable, or Required, or Ambiguous. If Required is FALSE and
Implementation-Specific is TRUE, then you can decide whether to implement it
and how.

■ Example 1: java.awt.Component.paramString() method description

“Returns a string representing the state of this component. This method is
intended to be used only for debugging purposes, and the content and format of
the returned string may vary between implementations.”

This behavior is specified as implementation-specific and therefore this assertion
cannot be tested.

Chapter 4 Analyzing Java API Specifications 19

Statements intended to describe the behavior of the API but which cannot be tested
by the TCK due to the special nature of the behavior or functionality are considered
nontestable assertions.

■ Example 1: java.lang.Runtime.exit(int status) method description

“Terminates the currently running Java Virtual Machine. This method never
returns normally.”

It may be impossible to verify whether this method call terminated the Java
Virtual Machine or returned normally because of test harness or security
characteristics, or other restrictions. Thus this assertion is considered
nontestable.

■ Example 2: java.lang.Runtime.traceInstructions() method description

“If the boolean argument is true, this method suggests that the Java Virtual
Machine emit debugging information for each instruction in the Java Virtual
Machine as it is executed.”

This documented behavior is not required, and therefore this assertion cannot
be tested.

Ambiguous
An ambiguous assertion is one that is not testable. It indicates a bug in the
specification that should be fixed by the specification developer. If Ambiguous is
TRUE then Testable must be FALSE. An Ambiguous assertion can also describe
Required or Implementation-Specific behavior with all marked TRUE.

Not an Assertion
Statements classified as “Not an Assertion” form general descriptions of the API
which do not describe behavior, but are aimed at providing a context for the rest of
the text. These general descriptions are not intended to be tested. They include
items such as a general description of a package, class, method, or field, and so
forth. Be careful not to consider these statements to be assertions, as they are easy
to misinterpret as such.

■ Example 1: java.lang.Integer class description

“The Integer class wraps a value of the primitive type int in an object.”

Although it might be misinterpreted as an assertion, this statement is not
intended to assert that the Integer class instance is an object. Actually this is
self-evident because all class instances are objects, and this is enforced by the
Java Compiler and the Java Virtual Machine. It is also not intended to assert
that it provides a certain kind of access to its only field of type integer. This

20 Java™ Technology Test Suite Development Guide 1.2 • November 2003

behavior is covered in assertions in the specification which describe the
particular requirements for the access methods and their arguments and
return types.

■ Example 2: java.lang.Class class description

“There is no public constructor for the class Class.”

Absence of the public constructor is evident from the rest of specification.
There is no need to develop tests for this type of statement.

■ Example 3: StockSymbol.getVisualComponent() method description

“Subclasses may override this method to include additional data such as
charts.”

This is a note describing a possible use of the API by application developers. It
does not describe any behavior of the API itself.

Insufficient Specification Coverage
Sometimes a certain aspect of behavior or functionality is not sufficiently covered
by the specification to the extent that the same specification can be implemented in
several ways. This is considered a specification flaw or bug which needs to be
reported to the specification developers. No test can be developed for functionality
that is insufficiently specified.

The following are examples of incomplete specifications taken from JDK 1.1 which
were fixed in JDK 1.3.

■ Example 1: java.lang.Integer.toHexString(int i)

“Creates a string representation of the integer argument as an unsigned
integer in base 16.

The unsigned integer value is the argument plus 232 if the argument is
negative; otherwise, it is equal to the argument. This value is converted to a
string of ASCII digits in hexadecimal (base 16) with no extra leading 0s.”

It is not clear here whether lowercase or uppercase letters should be used for
hexadecimal representation. In this case, the following additional assertion is
necessary to develop tests:

“The following characters are used as hexadecimal digits: 0123456789abcdef”

■ Example 2: java.lang.Class.getName()

“Returns the fully-qualified name of the type (class, interface, array, or
primitive) represented by this Class object, as a String.”

It is not clear what should be returned for the array type since arrays do not

Chapter 4 Analyzing Java API Specifications 21

have fully-qualified names.

The following assertion is needed to cover the case of arrays:

“If this Class object represents a class of arrays, then the internal form of the
name consists of the name of the element type in Java signature format,
preceded by one or more "[" characters representing the depth of array nesting.”

Implied Assertions
Some assertions can be implied or indirectly stated in the specification, and these
should be identified as well for testing. Note that an implied assertion might also
introduce a specification flaw that may not be obvious.

Example: java.lang.Integer.byteValue() method description

“Returns the value of this Integer as a byte.”

This assertion implies that standard narrowing primitive conversion as defined in
The Java Language Specification 1.0, Section 5.1.3, will be applied when casting an
int value into a byte. Even though the specification for this method does not
explicitly state which kind of conversion will be applied, it is pretty safe for the test
developer to assume narrowing primitive conversion since no other ways to
convert int to a byte are defined by the Java platform.

Refining the Specification
It is not always possible to get a complete and accurate specification on the first
iteration. A major priority when developing compatibility tests is to uncover any
omissions or contradictions (bugs) in the specification and report them to the
specification team while it is still in the review cycle.

Omissions or contradictions in the specification are sometimes difficult to uncover
without very close and objective inspection. In addition to the formal inspection of
specification documents, there should always be a system in place to report and
investigate any bugs in the specification before it is finalized. This is done both
before and during the test development process.

22 Java™ Technology Test Suite Development Guide 1.2 • November 2003

The compatibility test development team should work closely with the
specification team in refining the early drafts of the specification in order to
accomplish these objectives. The process of refining the specification is
accomplished in an iterative fashion with the specification team working closely
with the test development team. This iterative process is illustrated in FIGURE 1 on
page 23 within the section of the test development state flow diagram enclosed by
broken lines.

Chapter 4 Analyzing Java API Specifications 23

FIGURE 1 Refining the specification within the test development process

Receive
Spec

 Analyze
Assertion
Difference

Analyze
One

Assertion

Design
Test
Case

Exercise
Test
Case

Failure
Analysis

Coverage
Measurement

Communicate
with

RI Team

Communicate
with

Spec Team

Await
Revision

Invalid

Await
Valid RI

RI Invalid

Test
Case Invalid

Compilation
Failed

Compilation
Succeeded

Failed Passed

Target Assertion
Coverage Reached

Testable

Nontestable Statements

Identify
Deletions

Identify
Additions/Modifications

Compile
Assertions

Assertions
Remain for
Testing

Specification
Refinement
Cycle

TCK Ready
for Release

24 Java™ Technology Test Suite Development Guide 1.2 • November 2003

25

CHAPTER 5

Writing Java API Compatibility
Tests

This chapter describes the techniques used at Sun for developing Java API
compatibility tests for a TCK product developed under the JCP program. We
assume that you are already familiar with the concepts and techniques presented in
previous chapters.

To build a firm background for approaching test development, we suggest that you
familiarize yourself with the following industry standard documents:

■ IEEE Std. 829-1983, IEEE Standard for Software Test Documentation

■ IEEE Std. 1044-1993, IEEE Standard Classification for Software Anomalies

■ IEEE Std. 1044.1-1995, IEEE Guide to Classification for Software Anomalies

You should also be familiar with the test development processes and tools used
within your own organization. This includes the following TCK development
issues:

■ Test development guidelines, processes, and procedures

■ Test development documentation requirements

■ Source code style conventions and guidelines

■ Test interfaces for the TCK under development

■ Test execution arguments for the TCK under development

■ Test description formats for the test execution engine being used

■ Test integration processes used in the development group

Test Development Process
Once the preparation work and documentation have been completed as previously
described, it is time to write the test code. At this point you should have identified
all the testable assertions defined in the specification.

26 Java™ Technology Test Suite Development Guide 1.2 • November 2003

This section uses straightforward steps for the purpose of explanation. In practice,
test development is an iterative process of test case development, test writing, and
running the tests.

During the process of test development, anomalies in the specification may come to
light. These are anomalies that were overlooked during the earlier stage of creating
the related test specifications. In this case, the problems are reported to the
specification team and related test case development can be postponed until the
specification is corrected. See Chapter 4, “Analyzing Java API Specifications.”

Writing Compatibility Test Code
This section discusses some of the fundamental requirements that compatibility
test development puts on the test code.

Observing Source Code Conventions
Test source code becomes part of the TCK product under the JCP program. End
users review the source code whenever necessary in the course of using the TCK to
test an implementation. It is important to follow accepted source code style
conventions, as well as document the code so it is understandable by reasonably
knowledgeable users

The code should not include any rude, indecent, or vulgar method names, variable
names, or other text.

These conventions are obvious to experienced developers. However, they are worth
mentioning in order to emphasize that a TCK is delivered as a source code product
along with its binaries.

Sun provides information regarding source code conventions at this URL:

http://java.sun.com/docs/codeconv/

General Source Code Requirements
There are some general requirements when writing test source code:

■ All tests must have at least one passing mode and one failing mode (in API tests
these are part of the source code of the test).

■ All tests must implement the approved test interface for the test suite under
development.

■ All tests must restore the state of the system under test when the test is
completed.

Chapter 5 Writing Java API Compatibility Tests 27

■ In general, there should be no hard coding of paths, time-out values, or other
hardware specific features.

■ No test should depend on a previous test result or action.

The Java programming language is strongly typed. So API tests can assume that
data type checking of input and output conditions is performed by a correctly
functioning compiler, and they need not test for this. Argument and return type
checking is done by the VM and language tests.

Building Robust Portable Tests
Tests must be runnable in all valid implementations of the technology associated
with the TCK release. The goal in developing robust portable tests is to eliminate
any implementation-specific assumptions or dependencies from the tests.

It is important to avoid making any assumptions in test code about the system that
a test is running on, either directly or implied. This can cause problems when
running the tests across varying Java technology implementations.

For example, in a Java 2 Platform, Standard Edition (J2SE™) implementation, all
tests must be executable in both the application and applet environments. To
enable this for J2SE TCK tests, the test interfaces developed by Sun usually include
either of the following pairs of methods.

Either:

public static main(String[])

public Status run(String[], PrintWriter, PrintWriter)

Or:

public static main(String[])

public int run(String[], PrintStream)

Note – The TCK architect on a development project specifies the interface for the
TCK tests.

Tests should not rely on any non-portable software related characteristic, such as a
locale dependency, or a specific time zone or encoding scheme.

The following components or subsystems require particular attention when
eliminating implementation dependant assumptions in tests:

■ Thread scheduling (thread.suspend and thread.resume)

■ Network

■ File system

■ Graphic user interface display or AWT

■ Character encoding standard

28 Java™ Technology Test Suite Development Guide 1.2 • November 2003

■ Memory

■ Multi-process operating system

■ Specific OS platform

■ Array ordering

If a particular test must exercise one of these subsystems, it is possible to use that
subsystem in the test with either of these two methods:

■ Set up the test to query the subsystem directly.
■ Write the test to interactively query the user about the subsystem before starting

the test.

You can also use a test suite configuration wizard to query the user regarding the
implementation environment before running the test suite. A wizard is a dedicated
utility which interactively queries the user and constructs the proper configuration
settings for the test setup. As a example, consider testing in a security constrained
environment. Before running the security tests, a configuration wizard might query
the user about the state of any applicable security constraints and then run the tests
accordingly.

Test Case Development Techniques
This section describes the two techniques used at Sun to develop compatibility test
cases for a Java technology API. They are:

■ Equivalence Class Partitioning

■ Boundary Value Analysis

It is not necessary to apply these techniques in any sequence.

There are other test case development techniques which are quite acceptable, but
they are not currently used at Sun.

The two techniques sometimes produce overlapping test cases. Rather than
duplicating test cases, a convenient means of referring to the same test case should
be provided within the test case documentation.

Because each Java API is defined in terms of classes, test development is be
centered around individual classes. This is essentially behavior-based, unit testing.
For those classes that cannot stand on their own, testing a small cluster of
functionally grouped classes is adequate.

Chapter 5 Writing Java API Compatibility Tests 29

Equivalence Class Partitioning
The technique of equivalence class partitioning1 entails dividing a large number of
potential test cases into smaller subsets with each subset representing an
equivalent category of test cases. Each subset is based on some equivalent
condition that exists in the larger group of test cases. The reasonable assumption is
that the single test case will exhibit the same behavior as the entire category of test
cases would if they were all tested under the same conditions. In this manner, a
single test case can represent a larger number of test cases, lessening the testing
load while providing the same degree of completeness.

There should be one test case for each equivalence class developed from this
process.

Note – When using the term equivalence class partitioning, class does not refer
explicitly to a Java programming language class, but rather to a category of similar
test cases.

Equivalence class partitioning strives to reduce the number of test cases needed by
dividing these five classes (categories) of data into representative classes of data.

■ Input values
■ Output values
■ Pre-condition data values
■ Post-condition data values
■ Object states

Once the data is partitioned into equivalence classes, only one or two
representative elements of the classes are explicitly tested. The theory is that if no
error is found by a test of one element of a set, it is unlikely that an error would be
found by a test of another element of the set.

There are also two basic types of equivalence classes which result in either a
positive or negative testing approach:

■ Valid equivalence classes: test case subsets which contain proper, expected, and
otherwise normal situations with respect to the object, such as:

■ Typical states

■ Expected values for method input parameters

■ Normal external conditions

■ Invalid equivalence classes: test case subsets which contain improper,
unexpected, and otherwise abnormal situations with respect to the object; these
test cases result in negative tests, which pass only if execution fails in a specified
manner, such as:

States which are not allowed
Illegal values for method input parameters
Abnormal external conditions

1. See Myers, Glenford J.; Art of Software Testing, The; John Wiley & Sons 1979; pp. 44-50.

30 Java™ Technology Test Suite Development Guide 1.2 • November 2003

There are five object orientations in which equivalence classes are considered:

■ States which an object may assume or be forced into

■ Characteristics of method input conditions for the object

■ Characteristics of method output conditions for the object

■ Characteristics of any external conditions which exist immediately prior to the
occurrence of an event in the life of an object

■ Characteristics of any external conditions which exist immediately after the
occurrence of an event in the life of an object

Equivalence Class Partitioning Example:
Color (int, int, int)

Consider the specification for the Java class Color (int, int, int). This class
creates a color with the specified red, green and blue values in the range of 0–255.

TABLE 2 identifies three equivalence classes for each of the int parameters with a
range of 0–255, as follows:

■ One valid equivalence class (a set of integers 0 to 255)

■ Two invalid equivalence classes (those less than 0, and those greater than 255)

Each of the three equivalence class types in TABLE 2 would produce one
representative test per class type. This comes to three tests (test cases) for each of
the three int parameters, or nine tests total.

Testing just one representative element of a set does not provide as much testing
completeness as testing around the edges of the set. This degree of completeness is
provided by Boundary Value Analysis as a basis for creating further test cases,
which is discussed next.

TABLE 2 Equivalence classes for each parameter of Color (int, int, int)

Class Type Description Equivalence Class Range

Invalid Minimum int size to -1 -231 to -1

Valid Specified 0 to 255

Invalid 256 to maximum int size 256 to 231-1

Chapter 5 Writing Java API Compatibility Tests 31

Boundary Value Analysis
Testing just one random element from a set of parameters derived from
equivalence classes does not provide sufficient test case coverage. After developing
the equivalence class partitioning for the objects to be tested, test developers
should also perform boundary value analysis by examining the boundaries1 of the
objects within the equivalence classes.

When using boundary value analysis, additional test cases are developed based on
the boundaries defined by the equivalence classes. That is to say, testing is done for
parameters just above, and just below the perimeters of set values, as well as inside
the parameter value bounds.

As with equivalence class partitioning, there are also five orientations in which
boundary-values may be considered for objects:

■ Boundaries on the states which an object may assume or be forced into

■ Boundaries on the characteristics of any input conditions for methods

■ Boundaries on the characteristics of any output conditions for methods

■ Boundaries on the characteristics of any pre-existing external conditions

■ Boundaries on the characteristics of any external conditions which exist
immediately after the occurrence of an event in the life of an object

Note – This type of testing also helps to uncover many common errors such as the
erroneous use of a relation operator. For example, when a less than operator is used
but a less than or equal to operator is meant.

Boundary Value Analysis Example:
Color (int, int, int)

Continuing with testing the range of 0-255, we would expand the results of
equivalence class partitioning shown previously in TABLE 2 and introduce the test
values of -1, 0, 255, 256 as shown in the right column of TABLE 3.

1. ibid. pp. 50-55.

TABLE 3 Test values using boundary value analysis

Class Type Description Equivalence Class Range Test Values

Invalid Minimum int size to -1 -231 to -1 -1

Valid Specified 0 to 255 0, 255

Invalid 256 to maximum int
size

256 to 231-1 256

32 Java™ Technology Test Suite Development Guide 1.2 • November 2003

However, these values alone will still not exercise thorough combinations of input
conditions. It is also important to test invalid parameters individually. For example,
it is insufficient to test the -1 test value with Color (-1, -1, -1) to cover all
three invalid parameters at once. It is more complete and accurate to test the
following three parameter combinations individually:

■ Color (-1, 0, 0)
■ Color (0, -1, 0)
■ Color (0, 0, -1)

As a result of identifying the test cases in TABLE 3, we have four test case values
(tests) for each parameter tested individually (no combinatorials).

We stated that testing Color (-1, -1, -1) was not alone a sufficient test of
invalid parameters. It is nonetheless a useful test to add to the current list along
with Color (256, 256, 256). Testing often requires using artful intuition as
well as scientific principle.

Not counting the duplicates for Color (0, 0, 0), there is now a total of twelve
resulting test cases for Color (int, int, int) as shown in TABLE 4:

Writing the Test Code
This section contains actual examples of TCK tests for several methods from the
J2SE API. It describes step-by-step procedures to write them. It also discusses
common mistakes that a test developer might make when writing TCK tests.

Note – The examples from this section are simplified for the purpose of clarity. All
uses of JavaTest API library classes are removed to make the code independent of
any particular test harness. Incorporating the test code into a test harness is
described in Chapter 6, “Writing Tests for Execution by a Test Harness.”

TABLE 4 Parameters for the color Method

Color Parameters

Color (-1, 0,0)
Color (0,0,0)
Color (255, 0, 0)
Color (256, 0, 0)

Color (0, -1, 0)
Color (0, 0, 0)
duplicate
Color (0, 255, 0)
Color (0, 256, 0)

Color (0, 0, -1)
Color (0, 0, 0)
duplicate
Color (0, 0, 255)
Color (0, 0, 256)

Color (-1, -1, -1)

Color (256, 256, 256)

Chapter 5 Writing Java API Compatibility Tests 33

Example 1: TCK Tests for
Integer.toString(int, int)

The following is the API specification being tested:

public static String toString(int i, int radix)

Creates a string representation of the first argument in the radix specified by the
second argument.

If the radix is smaller than Character.MIN_RADIX or larger than
Character.MAX_RADIX, then the radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCII
minus character '-' ('\u002d').

If the first argument is not negative, no sign character appears in the result.

Parameters:

i - an integer.

radix - the radix.

Returns:

a string representation of the argument in the specified radix.

See Also:

Character.MAX_RADIX, Character.MIN_RADIX

Based on this specification, you can identify these assertions:

Now we use equivalence class partitioning and boundary value analysis
techniques to write the actual tests.

Assertion Meaning

A1 Creates a string representation of the first argument in the radix
specified by the second argument.

A2 If the radix is smaller than Character.MIN_RADIX or larger than
Character.MAX_RADIX, then the radix 10 is used instead.

A3 If the first argument is negative, the first element of the result is the
ASCII minus character '-' ('\u002d').

A4 If the first argument is not negative, no sign character appears in
the result.

34 Java™ Technology Test Suite Development Guide 1.2 • November 2003

The method under test is static, so there is no object state that may affect the return
result. Because of this, only input data is used to identify the equivalence classes.
For the parameter i, this is:

EC1-1: i < 0

EC1-2: i >=0

(See Assertions A3, A4).

For the parameter radix, this is:

EC2-1: radix < Character.MIN_RADIX

EC2-2: Character.MIN_RADIX <= radix <= Character.MAX_RADIX

EC2-3: radix > Character.MAX_RADIX

(See Assertion A2).

The appropriate boundary values for i are:

Integer.MIN_VALUE, -1, 0, 1, Integer.MAX_VALUE.

The appropriate boundary values for radix are:

Integer.MIN_VALUE, Character.MIN_RADIX - 1, Character.MIN_RADIX,

Character.MAX_RADIX, Character.MAX_RADIX + 1, Integer.MAX_VALUE.

Now we add a non-boundary member of each equivalence class to complete a list
of input data to perform the testing:

Since the number of elements is rather small, it is possible to use full iteration on
both parameters. Otherwise we would have to select variants manually to prevent
combinatoric explosion.

Class Member

i: Integer.MIN_VALUE, -1255, -1, 0, 1, 34, Integer.MAX_VALUE.

radix Integer.MIN_VALUE, -7, Character.MIN_RADIX - 1,
Character.MIN_RADIX, 20, Character.MAX_RADIX,
Character.MAX_RADIX + 1, 179, Integer.MAX_VALUE.

Chapter 5 Writing Java API Compatibility Tests 35

Next, it is possible to calculate the resulting value for each pair i/radix by hand
and hard code it into the test source. However, the test developer in this case has
chosen to write a method based on the above four assertions and use it to
dynamically generate the expected result.

Note – An important caveat with this approach is that the actual code for this
method must be written independently, in particular, without looking at the
reference implementation sources.

This method might look like this:

CODE EXAMPLE 1 Method That Calculates the Resulting Value for each Pair i/radix

private static String myToString(int i, int radix) {
char[] digits = {
'0' , '1' , '2' , '3' , '4' , '5' ,
'6' , '7' , '8' , '9' , 'a' , 'b' ,
'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
'o' , 'p' , 'q' , 'r' , 's' , 't' ,
'u' , 'v' , 'w' , 'x' , 'y' , 'z'};

// Assertion A2
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {

radix = 10;
}

char buf[] = new char[65];
boolean negative = (i < 0);
int charPos = 64;

if (!negative) {
i = -i;

}

// Main loop for assertion A1
while (i <= -radix) {

buf[charPos--] = digits[(int)(-(i % radix))];
i = i / radix;

}
buf[charPos] = digits[(int)(-i)];

// Assertions A3, A4
if (negative) {

buf[--charPos] = '-';
}

return new String(buf, charPos, (65 - charPos));
}

36 Java™ Technology Test Suite Development Guide 1.2 • November 2003

// We also assume there is a logging method to log messages
// in order to make it easier to debug test failures.

public void log(String s) {
.....
}

Now we can write the test method encompassing all test cases for
Integer.toString(int, int), as follows:

CODE EXAMPLE 2 Test Method testToString()

public boolean testToString() {

int[] iValues = { Integer.MIN_VALUE, -1255, -1, 0, 1, 34,
Integer.MAX_VALUE};

int[] radixValues = { Integer.MIN_VALUE, -7,
Character.MIN_RADIX - 1, Character.MIN_RADIX,
20, Character.MAX_RADIX, Character.MAX_RADIX + 1,
179, Integer.MAX_VALUE};

boolean pass = true;
String expected, result;

for (int i = 0; i < iValues.length; ++i) {
for (int j = 0; j < radixValues.length; ++j) {

expected = myToString(iValues[i], radixValues[j]);
result = Integer.toString(iValues[i], radixValues[j]);

if (! result.equals(expected)) {
pass = false;
log("Failed for i=" + iValues[i] + ", radix=" +
radixValues[j] + "; expected: " + expected +
"returned: " + result);

}
}

}

return pass;
}

Chapter 5 Writing Java API Compatibility Tests 37

Example 2: TCK Tests for
Class.getModifiers()

This is the API specification being tested.

Returns the Java language modifiers for this class or interface, encoded
in an integer. The modifiers consist of the Java Virtual Machine's
constants for public, protected, private, final, static, abstract and
interface; they should be decoded using the methods of class Modifier.

If the underlying class is an array class, then its public, private and
protected modifiers are the same as those of its component type. If this
Class represents a primitive type or void, its public modifier is always
true, and its protected and private modifiers are always false. If this
object represents an array class, a primitive type or void, then its final
modifier is always true and its interface modifier is always false. The
values of its other modifiers are not determined by this specification.

The modifier encodings are defined in The Java Virtual Machine
Specification, table 4.1.

Notice that in this example, there is a description for a most common case (classes
and interfaces), and then separate clarifying assertions for specific cases like arrays
or primitive types.

Based on this specification, the following assertions can be identified:

Now we use equivalence class partitioning and boundary value analysis
techniques to write the actual tests.

The method under test has no parameters, so we can identify equivalence classes
based only on the type of the object under test and on the resulting output.

Assertion Meaning

A1 Returns the Java language modifiers for this class or interface,
encoded in an integer.

A2 If the underlying class is an array class, then its public, private and
protected modifiers are the same as those of its component type.

A3 If this Class represents a primitive type or void, its public modifier is
always true, and its protected and private modifiers are always false.

A4 If this object represents an array class, a primitive type or void, then
its final modifier is always true and its interface modifier is always
false.

38 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Here are the equivalence classes based on the object type:

Here are the equivalence classes based on the returned result:

Boundary value analysis does not add much in this case. However, we may
separate out void as a special case for the primitive type and one-dimensional
array as a lower limit for multi-dimensional arrays.

Equivalence Class Object Type

EC1-1. Class or interface.

EC1-2. Array.

EC1-3. Primitive type or void.

Equivalence Class Returned Result

EC2-1. Object, which is public.

EC2-2. Object, which is protected.

EC2-3. Object, which is package visible (neither of the above).

EC2-4. Object, which is private.

EC2-5. Object, which is static.

EC2-6. Object, which is non-static.

EC2-7. Object, which is final.

EC2-8. Object, which is non-final.

EC2-9. Object, which is abstract.

EC2-10. Object, which is non-abstract.

EC2-11. Object, which is a class.

EC2-12. Object, which is an interface.

Chapter 5 Writing Java API Compatibility Tests 39

Now we will build a set of objects that covers all of the above assertions at least
once. Here is one of the possible results:

The following are objects added based on A2:

The following are objects added based on A3:

Now we can write 11 test cases for each of the above objects. Note that in some
cases, such as O1, we may use J2SE APIs, and in others we have to write our own
sample classes.

The resulting test code for GetModifiersTest.java is shown in
CODE EXAMPLE 3

Object Definition

O1. Public non-static final non-abstract class. (EC1-1, EC2-1, EC2-6, EC2-
7, EC2-10, EC2-11)

O2. Protected static non-final class which must be inner. (EC2-2, EC2-5,
EC2-8)

O3. Private class which must be inner. (EC2-4)

O4. Package-visible abstract class. (EC2-3, EC2-9)

O5. Interface (EC2-12).

Object Definition

O6. One-dimensional array of O1.

O7. Two-dimensional array of O2.

O8. Two-dimensional array of O3.

O9. Five-dimensional array of O4.

Object Definition

O10. Primitive type.

O11. Void.

40 Java™ Technology Test Suite Development Guide 1.2 • November 2003

CODE EXAMPLE 3 GetModifiersTest.java

import java.lang.reflect.Modifier;

public class GetModifiersTest {

 public static void main(String[] args) throws Throwable {
 GetModifiersTest t = new GetModifiersTest();
 System.out.println("TestCase01: " + t.testCase01());
 System.out.println("TestCase02: " + t.testCase02());
 System.out.println("TestCase03: " + t.testCase03());
 System.out.println("TestCase04: " + t.testCase04());
 System.out.println("TestCase05: " + t.testCase05());
 System.out.println("TestCase06: " + t.testCase06());
 System.out.println("TestCase07: " + t.testCase07());
 System.out.println("TestCase08: " + t.testCase08());
 System.out.println("TestCase09: " + t.testCase09());
 System.out.println("TestCase10: " + t.testCase10());
 System.out.println("TestCase11: " + t.testCase11());
 }

 private boolean testCase01() {
 int m = String.class.getModifiers();
 return
 Modifier.isPublic(m) && // EC2-1
 ! Modifier.isStatic(m) && // EC2-6
 Modifier.isFinal(m) && // EC2-7
 ! Modifier.isAbstract(m) && // EC2-10
 ! Modifier.isInterface(m); // EC2-11
 }

 private boolean testCase02() {
 int m = Object2.class.getModifiers();
 return
 Modifier.isProtected(m) && // EC2-2
 Modifier.isStatic(m) && // EC2-5
 ! Modifier.isFinal(m); // EC2-8
 }

 private boolean testCase03() {
 int m = Object3.class.getModifiers();
 return
 Modifier.isPrivate(m); // EC2-4
 }

 private boolean testCase04() {
 int m = Object4.class.getModifiers();
 return
 ! Modifier.isPublic(m) && // EC2-3
 ! Modifier.isProtected(m) && // EC2-3
 ! Modifier.isPrivate(m) && // EC2-3
 Modifier.isAbstract(m); // EC2-9

Chapter 5 Writing Java API Compatibility Tests 41

 }

 private boolean testCase05() {
 int m = Runnable.class.getModifiers();
 return
 Modifier.isInterface(m); // EC2-12
 }

 private boolean testCase06() {
 int m = String[].class.getModifiers();
 return
 Modifier.isPublic(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m); // A4
 }

private boolean testCase07() {
 int m = Object2[][].class.getModifiers();
 return
 Modifier.isProtected(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m); // A4
 }

 private boolean testCase08() {
 int m = Object3[][].class.getModifiers();
 return
 Modifier.isPrivate(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m); // A4
 }

 private boolean testCase09() {
 int m = Object4[][][][][].class.getModifiers();
 return
 ! Modifier.isPublic(m) &&
 ! Modifier.isProtected(m) &&
 ! Modifier.isPrivate(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m); // A4
 }

 private boolean testCase10() {
 int m = Integer.TYPE.getModifiers();
 return
 Modifier.isPublic(m) &&
 ! Modifier.isProtected(m) &&
 ! Modifier.isPrivate(m) && // A3
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m); // A4
 }

42 Java™ Technology Test Suite Development Guide 1.2 • November 2003

 private boolean testCase11() {
 int m = Void.TYPE.getModifiers();
 return
 Modifier.isPublic(m) &&
 ! Modifier.isProtected(m) &&
 ! Modifier.isPrivate(m) && // A3
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m); // A4
 }

 protected static class Object2 extends Exception {
 }

 private class Object3 {
 int i;
 }

}

abstract class Object4 {
}

Common Errors in Writing TCK Tests.
The following sections show some common errors to avoid when writing TCK
tests.

Common Error: Use of Platform-Specific Data
This example examines the pitfalls of using parameter values that are specific to a
particular file system or several file systems. It reads from a file named “a” in a
directory whose name is calculated.

The following code will work only within file systems similar to a Microsoft
Windows operating environment:

...
String fname = getDirName() + "\\" + "a";
FileInputStream fis = new FileInputStream(fname);
...

Chapter 5 Writing Java API Compatibility Tests 43

This code is more cross-platform compatible:

...
String fname = getDirName() + File.separatorChar + "a";
FileInputStream fis = new FileInputStream(fname);
...

However, even the previous code may not work on all file systems. The following
code is the best option because it uses a File constructor to specify the parent
directory:

...
File file = new File (getDirName(), "a");
FileInputStream fis = new FileInputStream(file);
...

Common Error: Modification of the System State
The following test case code changes the system default time zone in order to
verify the functionality of the TimeZone.setDefault method. Permanent change
of the default time zone may affect the execution of other tests:

...

// change the default time zone
 TimeZone zone = TimeZone.getTimeZone("GMT");
 TimeZone.setDefault(zone);

// verify setting
 TimeZone tz = TimeZone.getDefault();
 if (!tz.equals(zone)) {

 // test fails
 ...
 }

...

44 Java™ Technology Test Suite Development Guide 1.2 • November 2003

The correct way to write the above code is to restore the original time zone setting:

...

 TimeZone defaultTimeZone = TimeZone.getDefault();

 // change the default time zone
 TimeZone zone = TimeZone.getTimeZone("GMT");
 TimeZone.setDefault(zone);

 TimeZone tz = TimeZone.getDefault();

 // restore the original default time zone
 TimeZone.setDefault(defaultTimeZone);

 // verify setting
 if (!tz.equals(zone)) {
 // test fails
 ...
 }

...

Common Error: Stress Tests
TCK tests should typically avoid stress-testing of the API. Stress tests verify
correctness of API functionality by processing a large amount of data or using most
of the available shared resource. Such tests may not work correctly on all
implementations, especially if resource availability on a particular implementation
is limited.

It is important to differentiate stress-testing from that of boundary-value testing.
Boundary value tests verify the functionality on the border of the specification,
while stress tests try to push the implementation close to unspecified limits.

Examples of typical stress tests to avoid include the following:

■ Opening an unreasonable amount of AWT windows
■ Opening an unreasonable amount of files
■ Making an unreasonable amount of socket connections
■ Launching an unreasonable number of threads.
■ Allocating an unreasonable amount of memory
■ Using an unreasonable amount of processor time, such as by calling the method

under test 10,000 times in a loop.

Chapter 5 Writing Java API Compatibility Tests 45

Note – It is not always easy to tell when the amount of a resource allocation
becomes unreasonable. The rule of thumb is not to use more of a resource than is
necessary for a test. A good test should not use more than just a couple of objects,
windows, threads, loop cycles, or bytes of allocated memory, unless it is explicitly
required or allowed by the API specification.

Common Error: Hard-Coded System-Specific
Values
It is inappropriate for a test to contain data which is specific to a particular host or
system. For example, the following piece of code will not work on any system:

...
 // open URL connection

 URL url = new URL("http://java.sun.com/index.html");
HttpURLConnection conn = (HttpURLConnection)url.openConnection();

...

The correct way to write the test is to make the hard-coded value configurable by
the user:

...
 String http_url = ... // Get the URL string
 ...

 // open URL connection

 URL url = new URL(http_url);
HttpURLConnection conn = (HttpURLConnection)url.openConnection();

...

Common Error: Thread Synchronization
TCK tests should be written very carefully if they involve multi-threaded tests. For
example, the Thread.sleep() method should never be used for thread
synchronization, but rather, the wait/notify method pair should be used instead.

See this reference book for more information on multi-threaded design:

Douglas Lea; Concurrent Programming in Java, Second Edition: Design Principles
and Patterns; Addison-Wesley; ISBN: 0201310090

46 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Special Class and Method Testing Issues
The following objects introduce some special consideration when developing API
tests:

■ Exception classes

■ Abstract classes

■ Interfaces

■ Inherited methods

■ API Signatures

Testing Exception Classes
Java APIs make heavy use of the throwable exception handling system with many
exception and error classes derived from the java.lang.Throwable class.

Testing requirements for new exception classes can be separated into two general
types which are summarized like this:

See the sampleTCK tests for GetQuoteException in the Java CTT at:

CTT_HOME/examples/sampleTCK/tck/tests/api/com_sun/tdk/
sampleapi/GetQuoteException/index.html

TABLE 5 Types of Testing Requirements

Type of Exception Class Testing Required

Adds features to the base
class, such as
java.sql.SQLException

Full API testing is required in accordance with
guidelines

Only adds new exception or
error names to the API, such
as java.lang.Exception

Testing must only verify correct constructor behavior
and inheritance relationships

Chapter 5 Writing Java API Compatibility Tests 47

Testing Abstract Classes
All existing abstract classes defined by an API can satisfy one or more of the
conditions below. For each condition that is true for a particular abstract class, the
testing related to this condition should be performed.

Testing Using a Stub Class

If an abstract class has some non-abstract method, then a testing technique that
uses a stub class is recommended regardless of the type of abstract class. The TCK
should provide its own implementation of this abstract class in the form of the stub
class implementation, and it is acceptable for this stub class to have little or no
functionality. The behavior of all of the related non-abstract methods can then be
tested using the stub class.

See sampleTCK tests for StockSymbol in the Java CTT at:

CTT_HOME/examples/sampleTCK/tck/tests/api/com_sun/tdk/
sampleapi/StockSymbol/index.html

TABLE 6 Abstract Class Conditions

Condition Testing Required

There are public derived concrete
implementations (non-abstract classes)
available in the public API specification,
such as java.io.FilterInputStream
that extends java.io.InputStream.

All of the public concrete derived classes
must be tested.

There are private implementations that are
accessible through the public API, such as
java.text.NumberFormat.getInstanc
e() returning the
java.text.NumberFormat
implementation.

All of the private concrete derived classes
must be tested (subject to equivalence class
partitioning).

There are non-abstract methods in this
abstract class, such as
java.util.AbstractList non-abstract
methods.

Use a stub class. See “Testing Using a Stub
Class” on page 47.

48 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Testing Interfaces
All existing interfaces defined by an API can satisfy one or more of the conditions
below. For each condition that is true for a particular interface, the testing related
to this condition should be performed.

If the interface in question is designated as something to be implemented by user
applications (for example, java.util.EventListener), testing this interface is not
required. Note that a TCK test developer may still need to provide
implementations of such interfaces to test other APIs that require those interfaces
as input parameters.

See sampleTCK tests for QuoteAgent in the Java CTT at:

CTT_HOME/examples/sampleTCK/tck/tests/api/com_sun/tdk/
sampleapi/QuoteAgent/index.html

Testing Inherited Methods
The requirements for testing inherited methods will depend on whether the
methods override the base class methods, and if so, how they are overridden, as
follows:

TABLE 7 Interface Conditions

Condition Testing Required

There are public implementations available
in the public API specification, such as
java.util.StreamTokenizer that
implements java.util.Enumeration.

All of the public implementations must be
tested.

There are private implementations that are
accessible through the public API, such as
returning the java.util.ListIterator
implementation.

All of the private implementations must be
tested (subject to equivalence class
partitioning).

Chapter 5 Writing Java API Compatibility Tests 49

See sampleTCK tests for Quote.toString() in the Java CTT at:

CTT_HOME/examples/sampleTCK/tck/tests/api/com_sun/tdk/
sampleapi/Quote/index.html#toString()

Testing API Signatures
In general, writing test cases that test API signatures involves checking that an
implementation provides all of the specified API in a compatible way. The test
cases are meant to guarantee that if an application links without any errors with
one compatible implementation of the API, it will not have any linkage problems
with any other compatible implementation of the API. This is commonly referred
to as signature testing.

To provide such compatibility, all implementations should be two-way binary
compatible as specified in Chapter 13 of The Java™ Language Specification. This is
the essence of what should be checked by signature testing. In particular, signature
testing checks all public and protected classes and members, and does not take into
account classes and members with private and package access rights.

Note that many API specifications do not allow for an implementation to subset or
superset the specified API. In such cases, testing API signatures requires strict
comparison of the implemented API with the requirements of the specification. All
the classes and members that are required by the API under test must be provided,
and no new publicly available classes and members may be supported.

In cases when an API specification permits variation of the implemented API, the
API signature testing should check the following:

■ The availability and signature compatibility of required classes/members

■ The signature compatibility of optional classes/members when they are
supported by the implementation under test

TABLE 8 Requirements for Testing Inherited Methods

Type of Inherited Method Testing Required

Class being tested overrides
methods from its base class

Overridden methods must be re-tested in this class
Note: the tests generated for the base class version of
the method being tested may not be complete enough
for the overriding version of the method

Methods that are not
overridden in the class being
tested

These possibly need to be re-tested. If no need to test is
verified by a thorough and documented risk
assessment, the test development team may forego re-
testing inherited methods that have not been
overridden.

50 Java™ Technology Test Suite Development Guide 1.2 • November 2003

The Java CTT distribution provides the Signature Test Tool to assist in developing a
signature test for inclusion in a finished TCK. See its user’s guide included in the
Java CTT distribution.

Test Writing Exercises
As optional exercises you may now write test cases for the following API method
specifications. When you are finished with the exercises, put the work aside for
continuation, because after completing Chapter 6, “Writing Tests for Execution by a
Test Harness” you can adapt your test case code for integration with the JavaTest
harness.

Exercise 1: java.lang.Integer
public static String toHexString(int i)

Creates a string representation of the integer argument as an unsigned integer in
base 16.

The unsigned integer value is the argument plus 2^32 if the argument is negative;
otherwise, it is equal to the argument. This value is converted to a string of ASCII
digits in hexadecimal (base 16) with no extra leading 0s. If the unsigned magnitude
is zero, it is represented by a single zero character '0' ('\u0030'); otherwise, the first
character of the representation of the unsigned magnitude will not be the zero
character.

The following characters are used as hexadecimal digits:

0123456789abcdef

Exercise 2: java.lang.Class
public Class getSuperclass()

Returns the Class representing the superclass of the entity (class, interface,
primitive type or void) represented by this Class. If this Class represents either the
Object class, an interface, a primitive type, or void, then null is returned. If this
object represents an array class then the Class object representing the Object class is
returned.

51

CHAPTER 6

Writing Tests for Execution by a
Test Harness

The previous chapter described how to write Java API compatibility test code
without the use of any test harness library classes. This made the examples
independent of any particular test harness. In order to incorporate the test code
examples previously described into an actual TCK, it is necessary to take the test
harness into consideration. The test harness is defined as a collection of
applications and tools that are used for test execution and test suite management.

The JCP program does not require the use of any specific test harness in a TCK
being developed by an expert group. At Sun, TCK tests are executed using the
JavaTest harness tools, with each TCK version running under a specified JavaTest
harness version.

This chapter incorporates the use of the JavaTest harness library classes into the
previous test code examples. This shows one way of writing tests to be executed by
a test harness.

JavaTest Harness
The JavaTest harness is a powerful set of tools for executing tests on a variety of
platforms. It can run many types of tests on a variety of Java technology
implementations. You can browse results on-line within the JavaTest harness itself,
or off-line in the HTML reports that the JavaTest harness generates.

To run the JavaTest harness, you specify what tests to run, how to run them, and
where to put the results. The JavaTest harness graphical user interface (GUI) aids
you in setting up a test run, monitoring the execution of the tests, and browsing the
results.

Some TCKs include a configuration wizard/editor to assist users in configuring the
TCK to the particular implementation under test. The JavaTest harness 3.0 provides
a configuration wizard/editor engine and API.

52 Java™ Technology Test Suite Development Guide 1.2 • November 2003

In the absence of a configuration wizard, some TCKs include sample configuration
files such as the JavaTest harness parameter files (*.jtp) or environment files (*.jte).
These are plain text files that are manually edited by the TCK user. Experience has
shown that sample or template configuration files are more difficult to support and
more prone to user error than using configuration wizards.

The compatibility tests that make up the TCK compatibility test suite are
precompiled and indexed within the TCK test directory structure. When a test run
is started, the JavaTest harness scans through the set of tests that are located under
the directories selected in the initialFiles parameter. While scanning, the
JavaTest harness selects the appropriate tests according to certain rules and queues
them up for execution. This is described further in “How Tests Are Selected for a
Test Run” on page 53.

JavaTest Harness Agent
A JavaTest harness agent is a small Java application that is used in conjunction
with the JavaTest harness to run tests on a Java technology implementation on
which it is not possible or desirable to run the main JavaTest harness application.
The agent runs on a target device where the Java technology implementation is
running. When using the agent as part of a TCK to test an implementation, the
expectation is that the implementation of the technology is running on a target
device which is connected in some manner to a PC or a workstation. The PC or
workstation hosts the JavaTest harness. This is illustrated in FIGURE 2.

FIGURE 2 JavaTest harness with the agent hosted on a target device

The agent’s responsibility on the target device is to run the tests selected by the
JavaTest harness. It returns the results of these tests to the JavaTest harness by way
of the particular implementation-specific communications route. The agent
communications protocol has been ported to support the TCP/IP and RS-232 serial
line protocols. Other stream oriented connection types are easily supported by the
JavaTest Agent protocol.

JavaTest
JavaTest

Agent

Tests

Java Runtime EnvironmentJava Runtime Environment

Agent Hosted on
Target Device

JavaTest Harness Hosted
on PC/Workstation

Harness

Chapter 6 Writing Tests for Execution by a Test Harness 53

Under the Harness/Agent arrangement shown in FIGURE 2 on page 52, the
JavaTest harness application running on the PC or workstation performs the
following functions:

1. Collects tests that are to be run.

2. Issues commands to an agent to run particular tests within the technology being
tested.

3. Receives the test results from the agent and writes them to the various report
files.

Note – The type of agent application(s) used by a particular TCK are determined
by the TCK architect according to the characteristics of the Java technology being
tested.

How Tests Are Executed by the Harness
This section describes how TCK tests are selected for a test run when using the
JavaTest harness, and how they are then executed and reported on as test results. It
is included only as an example. TCKs might vary from these basic test selection
principles according to the functionality of the particular implementation.

How Tests Are Selected for a Test Run
Immediately prior to the start of a test run, the JavaTest harness selects tests for the
run based on the following test selection criteria:

Initial files The JavaTest harness finds tests listed in the “initial files” field
of the JavaTest Harness Parameter Editor. You can specify sub-
branches of the tree in the “initial files” field as a way of
limiting which tests are executed during a test run. The
JavaTest harness walks the tree starting with the sub-branches
or tests you specify and executes all tests that it finds.

Exclude list Tests listed in the appropriate exclude list are “deselected”
prior to the start of a test run.

Prior Status The set of tests may be optionally restricted according to the
outcome of the test on a previous run. The outcome is read
from the result file in the work directory that would be
written if the test were to be run again.

Keywords A test can be selected based on keywords specified in the
keywords field in the test description.

54 Java™ Technology Test Suite Development Guide 1.2 • November 2003

selectIf field The selectIf field contains an expression composed of
elements from the test environment along with the standard
operators:

+, -, *, /, <, >, <=, >=, &, |, !, !=, ==

Example:

integerValue>=4 & display==”my_computer:0”

These expressions are evaluated prior to the start of the test
run. If the expression evaluates to true, then the test is selected
as part of the test run. If the expression evaluates to false, or if
any of the elements are not defined in the test environment,
the test is not selected.

How Tests Are Executed
This section illustrates the TCK test execution model by describing how run-time
tests are executed in the Java Compatibility Kit. Run-time tests are all tests that
contain the runtime keyword in the test description.

Test Execution Steps Managed by the JavaTest Harness:

The following test execution steps are also illustrated in FIGURE 3 on page 56.

1. If the applicable test description data that is passed to the JavaTest harness
contains remote fields, the test is recognized as a distributed test, in which case:

a. A message switch is started to enable communication between the
components running remotely. All communication between these distributed
components goes through the host running the JavaTest harness.

b. Each of the remote entries is activated

2. The main class is executed (both distributed and non-distributed tests). If
execution results in an error, the test is in error. An error indicates that the test
code was run incorrectly and it returned an unintended result—as opposed to a
failure which could be an intended result (see Step 4 below).

3. If the test is a distributed test, the message switch is closed down, and the
results from the remote components are collected and combined with the result
of the main class. The final status is the “first worst” status: failed is worse than
pass, error is worse than failed.

4. Positive/negative check.

■ If the test description contains the negative keyword the test:

Passes if execution fails (Step 2). There are very few negative run-time tests; a
few are required to test invalid main(...) signatures.

Chapter 6 Writing Tests for Execution by a Test Harness 55

Fails if execution succeeds (Step 2).

■ If the test has a positive keyword (the common case) the result of the test is
the same as the result of the execution (Step 2).

Test Results
Test execution results are reported as one of the following three states:

Pass A test passes when the functionality being tested behaves as
expected. All tests are expected to pass.

Fail A test fails when the functionality being tested does not behave as
expected.

Error A test is considered to be in error when something (usually a
configuration problem) keeps the test from being executed as
expected. Errors often indicate a systemic problem and a single
configuration problem can cause many tests to fail. For example, if
the path to the Java runtime environment is configured incorrectly,
no tests can run and all will be in error.

56 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Τhe following flow chart illustrates the execution model.

FIGURE 3 Run-time test flow diagram

*From test description

Remote

execution?*

Execute test
class

Start remote
classes

Execute
test class

Stop remote
classes

Negative

keyword?*
Did

execution
succeed?

Did
execution
succeed?

FAIL

PASS

FAIL

PASS

yes

no

no

no

yesyes

no yes

Chapter 6 Writing Tests for Execution by a Test Harness 57

Test Components Required by the
JavaTest Harness
Once a test case is written into source code for eventual execution, it must be
described to the test execution system. This is done so that the harness can
correctly run the test. Each test harness used by a TCK has its own execution
requirements reflected in the test source code. In order to illustrate a method of
accomplishing this, this section describes the test components that the JavaTest
harness uses to describe and define the tests for its test execution engine.

When using the JavaTest harness, the source code components included in the test
suite project build work space are as follows:

■ Test description: created as JavaTest harness readable HTML tables or Javadoc
tag comments. They provide the data necessary to run a test.

■ Test source code: executes the test case and returns results to the JavaTest
harness. Includes the test case source code as described in Chapter 5, “Writing
Java API Compatibility Tests” along with the JavaTest API calls, described later.

■ Test case specification: HTML comments documenting what a test does and
what results are expected. These comments are for test documentation purposes
only, and are not used directly by the JavaTest harness for test execution.

■ Other: any data files, new configuration information, or new build information
that is required by a test

The following sections describe how to write test descriptions and use the API test
libraries that are provided by the JavaTest harness.

Writing Test Descriptions for the
JavaTest Harness
The JavaTest harness requires that each test be accompanied by machine readable
descriptive data, essentially in the form of a set of test suite specific name/value
pairs in either HTML or Javadoc tags. In JavaTest harness terminology, this
information is called the test description. The JavaTest harness parses the
information provided in the test description and uses it to correctly process and
run tests. Whether to use HTML or Javadoc tag style for forming test descriptions
is a matter of personal preference. API tests written using the JavaTest API libraries
are compatible with both forms.

58 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Running Tests with the Test Finder
The format and specific name/value pairs for the test descriptions for a particular
TCK are determined by the TCK specific test finder. The JavaTest harness uses the
test finder to locate test descriptions. A test finder is a class used to process the files
of the test suite in order to locate test descriptions and run the associated tests. It
reads files and finds any test descriptions in those files that describe tests to run in
the test suite. The JavaTest harness provides two standard test finders named
HTMLTestFinder and TagTestFinder. They correspond to the two previously
described standard formats for test descriptions: HTML tables, or Javadoc tag
comments, respectively. Test finders will be described in detail in the TCK
Architect’s Guide, which is scheduled for release in the near future.

Test Description Form and Content
Each test description requires a unique identifier in the form of a Uniform Resource
Locator (URL). When using HTML test descriptions, the URL for the test
description is the URL of the HTML document that holds the test description and,
if present in the HTML document, the nearest named reference using the HTML
anchor tag with a name attribute (detailed later in this section). When using test
descriptions in the Javadoc tag style, the URL of the test description is the URL of
the source code file.

Test descriptions supply the following information to the JavaTest harness:

■ What source files belong to the test

■ What class or executable to run

■ Information to determine how the test should be run

The next section further clarifies this by describing how to create HTML tables for
test descriptions.

Creating JavaTest Harness HTML Test
Description Tables
Most browsers compensate for HTML pages that are syntactically incorrect. When
creating HTML test description tables for the JavaTest harness it is important to
remember that the JavaTest harness does not. When the JavaTest harness parses the
HTML test description table, it requires syntactically correct HTML, especially in
the table and anchor tags. It is best to use HTML checking tools to verify that the
HTML developed for a test suite is correct.

While reading the remainder of this section, you might also refer to Appendix B,
“HTML Test Description Code Listings” for detailed examples.

Chapter 6 Writing Tests for Execution by a Test Harness 59

The JavaTest harness uses a feature of the HTML 4.0 specification called the class
attribute. We strongly recommend specifying either the HTML 4.0 transitional or
strict document type directive (DTD) in every HTML file within a test suite.
Respective examples are as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

or

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

Earlier test suites used a special hybrid HTML DTD developed under HTML 3.x.
Most have been updated to use either the transitional or strict document type
specified under HTML 4.0.

The following name/value pairs form the basis of an HTML test description table
for use within a TCK test suite (a browser display of the actual HTML would look
much the same).

The name field descriptions used in the table are as follows:

■ title field describes the test in an easy to read format to be used in reports.
■ source field lists the source code files used by the test.
■ executeClass field lists the fully qualified name of the class to be executed to run

the test.
■ keywords field describes the logical attributes of the test which the JavaTest

harness then uses to determine how to execute the test.

The actual HTML code that creates this test description would look something like
this:
<table border=1 class=TestDescription>
 <tr><th>title</th> <td>String Values Tests</td></tr>
 <tr><th>source</th> <td>StringValues.java</td></tr>
 <tr><th>executeClass</th>

<td>javasoft.sqe.tests.api.java.lang.Integer.StringValues</td></tr>
 <tr><th>keywords</th> <td>runtime positive</td></tr>
</table>

TABLE 9 Example HTML Test Description Pairs

Name Field Value Field

title String Values Tests

source StringValues.java

executeClass javasoft.sqe.tests.api.java.lang.Integer.StringValues

keywords runtime positive

60 Java™ Technology Test Suite Development Guide 1.2 • November 2003

It is necessary to specify the class attribute for test description tables. The
JavaTest harness uses this table attribute to determine which tables must be parsed
as test descriptions and which tables can be ignored. The class attribute is specified
within a table tag as follows (also shown in the previous HTML code sample):

<table ... other table attributes ... class=TestDescription>

As previously noted, each test description must have a unique identifier. The
JavaTest harness uses a URL that is relative to the test suite root directory. There are
two ways to ensure a unique URL for each test description in an HTML file. You
can either:

■ Place each test description into a separate HTML file, or
■ Specify a named reference in the HTML file for each test description in the table

by using a name attribute within an HTML anchor tag.

A named reference using the HTML anchor tag with a name attribute is formed like
this:

Because of the restrictions in the format of the JavaTest harness exclude lists, the
value of any named reference may not have any spaces in it. The JavaTest harness
uses the nearest anchor name tag that appears before the test description table as
the URL for the test description. Descriptive information can be placed between the
named reference and the test description table, as follows:

... Some text appearing between the reference and the test
description table ...

<table border=1 class=TestDescription>

... The rest of the test description table ...

</table>

Chapter 6 Writing Tests for Execution by a Test Harness 61

If the previously described HTML document had the name testDescrs.html
and were located in the tests/api/foo/bar directory of the TCK root directory,
then the URL of the test description would be as follows:

api/foo/bar/testDescrs.html#myName

Test Description Field Examples
TABLE 10 contains the test description fields currently defined in the JCKFinder
and JCKScript classes used by the TCK for the Java 2 Platform, Standard Edition
release. The test suite you are working on may not use all of these test description
fields.

TABLE 10 Example Test Description Fields

Field Description

title A descriptive string that identifies what the test does. The title
appears in reports and in the JavaTest harness status window.

source For runtime tests, the source field contains the names of the files
previously compiled to create the test's class files. Precompiled class
files are included with the TCK, and source files are included for
reference only. Source files are most often .java files.

keywords String tokens that can be associated with a given test. They describe
attributes or characteristics of the test. Keywords are often used to
select/deselect tests from a test run. Keywords are also used to
select how the test will be executed by the JavaTest harness.

executeClass The name of the class that the JavaTest harness loads and runs. This
class may in turn load other classes when the test is run.

executeNative The name of the platform-native program used to execute this test.
This is specific to Java Native Interface (JNI) tests that launch a Java
virtual machine from native C code.

executeArgs An array of strings that are passed to the test classes being executed.
The arguments may be fixed but often involve symbolic values that
are substituted from the test environment (variables defined
elsewhere in the test environment). These arguments form the basis
for the set of arguments that are passed into the tests defined in the
executeClass and executeNative fields.

Note: If any of these values are not defined in the test environment
they are passed to the test as an empty string.

rmicClasses For RMI tests this nominates the set of classes that are passed to the
RMI compiler.

timeout A value specified in seconds used to override the default time-out
used for TCK tests.

62 Java™ Technology Test Suite Development Guide 1.2 • November 2003

JavaTest Validation of Test Descriptions
Each test suite can contain both required and optional test description files for its
tests. You should review the test suite documentation to determine how to use
them when developing tests. The JavaTest harness validates the following test
description features while running:

■ Each test description has a unique URL.

■ Each anchor name tag used as a test description URL has no spaces.

■ Any hypertext links are valid.

■ All required test description fields are present.

■ No obsolete or unknown test description fields are present.

■ No obsolete or unknown keywords are present in the keywords field.

Using Keywords in Test Descriptions
Keywords are tokens associated with specific tests and they have two functions:

■ To convey information to the JavaTest harness about how to execute the tests

■ To serve as a basis for including and excluding tests during test runs

Keyword expressions are normally specified in the keywords field in the JavaTest
Parameter Editor or the JavaTest Configuration Editor. They filter tests during test
runs according to the keyword field of the test description.

context Specifies configuration values required by the test. The JavaTest
harness checks to be sure these values are set before it runs the test
and then passes the values through to the test. If any of these values
are not defined, the JavaTest harness reports an error.

selectIf Specifies a condition that must be satisfied in order for the test to be
executed. The selectIf field makes it possible to execute (or not
execute) tests based on values in the test environment.

This field is constructed using environment values and the full set of
boolean operators (!, <, <=, >, >=, ==, !=, &, |). The following is an
example:

IntegerValue>=4 & display=="my_computer:0"

If the boolean expression evaluates to false the test is not run. If the
expression evaluates to true the test is run. If any of the values are
not defined in the test environment, the JavaTest harness considers
the test to be in error.

TABLE 10 Example Test Description Fields

Field (Continued) Description

Chapter 6 Writing Tests for Execution by a Test Harness 63

The architect or lead of each TCK will specify the set of valid keywords for that
TCK. TABLE 11 lists some generally accepted test description keywords.

Using the JavaTest API Test Libraries
The JavaTest harness provides several levels of API support for test developers.
The most basic level is represented by the Test interface and the Status class, as
follows:

■ Test interface – used as a test entry point, named com.sun.javatest.Test.

■ Status class – used as a convenient means of reporting the outcome of tests,
named com.sun.javatest.Status.

There are also library classes that provide additional services to the tests. These
services may range from generic tasks like grouping several test cases together into
one .java file, to tasks which are specific to a particular category of tests. This
chapter will cover only the most generic of these classes, which is the class
MultiTest, fully named com.sun.javatest.lib.MultiTest.

The Test Interface
This is the interface that all API tests must implement. It has only one run()
method, as follows:

public Status run(String[] args, PrintWriter log, PrintWriter ref)

Using this method, each test is provided with a set of string arguments and two
writers. The exact set of arguments passed to the test is determined by the values
in the test description table. Note that the argument-related fields of the test
description table may contain variables in it. In this case all variables are
substituted with their actual values by the JavaTest harness.

TABLE 11 Generally Accepted Test Description Keywords

Keyword Meaning

interactive Identifies tests that require human interaction.

negative The component under test must terminate with (and detect) an
error. Another way to describe a negative test is that the test must
fail on the component under test in order for it to be deemed to have
passed.

positive The component under test must terminate normally. Another way to
describe a positive test is that the test must succeed on the
component under test in order to have passed.

runtime Identifies tests used with Java run-time products.

64 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Tests may use the two writers to report messages and errors, and also to write to a
reference output. The test returns its outcome through the Status object, which
will now be described.

Using the Status Class
The Status class represents a wrapper for both the integer status code of a test
and a related message. The most often used methods in this wrapper class are two
static methods which offer a convenient means of improving test readability, as
follows:

public static Status passed (String)

public static Status failed (String)

A typical example of using these methods is as follows:

 if (<some test situation is checked>) {
 return Status.passed("OKAY");
 } else {
 log.println(<the details of the test situation>);
 return Status.failed(<test situation name>);
 }

Note the use of the log object, which is an object of type PrintWriter that is
specified as an argument to the run() method.

Using the MultiTest Class.
The main functions of the MultiTest library class are as follows:

■ Facilitate combining several test cases into one .java file.

■ Provide a means of parsing arguments.

■ Allow the definition of certain setup and cleanup routines for a set of tests.

Test developers typically extend MultiTest and define several test cases within
the new class body. Each test case uses a specific test case method of the following
form:

public Status Test_Case_Method_Name()

A basic example of using MultiTest in this fashion is as follows:

Chapter 6 Writing Tests for Execution by a Test Harness 65

public class MyTest extends MultiTest {

 public Status testCase1() { }
 public Status testCase2() { }

 public Status testCaseN() { }
}

This example is actually quite sufficient for a simple series of tests that do not
require any setup and do not use any arguments. MultiTest uses the reflection
API to first select and then call all of the methods implemented in the extended
class.

There are other JavaTest API library classes that extend MultiTest to be used for
a specific testing purpose. An example is class InteractiveTest which is
designed to interactively test AWT functionality. These classes and their
functionality are described in detail in the JavaTest API documentation.

Integrating Test Case Code with the
JavaTest API
This section continues with the test case code examples introduced in Chapter 5,
“Writing Java API Compatibility Tests” and demonstrates how they are integrated
into the test harness using the JavaTest API. Studying these examples will help
clarify the previous description of how to integrate test case code with the JavaTest
API.

Example 1: Integrating the
Integer.toString(int, int) Test with the
JavaTest Harness
The basic test case code for this example was previously described in “Example 1:
TCK Tests for Integer.toString(int, int)” on page 33. This example builds
on that test case code by showing the two files that are required to run the test case
when integrated with the JavaTest harness. These two files are as follows:

■ ToStingTests.java
Contains the test case source code using the JavaTest API calls, this file is shown
in CODE EXAMPLE 4 on page 66.

66 Java™ Technology Test Suite Development Guide 1.2 • November 2003

■ toString.html
Contains the test specifications and the test description table, this file is shown
in FIGURE 4 on page 68.

Note that in this example it is not absolutely necessary to use the MultiTest class
since there is only one test case. However, even with only one basic test case it is
better to use MultiTest instead of just the Test interface because the code is
actually more readable and simpler to write. For this reason, it is recommended to
always use MultiTest for running tests.

CODE EXAMPLE 4 Source code file for ToStingTests.java

/*
 *
 * Copyright (c) 2001 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Tests for public static String toHexString(int i)
 */

package javasoft.sqe.tests.api.java.lang.Integer;

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.lib.MultiTest;

public class ToStringTests extends MultiTest {

 private static String myToString(int i, int radix) {
 char[] digits = {
 '0' , '1' , '2' , '3' , '4' , '5' ,
 '6' , '7' , '8' , '9' , 'a' , 'b' ,
 'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
 'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
 'o' , 'p' , 'q' , 'r' , 's' , 't' ,
 'u' , 'v' , 'w' , 'x' , 'y' , 'z'};

 if (radix < Character.MIN_RADIX || radix >
Character.MAX_RADIX) {

 radix = 10;
 }

char buf[] = new char[65];
 boolean negative = (i < 0);
 int charPos = 64;

 if (!negative) {
 i = -i;

}

Chapter 6 Writing Tests for Execution by a Test Harness 67

 while (i <= -radix) {
 buf[charPos--] = digits[(int)(-(i % radix))];

i = i / radix;
 }
 buf[charPos] = digits[(int)(-i)];

if (negative) {
 buf[--charPos] = '-';
 }

 return new String(buf, charPos, (65 - charPos));
 }

 /* standalone interface */
 public static void main(String argv[]) {
 ToStringTests test = new ToStringTests();
 test.run(argv, System.err, System.out).exit();
 }

 public Status testToString() {
 int[] iValues = { Integer.MIN_VALUE, -1255, -1, 0,
 1, 34, Integer.MAX_VALUE
 };
 int[] radixValues = { Integer.MIN_VALUE, -7,
 Character.MIN_RADIX - 1, Character.MIN_RADIX,
 20, Character.MAX_RADIX, Character.MAX_RADIX + 1,
 179, Integer.MAX_VALUE
 };
 boolean pass = true;
 String expected, result;
 for (int i = 0; i < iValues.length; ++i) {
 for (int j = 0; j < radixValues.length; ++j) {
 expected = myToString(iValues[i], radixValues[j]);

result = Integer.toString(iValues[i], radixValues[j]);
 if (! result.equals(expected)) {
 pass = false;

ref.println("Failed for i=" + iValues[i] + ",
radix=" +

radixValues[j] + "; expected: " + expected +
 "returned: " + result);
 }
 }
 }
 if (pass) {
 return Status.passed("OKAY");
 } else {

return Status.failed("public static String toString(int
i, int radix)");

 }
 }
}

68 Java™ Technology Test Suite Development Guide 1.2 • November 2003

toString.html Test Description File

FIGURE 4 is a reproduction of a browser rendering of the toString.html test
description file. This file contains the test specification documentation on
equivalence class partitioning and boundary value analysis. It also contains the test
description table used by the JavaTest harness to run the ToStingTests.java test
example. The actual code is listed in Appendix B in “toString.html Test
Description Code” on page 101.

FIGURE 4 toString.html test description file

Test Specifications and Descriptions for Integer.toString(int, int)

--

public static String toString(int i, int radix)

--

public static String toString(int i, int radix)

Description

Domain testing of input and output conditions, and external pre-conditions for
class Integer, method public static String toString(int i, int radix).

negative less than
Character.MIN_RADIX
or greater than
Character.Max_RADIX

string representation of
the i in base 16,
starting with the minus
sign

testToString

i Radix Expected Output Test Case ID

negative between
Character.MIN_RADIX
and
Character.MAX_RADIX

string representation of
the i in base 'radix',
starting with the minus
sign

testToString

non-negative less than
Character.MIN_RADIX
or greater than
Character.MAX_RADIX

string representation of
the i in base 16,
starting without a sign

testToString

non-negative between
Character.MIN_RADIX
and
Character.MAX_RADIX

string representation of
the i in base 'radix',
starting without a sign

testToString

Chapter 6 Writing Tests for Execution by a Test Harness 69

Test Descriptions

Test cases included:
testToString.

--

© 2001 Sun Microsystems, Inc. All Rights Reserved.

Integer.MIN_VALUE, -1 Integer.MIN_VALUE,
Character.MIN_RADIX -1,
Character.MAX_RADIX + 1,
Integer.MAX_VALUE

string representation
of the i in base 16,
starting with the
minus sign

testToString

i Radix Expected Output Test Case ID

Integer.MIN_VALUE, -1 Character.MIN_RADIX,
Character.MAX_RADIX

string representation
of the i in base
'radix', starting with
the minus sign

testToString

0, 1,
Integer.MAX_VALUE

Integer.MIN_VALUE,
Character.MIN_RADIX -1,
Character.MAX_RADIX + 1,
Integer.MAX_VALUE

string representation
of the i in base 16,
starting without a
sign

testToString

0, 1,
Integer.MAX_VALUE

Character.MIN_RADIX,
Character.MAX_RADIX

string representation
of the i in base
'radix', starting
without a sign

testToString

Tests for public static String toHexString(int i)

ToStringTests.java

title

javasoft.sqe.tests.api.java.lang.Integer.ToStringTests

runtime positive

source

executeClass

keywords

70 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Example 2: Integrating the
Class.getModifiers() Test with the JavaTest
Harness
The basic test case code for this example was previously described in “Example 2:
TCK Tests for Class.getModifiers()” on page 37. This example builds on that
test case code by showing the two files that are required to run the test case when
integrated with the JavaTest harness. These two files are as follows:

■ GetModifiersTests .java
Contains the test case source code using the JavaTest API calls, shown in
CODE EXAMPLE 5.

■ getModifiers.html
Contains the test specificatio s and the test description table, shown in FIGURE 4
on page 68.

CODE EXAMPLE 5 GetModifiersTests.java

/*
*
* Copyright (c) 2001 Sun Microsystems, Inc. All Rights Reserved.
*/
package javasoft.sqe.tests.api.java.lang.Class;

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.lib.MultiTest;
import java.lang.reflect.Modifier;

public class GetModifiersTests extends MultiTest {

 protected static class Object2 extends Exception {
 }

 private class Object3 {
 int i;
 }

 /* standalone interface */
 public static void main(String argv[]) {
 GetModifiersTests test = new GetModifiersTests();
 test.run(argv, System.err, System.out).exit();
 }

/**
 * Equivalence class partitioning
 * with state and output values orientation
 * for public int getModifiers(),
 *
pre-conditions: this object: a class,

*
output: modifiers with 'interface' bit unset.
 */

Chapter 6 Writing Tests for Execution by a Test Harness 71

 public Status testCase01() {
 int m = String.class.getModifiers();
 return (
 Modifier.isPublic(m) && // EC2-1
 ! Modifier.isStatic(m) && // EC2-6
 Modifier.isFinal(m) && // EC2-7
 ! Modifier.isAbstract(m) && // EC2-10
 ! Modifier.isInterface(m) // EC2-11
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

 /**
 * Equivalence class partitioning
 * with state and output values orientation
 * for public int getModifiers(),
 *
pre-conditions: this object: non-final,

*
output: modifiers with 'final' bit unset.
 */
 public Status testCase02() {
 int m = Object2.class.getModifiers();
 return (
 Modifier.isProtected(m) && // EC2-2
 Modifier.isStatic(m) && // EC2-5
 ! Modifier.isFinal(m) // EC2-8
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

 /**
 * Equivalence class partitioning
 * with state and output values orientation
 * for public int getModifiers(),
 *
pre-conditions: this object: private,

*
output: modifiers with 'private' bit unset.
 */
 public Status testCase03() {
 int m = Object3.class.getModifiers();
 return (
 Modifier.isPrivate(m) // EC2-4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

 /**
 * Equivalence class partitioning
 * with state and output values orientation
 * for public int getModifiers(),
 *
pre-conditions: this object: abstract,

*
output: modifiers with 'abstract' bit set.
 */
 public Status testCase04() {

72 Java™ Technology Test Suite Development Guide 1.2 • November 2003

 int m = Object4.class.getModifiers();
 return (
 ! Modifier.isPublic(m) && // EC2-3
 ! Modifier.isProtected(m) && // EC2-3
 ! Modifier.isPrivate(m) && // EC2-3
 Modifier.isAbstract(m) // EC2-9
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

 /**
 * Equivalence class partitioning
 * with state and output values orientation
 * for public int getModifiers(),
 *
pre-conditions: this object: interface,

*
output: modifiers with 'interface' bit set.
 */
 public Status testCase05() {
 int m = Runnable.class.getModifiers();
 return (
 Modifier.isInterface(m) // EC2-12
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

/**
* Assertion testing
* for public int getModifiers(),
*
pre-conditions: this object: array of public

* classes,
* If this object represents an array class, a primitive type
* or void, then its final modifier is always true and its
* interface modifer is always false..
*/
 public Status testCase06() {
 int m = String[].class.getModifiers();
 return (
 Modifier.isPublic(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m) // A4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

/**
* Assertion testing
* for public int getModifiers(),
*
pre-conditions: this object: array of protected
* classes,
* If this object represents an array class, a primitive type
* or void, then its final modifier is always true and its
* interface modifer is always false..

Chapter 6 Writing Tests for Execution by a Test Harness 73

*/
 public Status testCase07() {
 int m = Object2[][].class.getModifiers();
 return (
 Modifier.isProtected(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m) // A4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

/**
* Assertion testing
* for public int getModifiers(),
*
pre-conditions: this object: array of private
* classes,
* If this object represents an array class, a primitive type
* or void, then its final modifier is always true and its
* interface modifer is always false..
* visible classes,
*/
 public Status testCase08() {
 int m = Object3[][].class.getModifiers();
 return (
 Modifier.isPrivate(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m) // A4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

/**
* Assertion testing
* for public int getModifiers(),
*
pre-conditions: this object: array of package-
* visible classes,
* If this object represents an array class, a primitive type
* or void, then its final modifier is always true and its
* interface modifer is always false..
*/
 public Status testCase09() {
 int m = Object4[][][][][].class.getModifiers();
 return (
 ! Modifier.isPublic(m) &&
 ! Modifier.isProtected(m) &&
 ! Modifier.isPrivate(m) && // A2
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m) // A4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

74 Java™ Technology Test Suite Development Guide 1.2 • November 2003

/**
* Assertion testing
* for public int getModifiers(),
*
pre-conditions: this object: primitive type,
* If this object represents an array class, a primitive type
* or void, then its final modifier is always true and its
* interface modifer is always false.
*/
 public Status testCase10() {
 int m = Integer.TYPE.getModifiers();
 return (
 Modifier.isPublic(m) &&
 ! Modifier.isProtected(m) &&
 ! Modifier.isPrivate(m) && // A3
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m) // A4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }

/**
* Assertion testing
* for public int getModifiers(),
*
pre-conditions: this object: void,
* If this object represents an array class, a primitive type
* or void, then its final modifier is always true and its
* interface modifer is always false..
*/
 public Status testCase11() {
 int m = Void.TYPE.getModifiers();
 return (
 Modifier.isPublic(m) &&
 ! Modifier.isProtected(m) &&
 ! Modifier.isPrivate(m) && // A3
 Modifier.isFinal(m) && // A4
 ! Modifier.isInterface(m) // A4
) ? Status.passed("OKAY"):
 Status.failed("Failed");
 }
}

abstract class Object4 {
}

getModifiers.html Test Description File

FIGURE 5 is a reproduction of a browser rendering of the getModifiers.html
test description file. This file contains the test specification documentation on
equivalence class partitioning and assertion testing, as well as the test description

Chapter 6 Writing Tests for Execution by a Test Harness 75

table used by the JavaTest harness to run the GetModifiersTests.java test
example. The actual code is listed in Appendix B in “getModifiers.html Test
Description Code” on page 104.

FIGURE 5 getModifiers.html test description file

Test Specifications and Descriptions for Class.getModifiers()

--

public int getModifiers()

--

public int getModifiers()

Description

Domain testing of input and output conditions, and external pre-conditions for
class Class, method public int getModifiers().

Equivalence Class Partitioning

this object: public modifiers with 'public' bit set testCase01

Pre-conditions Expected output value Test Case ID

this object: interface modifiers with 'interface' bit set testCase05

this object: non-
static

modifiers with 'static' bit unset testCase01

this object: final modifiers with 'final' bit set testCase01

this object: abstract modifiers with 'abstract' bit set testCase04

this object: package
visible

modifiers with neither of 'public',
'private' or 'protected' bits set

testCase04

this object: non-
abstract

modifiers with 'abstract' bit unset testCase01

this object: a class modifiers with 'interface' bit unset testCase01

this object: protected modifiers with 'protected' bit set testCase02

this object: static modifiers with 'static' bit set testCase02

this object: non-final modifiers with 'final' bit unset testCase02

this object: private modifiers with 'private' bit unset testCase03

76 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Assertion testing

this object: array of
public classes

If the underlying class is an array
class, then its public, private and
protected modifiers are the same as
those of its component type.

testCase06

Pre-conditions Assertion Test Case ID

this object: array of
public classes

If this object represents an array
class, a primitive type or void, then
its final modifier is always true and
its interface modifier is always false.

testCase06

this object: array of
protected classes

If the underlying class is an array
class, then its public, private and
protected modifiers are the same as
those of its component type.

testCase07

this object: array of
protected classes

If this object represents an array
class, a primitive type or void, then
its final modifier is always true and
its interface modifier is always false.

testCase07

this object: array of
private classes

If the underlying class is an array
class, then its public, private and
protected modifiers are the same as
those of its component type.

testCase08

this object: array of
private classes

If this object represents an array
class, a primitive type or void, then
its final modifier is always true and
its interface modifier is always false.

testCase08

this object: array of
package-visible
classes

If the underlying class is an array
class, then its public, private and
protected modifiers are the same as
those of its component type.

testCase09

this object: array of
package-visible
classes

If this object represents an array
class, a primitive type or void, then
its final modifier is always true and
its interface modifier is always false.

testCase09

this object: primitive
type

If this Class represents a primitive
type or void, its public modifier is
always true, and its protected and
private modifiers are always false.

testCase10

Chapter 6 Writing Tests for Execution by a Test Harness 77

Test Descriptions

Test cases included:
testCase01, testCase02, testCase03, testCase04, testCase05, testCase06, testCase07,
testCase08, testCase09, testCase10, testCase11.

--

© 2001 Sun Microsystems, Inc. All Rights Reserved.

Test Writing Exercises
This sections offers a continuation of the previous optional exercises.

To perform the exercises, you should now adapt the tests that you developed as
exercises in “Test Writing Exercises” on page 50 for use with the JavaTest harness.
When you are finished, you can compare your test writing work with Appendix A,
“Test Writing Exercise Answers.”

this object: primitive
type

If this object represents an array
class, a primitive type or void, then
its final modifier is always true and
its interface modifier is always false.

testCase10

this object: void If this Class represents a primitive
type or void, its public modifier is
always true, and its protected and
private modifiers are always false.

testCase11

this object: void If this object represents an array
class, a primitive type or void, then
its final modifier is always true and
its interface modifier is always false.

testCase11

GetModifiers

GetModifiersTests.java

title

javasoft.sqe.tests.api.java.lang.Class.GetModifiersTests

runtime positive

source

executeClass

keywords

78 Java™ Technology Test Suite Development Guide 1.2 • November 2003

79

CHAPTER 7

Test Integration and Quality
Assurance (QA)

This chapter describes the general processes and procedures used at Sun to
integrate compatibility tests into a TCK and perform QA testing of the TCK
product.

Product Testing the TCK Tests
A TCK and its included source code is a software product that is delivered to
customers. Like any other product, it requires product testing to determine if it
meets the project goals. There are three different aspects to product testing a TCK:

1. Testing against the reference implementation (RI)

2. Testing the integration of the TCK

3. Reviewing and inspecting the tests

Note – This chapter focuses on testing the TCK against the RI. In this scenario the
QA team executes the TCK with the RI to test the quality of the TCK product itself.
Testing the RI for compatibility by using the TCK is a separate testing issue.

Testing Against the Reference Implementation
(RI)
Each Java technology release is composed of three interrelated components, each of
which is usually developed by a separate team. These components are the
specification, the reference implementation, and the TCK, as illustrated in
FIGURE 6.

80 Java™ Technology Test Suite Development Guide 1.2 • November 2003

FIGURE 6 Components of a Java technology release

Each TCK is usually developed in parallel with its related RI. The TCK test
development team must work closely with the RI development team in refining the
RI and TCK. The goal is that the RI must pass all tests included in the finished
TCK.

The process is accomplished in an iterative fashion with the RI team working
closely with the compatibility test development team. This iterative process is
illustrated in FIGURE 7 on page 81 within the section of the test development state
flow diagram that is outlined by broken lines.

Specification

Re
fe

re
nc

e
Im

pl
em

en
ta

tio
n

Technology C
om

patibility K
it

Java
Technology
Release

Chapter 7 Test Integration and Quality Assurance (QA) 81

FIGURE 7 TCK/RI refinement within the test development process

Receive
Spec

 Analyze
Assertion
Difference

Analyze
One

Assertion

Design
Test
Case

Exercise
Test
Case

Failure
Analysis

Coverage
Measurement

Communicate
with

RI Team

Communicate
with

Spec Team

Await
Revision

Invalid

Await
Valid RI

RI Invalid

Test
Case Invalid

Compilation
Failed

Compilation
Succeeded

Failed Passed

Target Assertion
Coverage Reached

Testable

Nontestable Statements

Identify
Deletions

Identify
Additions/Modifications

Compile
Assertions

Assertions
Remain for
Testing

RI/TCK
Refinement Cycle

TCK Ready
for Release

82 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Avoiding Overlap When Testing the RI and the
TCK
There is often some form of overlap in product testing the RI and compatibility
testing it with its related TCK. An overlap of this sort means there is duplication of
effort between the product tests for the RI and the TCK compatibility tests. There
should be a strategy in place to avoid this situation.

TCK tests are in a large part focused on assertion-based API tests to verify
compatibility of an implementation to the specification. To avoid a duplication of
effort, the RI QA team should not focus on writing assertion-based API tests.

When developing tests, the RI QA team should focus on feature testing, system
testing, and stress testing. However, the team should still write supplementary API
tests for any testing requirements that are not covered by the TCK tests.

Note that for the RI QA team to work efficiently in this context, it needs sufficient
information about the API tests provided in the TCK. This can be accomplished by
having the RI QA team review the testable assertions or the test descriptions
written by the TCK test development team.

Following these suggestions helps to maximize the productivity of both teams.

Testing the Integration of the TCK
Once compatibility tests have been written, you must integrate them as source code
files into a workspace that is eventually built into a finished TCK product. The use
of dedicated tools greatly facilitates this process.

TCK development groups use their own choice of tools for the purpose of version
control, and for making and building the finished TCK. Some of the in-house issues
to be addressed are as follows:

■ Managing the quality assurance of each incremental build version as the project
progresses

■ Implementing partial builds to test selected parts of the build process for errors
(eliminating the need to perform a complete build after minor changes)

■ Make utilities

■ Source code version control

Chapter 7 Test Integration and Quality Assurance (QA) 83

Integration Testing Issues
There should be documented procedures and tests to verify the correctness of the
compatibility test suite during the integration process. The integration tests attempt
to confirm points such as the following.

■ One or more tests have passed a formal inspection.

■ Source code syntax and formatting is correct, and the source code has been spell
checked.

■ File name constraints are observed for all platforms that the test suite can
possibly be executed on.

■ Tests work correctly in all applicable environments; for example, in single-
process versus multi-process environments.

■ All non-excluded tests run and pass on the reference implementation.

■ The finished TCK package is complete with documentation, tests, classes, and
tools properly in place.

■ If the TCK is distributed as a file archive, such as a .zip file, the archive unpacks
with the files properly in place and functioning correctly.

■ Any other appropriate testing is performed.

When using the JavaTest harness, the following points are also verified by the
integration tests and procedures:

■ All HTML files used within the test suite tree are valid and correctly linked.

■ The JavaTest harness configuration and exclude list files are correctly in place,
which involves a check of the following:

Test environment files used by the TCK (.jte files,)

Configuration files required to run the tests,

Individual exclude list entries or bug tracking items that need attention.

Reviewing and Inspecting the Tests
In addition to integration testing it is also advisable to institute a formal process for
peer review and inspection of the tests. Performing formal compatibility test suite
reviews and inspections at strategic points in the development process provides a
powerful way to accomplish the following goals:

■ Detect defects as early as possible in the compatibility test development cycle.

■ Prevent the migration of defects to later phases.

■ Improve test suite test coverage

■ Produce fewer invalid tests.

84 Java™ Technology Test Suite Development Guide 1.2 • November 2003

■ Improve communication between members of each of the project teams:
specification, RI, and TCK.

■ Provide additional peer insights on the work to the compatibility test
developers.

■ Improve the quality and productivity of the test development process.

■ Reduce the cost and cycle time.

■ Reduce the maintenance effort.

Reviews and Inspections
When to use a review process versus a more formal inspection during a project is
largely a matter of degree.

Review

A review is defined in this context as an informal type of technical evaluation by a
group of people. Someone distributes material and solicits comments. A review
meeting may or may not be held. Typically there is no follow up to verify that all
the issues that are raised get resolved.

Inspection

An inspection is a more structured and formal peer review. Its purpose is to find
and eliminate any existing or eventual defects in the TCK product as it is being
developed.

A moderator leads the entire inspection process, ideally, someone who is
experienced and trained in the techniques being used. During the inspection
process:

■ Checklists and other analytical techniques are used to identify defects.
■ A review meeting is held.
■ Metrics are collected.
■ Results are tracked.

Review vs. Inspection
Experience in the software industry has shown inspections to be the most effective
type of evaluation because it is by definition more in-depth.

There is a need to strike a balance between unnecessary formality, and a structure
that is sufficient to achieve success. During a project, both reviews and inspections
are normally used at some point. An inspection should definitely be used when a
deliverable is considered risky, for example, when it is complex or critical.

85

CHAPTER 8

TCK Maintenance

This chapter describes the issues surrounding TCK test maintenance after the Java
technology has been released. TCK maintenance procedures are developed
according to JCP program guidelines.

The TCK project plan should have an extended maintenance plan to cover the
expected period of use for that TCK. Typically, a TCK is used for a period of at least
two years.

TCK Anomaly Analysis
Sometimes anomalies are discovered in the TCK after its first customer shipment
(FCS) release. In most cases, a TCK user reports a TCK test failure or problem
which is suspected to be caused by a bug in either the TCK, the reference
implementation, or the specification.

Test Appeals Process
The JCP program includes a test appeals process. The appeals process defines the
escalation process in which challenges to compatibility tests are evaluated and
either accepted or rejected.

As part of the documentation released with a TCK within the JCP program, the
Expert Group must identify an appeals process through which challenges to the
TCK can be addressed. This appeals process is managed by the Maintenance Lead
(the designated expert responsible for maintaining the related technology
specification).

For guidelines on establishing an appeals process, see the TCK Project Planning and
Development Guide included in the Java CTT distribution.

86 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Exclude List for TCK Maintenance
TCKs developed by Sun use an exclude list file to omit one or more tests from a
particular test run. The appropriate the JavaTest harness exclude list file for each
TCK specifies those tests that are known to be invalid, and therefore, are not
required to be successful or even to be run using a valid TCK system configuration.
The JavaTest harness exclude list file uses a.jtx extension by convention.

There are three basic reasons a test would be excluded:

■ An error in the specification that was used as the basis of the test has been
discovered.

■ An error in the test has been discovered.
■ An error in the reference implementation has been discovered after its release.

In any of these situations, the test is a candidate for exclusion. When Sun releases a
TCK as the Maintenance Lead, test review and exclusion is assigned primarily to
the test developer.

TCK Patches
Sun’s use of the exclude list is a short term solution for problematic tests until the
release of the next version of the technology with its accompanying TCK. Another
short-term solution is the possibility of issuing a TCK patch. A patch is more
suitable in situations where an anomaly is deemed to affect too many tests to use
exclusion. In this regard, patches typically include fixes for the framework code, or
the configuration files or libraries that affect a large number of tests.

An example of a patch scenario is a situation where certain tests are actually valid
according to the technology specification, but they are later found to assume
certain resource availability which is not explicitly granted by the specification.
This might surface in a technology implementation where the tests have been
found to launch an unreasonable amount of threads in an otherwise compatible
implementation. This would cause problems in small, resource-constrained
implementations. In this case, the sizable amount of alternative tests in question
might be provided by a TCK patch.

Chapter 8 TCK Maintenance 87

Maintenance Releases
Exclude lists and patches may be appropriate for some TCKs, but may not be
adequate for TCKs which have been in active use for several years. In this case, a
maintenance release for the TCK is an alternative to a major version release.

A TCK maintenance release might include items such as the following:

■ TCK bug fixes

■ Specification coverage improvements, such as new tests for uncovered
specification assertions that are not included in the existing TCK

Note that the following types of changes unnecessarily complicate TCK
maintenance and are not recommended:

■ Cosmetic changes in the test code

■ Arbitrary changes to test names

■ Substantial changes in the purpose or the functionality of a test without
changing the test name.

TCK Evolution
A new version of the specification typically requires a new TCK version. The new
TCK version normally does the following:

■ Includes tests for any new specification assertions.
■ Includes corrections to existing tests in cases where specification assertions have

been clarified.
■ Eliminates tests if they are not compatible with the new specification version.

Maintaining Multiple TCK Releases
Releases of multiple interrelated TCKs are a considerable challenge to maintain.
When a change is made or a problem is found in one of the TCK releases, it is
necessary to investigate how the problem affects the other interrelated releases. In
these cases, any fix should be applied to all affected releases. For example, a single
test failure may necessitate numerous exclude list updates.

88 Java™ Technology Test Suite Development Guide 1.2 • November 2003

89

APPENDIX A

Test Writing Exercise Answers

This appendix contains answers to the optional exercises. There are also cross-
references to each of the associated HTML files that are located in Appendix B,
“HTML Test Description Code Listings.”

The answers included in this appendix are:

■ “Exercise Answer: ToHexStringTests.java” on page 90

■ “Exercise Answer: ToHexStringTests.html Test Description” on page 92
(also see “ToHexStringTests.html Test Description Code” on page 108)

■ “Exercise Answer: GetSuperclassTests.java” on page 93

■ “Exercise Answer: getSuperclass.html Test Description” on page 98
(also see “getSuperclass.html Test Description Code” on page 109)

90 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Exercise Answer:
ToHexStringTests.java
CODE EXAMPLE 6 ToHexStringTests.java

/*
 *
 * Copyright (c) 2001 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Tests for public static String toHexString(int i)
 */

package javasoft.sqe.tests.api.java.lang.Integer;

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.lib.MultiTest;

public class ToHexStringTests extends MultiTest {

 public static String myToHexString(int i) {
 char[] digits = {
 '0' , '1' , '2' , '3' , '4' , '5' ,
 '6' , '7' , '8' , '9' , 'a' , 'b' ,
 'c' , 'd' , 'e' , 'f'};

 char[] buf = new char[64];
 int charPos = 64;
 int radix = 16;
 int mask = radix - 1;

 do {
 buf[--charPos] = digits[(int)(i & mask)];
 i >>>= 4;
 } while (i != 0);

 return new String(buf, charPos, (64 - charPos));
 }

 /* standalone interface */
 public static void main(String argv[]) {
 ToHexStringTests test = new ToHexStringTests();
 test.run(argv, System.err, System.out).exit();
 }

 /**
 * Equivalence class partitioning

Appendix A Test Writing Exercise Answers 91

 * with input and output values orientation
 * for public static String toHexString(int i),
 *
i:non-negative

*
output:string representation of the i in base
* 16, starting without a sign.

 */
 public Status Integer0001() {
 boolean failed = false;

int point[] = {Integer.MIN_VALUE, Integer.MIN_VALUE + 1,
 -1025, -1024, -1023, -256, -255, -254,
 -1, 0, 1, 254, 255, 256,
 1023, 1024, 1025,
 Integer.MAX_VALUE - 1, Integer.MAX_VALUE};

 for (int i = -100; i < 100; i++) {
if (!(Integer.toHexString(i).equals(myToHexString(i)))) {

failed = true;
 ref.println("Failed for :" + i + ": " +

myToHexString(i));
 }
 }
 for (int i = 0; i < point.length; i++) {

if (!(Integer.toHexString(point[i]).equals
(myToHexString(point[i])))) {

failed = true;
 ref.println("Failed for :" + point[i]+ ": " +

myToHexString(point[i]));
 }
 }
 if (failed) {
 return Status.failed("public static String

toHexString(int i)");
 } else {
 return Status.passed("OKAY");
 }
 }
}

92 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Exercise Answer:
ToHexStringTests.html Test
Description

Test Specifications and Descriptions for Integer.toHexString(int)

--

public static String toHexString(int i)

--

public static String toHexString(int i)

Description

Domain testing of input and output conditions, and external pre-conditions for
class Integer, method public static String toHexString(int i).

Equivalence Class Partitioning

Test Descriptions

Test cases included:
Integer0001.

© 2001 Sun Microsystems, Inc. All Rights Reserved.

negative string representation of the i in base
16, starting with the minus sign

Integer0001

i Expected output value Test Case ID

non-negative string representation of the i in base
16, starting without a sign

Integer0001

Tests for public static String toHexString(int i)

ToHexStringTests.java

title

javasoft.sqe.tests.api.java.lang.Integer.ToHexStringTest

runtime positive

source

executeClass

keywords

Appendix A Test Writing Exercise Answers 93

Exercise Answer:
GetSuperclassTests.java
CODE EXAMPLE 7 Exercise Answer: GetSuperclassTests.java

/*
 * Copyright (c) 1996-2000 Sun Microsystems, Inc.
* All Rights Reserved.
 *
 * Class getSuperclass Tests
 */

package javasoft.sqe.tests.api.java.lang.Class;

import java.io.PrintWriter;
import com.sun.javatest.Status;
import com.sun.javatest.lib.MultiTest;

public class GetSuperclassTests extends MultiTest {

 /* standalone interface */
 public static void main(String argv[]) {
 GetSuperclassTests test = new GetSuperclassTests();
 test.run(argv, System.err, System.out).exit();
 }

 /**
 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),
 *
pre-conditions: java.lang.Object class,
 *
output: null.
 */
 public Status Class0001() {
 try {
 Class o1 = Class.forName("java.lang.Object");
 Class s = o1.getSuperclass();
 if (s == null)
 return Status.passed("OKAY");
 else
 return Status.failed("unexpected superclass for

Object");
 } catch(ClassNotFoundException e) {
 return Status.failed("forName: ClassNotFoundException

thrown");
 }
 }

94 Java™ Technology Test Suite Development Guide 1.2 • November 2003

 /**
 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),

*
pre-conditions: any java.lang.Object subclass,
 *
output: java.lang.Object.
 */
 public Status Class0002() {
 try {
 Class o1 =

Class.forName("javasoft.sqe.tests.api.java.
lang.Class.Test0402");

 Class s = o1.getSuperclass();
 if ((s != null) &&

(s.getName().equals("java.lang.Object")))
 return Status.passed("OKAY");
 else
 return Status.failed("no or invalid superclass");
 } catch(ClassNotFoundException e) {
 return Status.failed("forName:

ClassNotFoundException thrown");
 }
 }

 /**
 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),
 *
pre-conditions: root interface,
 *
output: null.
 */
 public Status Class0003() {
 try {
 Class o1 =

Class.forName("javasoft.sqe.tests.api.java.
lang.Class.Test0403");

 Class s = o1.getSuperclass();
 if (s == null)
 return Status.passed("OKAY");
 else {

 return Status.failed("unexpected superclass for root
interface");

 }
 } catch(ClassNotFoundException e) {
 return Status.failed("forName:

ClassNotFoundException thrown");
 }
 }

 /**

Appendix A Test Writing Exercise Answers 95

 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),
 *
pre-conditions: non-root interface,
 *
output: null.
 */
 public Status Class0004() {
 try {

 Class o1 =
Class.forName("javasoft.sqe.tests.api.

java.lang.Class.Test0404");
 Class s = o1.getSuperclass();
 if (s == null)
 return Status.passed("OKAY");
 else
 return Status.failed("unexpected superclass for

non-root interface");
 } catch(ClassNotFoundException e) {
 return Status.failed("forName:

ClassNotFoundException thrown");
 }
 }

 /**
 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),
 *
pre-conditions: primitive type,
 *
output: null.
 */
 public Status Class0005() {

Class[] types = {Integer.TYPE, Byte.TYPE, Character.TYPE,
 Short.TYPE, Integer.TYPE, Long.TYPE,
 Float.TYPE, Double.TYPE};
 for (int i=0;i<types.length;i++) {
 if (types[i].getSuperclass() != null)
 return Status.failed("unexpected superclass

for primitive type");
 }
 return Status.passed("OKAY");
 }

 /**
 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),
 *
pre-conditions: void type,
 *
output: null.
 */
 public Status Class0006() {
 if (Void.TYPE.getSuperclass() != null)
 return Status.failed("unexpected superclass

96 Java™ Technology Test Suite Development Guide 1.2 • November 2003

for void type");
 return Status.passed("OKAY");
 }

 /**
 * Equivalence class partitioning
 * with state values orientation
 * for public Class getSuperclass(),
 *
pre-conditions: any array,
 *
output: java.lang.Object.
 */
 public Status Class0007() {
 Object[][] a = new Object[1][30];
 Class s = a.getClass().getSuperclass();
 if ((s != null) &&

(s.getName().equals("java.lang.Object")))
 return Status.passed("OKAY");
 else
 return Status.failed("no or invalid superclass");
 }

/**
* Assertion testing
* for public Class getSuperclass(),

 *
pre-conditions: non-immediate java.lang.Object
* subclass,

 *
output: correct superclass.
 */
 public Status Class2001() {
 try {
 Class o1 =

Class.forName("javasoft.sqe.tests.api.
java.lang.Class.Test1402");

Class s = o1.getSuperclass();
 if ((s != null) &&

(s.getName().equals("javasoft.sqe.tests.api.
java.lang.Class.Test1402a")))

 return Status.passed("OKAY");
 else
 return Status.failed("no or invalid superclass");
 } catch(ClassNotFoundException e) {
 return Status.failed("forName:

ClassNotFoundException thrown");
 }
 }
}

class Test0402 { int i; }

class Test1402b {
 int b;
}

Appendix A Test Writing Exercise Answers 97

class Test1402a extends Test1402b {
 int a;
}

class Test1402 extends Test1402a {
 int ab;
}

interface Test0403 {
 void doIt();
}

interface Test0404 extends Test0403 {
 void doItMore();
}

98 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Exercise Answer:
getSuperclass.html Test
Description

Test Specifications and Descriptions for Class.getSuperclass()

--

public Class getSuperclass()

--

public Class getSuperclass()

Description

Domain testing of input and output conditions, and external pre-conditions for
class Class, method public Class getSuperclass().

Equivalence Class Partitioning

Assertion testing

java.lang.Object class null Class0001

Pre-conditions Expected output value Test Case ID

root interface null Class0003

primitive type null Class0005

void type null Class0006

any array java.lang.Object Class0007

non-root interface null Class0004

any java.lang.Object subclass java.lang.Object Class0002

non-immediate java.lang.Object subclass output: correct superclass Class0001

Pre-conditions Expected output value Test Case

Appendix A Test Writing Exercise Answers 99

Test Descriptions

Test cases included:

Class0001, Class0002, Class0003, Class0004, Class0005, Class0006, Class0007,
Class2001.

--

© 2001 Sun Microsystems, Inc. All Rights Reserved.

Class getSuperclass Tests

GetSuperclassTests.java

title

javasoft.sqe.tests.api.java.lang.Class.GetSuperclassTests

runtime positive

source

executeClass

keywords

100 Java™ Technology Test Suite Development Guide 1.2 • November 2003

101

APPENDIX B

HTML Test Description Code
Listings

This appendix contains the HTML code listings for the following files:

■ “toString.html Test Description Code” on page 101

■ “getModifiers.html Test Description Code” on page 104

■ “ToHexStringTests.html Test Description Code” on page 108

■ “getSuperclass.html Test Description Code” on page 109

toString.html Test Description Code
CODE EXAMPLE 8 toString.html Test Description Code

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Test Specifications and Descriptions for

Integer.toString(int, int)</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Integer.toString(int,

int)</H1>
<P>
<HR>

<BIG><CODE>public static String
toString(int i, int radix)</CODE></BIG>

<P>
<HR>

102 Java™ Technology Test Suite Development Guide 1.2 • November 2003

<H3><CODE>public static String
toString(int i, int radix)</CODE></H3>

<H4>Description</H4>
<P>
Domain testing of input and output conditions, and external
pre-conditions for class Integer,
method <CODE>public static String toString(int i, int radix)</CODE>.

<H4>Equivalence Class Partitioning</H4>
<TABLE BORDER=1>
 <TR>
 <TH> i
 <TH> radix
 <TH> Expected output value
 <TH> Test Case ID
 <TR>
 <TD> negative
 <TD> less than Character.MIN_RADIX or greater than

Character.MAX_RADIX
 <TD> string representation of the i in base 16, starting with

the minus sign
 <TD> testToString
 <TR>
 <TD> negative
 <TD> between Character.MIN_RADIX and Character.MAX_RADIX
 <TD> string representation of the i in base 'radix', starting

with the minus sign
 <TD> testToString
 <TR>
 <TD> non-negative
 <TD> less than Character.MIN_RADIX or greater than

Character.MAX_RADIX
<TD> string representation of the i in base 16, starting without
a sign

 <TD> testToString
 <TR>
 <TD> non-negative
 <TD> between Character.MIN_RADIX and Character.MAX_RADIX
 <TD> string representation of the i in base 'radix', starting

without a sign
 <TD> testToString
</TABLE>

<H4>Boundary Value Analysis</H4>
<TABLE BORDER=1>
 <TR>
 <TH> i
 <TH> radix
 <TH> Expected output value
 <TH> Test Case ID
 <TR>

Appendix B HTML Test Description Code Listings 103

 <TD> Integer.MIN_VALUE, -1
 <TD> Integer.MIN_VALUE, Character.MIN_RADIX - 1,

Character.MAX_RADIX + 1, Integer.MAX_VALUE
 <TD> string representation of the i in base 16, starting with

the minus sign
 <TD> testToString
 <TR>
 <TD> Integer.MIN_VALUE, -1
 <TD> Character.MIN_RADIX, Character.MAX_RADIX
 <TD> string representation of the i in base 'radix', starting

with the minus sign
 <TD> testToString
 <TR>
 <TD> 0, 1, Integer.MAX_VALUE
 <TD> Integer.MIN_VALUE, Character.MIN_RADIX - 1,

Character.MAX_RADIX + 1, Integer.MAX_VALUE
<TD> string representation of the i in base 16, starting without
a sign

 <TD> testToString
 <TR>
 <TD> 0, 1, Integer.MAX_VALUE
 <TD> Character.MIN_RADIX, Character.MAX_RADIX
 <TD> string representation of the i in base 'radix', starting

without a sign
 <TD> testToString
</TABLE>

<H4>Test Descriptions</H4>

<P>
Test cases included:

 testToString.
<P>
<TABLE BORDER=1 CLASS=TestDescription>
 <TR>
 <TD> title
 <TD> Tests for public static String toHexString(int i)
 <TR>
 <TD> source
 <TD> ToStringTests.java
 <TR>
 <TD> executeClass
 <TD> javasoft.sqe.tests.api.java.lang.Integer.ToStringTests
 <TR>
 <TD> keywords
 <TD> runtime positive
</TABLE>

<P>
<HR>
© 2001 Sun Microsystems, Inc. All Rights Reserved.
</BODY>

104 Java™ Technology Test Suite Development Guide 1.2 • November 2003

</HTML>

getModifiers.html Test Description
Code
CODE EXAMPLE 9 getModifiers.html Test Description Code

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Test Specifications and Descriptions for

Class.getModifiers()</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for Class.getModifiers()</

H1>
<HR>

 <BIG><CODE>public int

getModifiers()</CODE></BIG>

<P>
<HR>
<H3><CODE>public int getModifiers()</

CODE></H3>

<H4>Description</H4>
<P>
Domain testing of input and output conditions, and external
pre-conditions for class Class,
method <CODE>public int getModifiers()</CODE>.

<H4>Equivalence Class Partitioning</H4>
<TABLE BORDER=1>
 <TR>
 <TH> Pre-conditions
 <TH> Expected output value
 <TH> Test Case ID
 <TR>
 <TD> this object: public
 <TD> modifiers with 'public' bit set
 <TD> testCase01
 <TR>
 <TD> this object: non-static
 <TD> modifiers with 'static' bit unset

Appendix B HTML Test Description Code Listings 105

 <TD> testCase01
 <TR>
 <TD> this object: final
 <TD> modifiers with 'final' bit set
 <TD> testCase01
 <TR>
 <TD> this object: non-abstract
 <TD> modifiers with 'abstract' bit unset
 <TD> testCase01
 <TR>
 <TD> this object: a class
 <TD> modifiers with 'interface' bit unset
 <TD> testCase01
 <TR>
 <TD> this object: protected
 <TD> modifiers with 'protected' bit set
 <TD> testCase02
 <TR>
 <TD> this object: static
 <TD> modifiers with 'static' bit set
 <TD> testCase02
 <TR>
 <TD> this object: non-final
 <TD> modifiers with 'final' bit unset
 <TD> testCase02
 <TR>
 <TD> this object: private
 <TD> modifiers with 'private' bit unset
 <TD> testCase03
 <TR>
 <TD> this object: package visible

<TD> modifiers with neither of 'public', 'private' or 'protected'
bits set

 <TD> testCase04
 <TR>
 <TD> this object: abstract
 <TD> modifiers with 'abstract' bit set
 <TD> testCase04
 <TR>
 <TD> this object: interface
 <TD> modifiers with 'interface' bit set
 <TD> testCase05
</TABLE>

<H4>Assertion testing</H4>
<TABLE BORDER=1>
 <TR>
 <TH> Pre-conditions
 <TH> Assertion
 <TH> Test Case ID
 <TR>
 <TD> this object: array of public classes

106 Java™ Technology Test Suite Development Guide 1.2 • November 2003

<TD> If the underlying class is an array class, then its public,
private and protected modifiers are the same as those of
its component type.
 <TD> testCase06
 <TR>
 <TD> this object: array of public classes

<TD> If this object represents an array class, a primitive type
or void, then its final modifier is always true and its
interface modifer is always false.
 <TD> testCase06
 <TR>
 <TD> this object: array of protected classes

<TD> If the underlying class is an array class, then its public,
private and protected modifiers are the same as those of
its component type.
 <TD> testCase07
 <TR>
 <TD> this object: array of protected classes

<TD> If this object represents an array class, a primitive type
or void, then its final modifier is always true and its
interface modifer is always false.
 <TD> testCase07
 <TR>
 <TD> this object: array of private classes

<TD> If the underlying class is an array class, then its public,
private and protected modifiers are the same as those of
its component type.
 <TD> testCase08
 <TR>
 <TD> this object: array of private classes

<TD> If this object represents an array class, a primitive type
or void, then its final modifier is always true and its
interface modifer is always false.
 <TD> testCase08
 <TR>
 <TD> this object: array of package-visible classes

<TD> If the underlying class is an array class, then its public,
private and protected modifiers are the same as those of
its component type.
 <TD> testCase09
 <TR>
 <TD> this object: array of package-visible classes

<TD> If this object represents an array class, a primitive type
or void, then its final modifier is always true and its
interface modifer is always false.
 <TD> testCase09
 <TR>
 <TD> this object: primitive type

<TD> If this Class represents a primitive type or void, its public
modifier is always true, and its protected and private modifers
are always false.
 <TD> testCase10

Appendix B HTML Test Description Code Listings 107

 <TR>
 <TD> this object: primitive type

<TD> If this object represents an array class, a primitive type
or void, then its final modifier is always true and its
interface modifer is always false.
 <TD> testCase10
 <TR>
 <TD> this object: void

<TD> If this Class represents a primitive type or void, its public
modifier is always true, and its protected and private modifers
are always false.
 <TD> testCase11
 <TR>
 <TD> this object: void

<TD> If this object represents an array class, a primitive type
or void, then its final modifier is always true and its
interface modifer is always false.
 <TD> testCase11
</TABLE>

<H4>Test Descriptions</H4>

<P>
Test cases included:

 testCase01,
 testCase02,
 testCase03,
 testCase04,
 testCase05,
 testCase06,
 testCase07,
 testCase08,
 testCase09,
 testCase10,
 testCase11.
<P>
<TABLE BORDER=1 CLASS=TestDescription>
 <TR>
 <TD> title
 <TD> GetModifiers
 <TR>
 <TD> source

<TD> GetModifiersTests.java
 <TR>
 <TD> executeClass
 <TD> javasoft.sqe.tests.api.java.lang.Class.GetModifiersTests
 <TR>
 <TD> keywords
 <TD> runtime positive
</TABLE>
<P>
<HR>

108 Java™ Technology Test Suite Development Guide 1.2 • November 2003

© 2001 Sun Microsystems, Inc. All Rights Reserved.
</BODY>
</HTML>

ToHexStringTests.html Test
Description Code
CODE EXAMPLE 10 ToHexStringTests.html Test Description Code

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Test Specifications and Descriptions for

Integer.toHexString(int)</TITLE>
</HEAD>

<BODY>
<H1>Test Specifications and Descriptions for

Integer.toHexString(int)</H1>
<P>
<HR>

 <BIG><CODE>public static String

toHexString(int i)</CODE></BIG>

<P>
<HR>
<H3><CODE>public static String

toHexString(int i)</CODE></H3>

<H4>Description</H4>
<P>
Domain testing of input and output conditions, and external
pre-conditions for class Integer,
method <CODE>public static String toHexString(int i)</CODE>.

<H4>Equivalence Class Partitioning</H4>
<TABLE BORDER=1>
 <TR>
 <TH> i
 <TH> Expected output value
 <TH> Test Case ID
 <TR>
 <TD> negative
 <TD> string representation of the i in base 16, starting with

the minus sign

Appendix B HTML Test Description Code Listings 109

 <TD> Integer0001
 <TR>
 <TD> non-negative

<TD> string representation of the i in base 16, starting without
a sign

 <TD> Integer0001
</TABLE>

<H4>Test Descriptions</H4>

<P>
Test cases included:

 Integer0001.
<P>
<TABLE BORDER=1 CLASS=TestDescription>
 <TR>
 <TD> title
 <TD> Tests for public static String toHexString(int i)
 <TR>
 <TD> source
 <TD> ToHexStringTests.java
 <TR>
 <TD> executeClass
 <TD> javasoft.sqe.tests.api.java.lang.Integer.ToHexStringTests
 <TR>
 <TD> keywords
 <TD> runtime positive
</TABLE>

<P>
<HR>
© 2001 Sun Microsystems, Inc. All Rights Reserved.
</BODY>
</HTML>

getSuperclass.html Test
Description Code
CODE EXAMPLE 11 getSuperclass.html Test Description Code

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Test Specifications and Descriptions for

Class.getSuperclass()</TITLE>
</HEAD>

110 Java™ Technology Test Suite Development Guide 1.2 • November 2003

<BODY>
<H1>Test Specifications and Descriptions for

Class.getSuperclass()</H1>
<HR>

 <BIG><CODE>public Class

getSuperclass()</CODE></BIG>

<P>
<HR>
<H3><CODE>public Class getSuperclass()</

CODE></H3>

<H4>Description</H4>
<P>
Domain testing of input and output conditions, and external
pre-conditions for class Class,
method <CODE>public Class getSuperclass()</CODE>.

<H4>Equivalence Class Partitioning</H4>
<TABLE BORDER=1>
 <TR>
 <TH> Pre-conditions
 <TH> Expected output value
 <TH> Test Case ID
 <TR>
 <TD> java.lang.Object class
 <TD> null
 <TD> Class0001
 <TR>
 <TD> any java.lang.Object subclass
 <TD> java.lang.Object
 <TD> Class0002
 <TR>
 <TD> root interface
 <TD> null
 <TD> Class0003
 <TR>
 <TD> non-root interface
 <TD> null
 <TD> Class0004
 <TR>
 <TD> primitive type
 <TD> null
 <TD> Class0005
 <TR>
 <TD> void type
 <TD> null
 <TD> Class0006
 <TR>
 <TD> any array

Appendix B HTML Test Description Code Listings 111

 <TD> java.lang.Object
 <TD> Class0007
</TABLE>

<H4>Assertion testing</H4>
<TABLE BORDER=1>
 <TR>
 <TH> Pre-conditions
 <TH> Assertion
 <TH> Test Case ID
 <TR>
 <TD> non-immediate java.lang.Object subclass
 <TD> output: correct superclass
 <TD> Class2001
</TABLE>

<H4>Test Descriptions</H4>

<P>
Test cases included:

 Class0001,
 Class0002,
 Class0003,
 Class0004,
 Class0005,
 Class0006,
 Class0007,
 Class2001.
<P>
<TABLE BORDER=1 CLASS=TestDescription>
 <TR>
 <TD> title
 <TD> Class getSuperclass Tests
 <TR>
 <TD> source

<TD> GetSuperclassTests.java</
A>

 <TR>
 <TD> executeClass
 <TD> javasoft.sqe.tests.api.java.lang.Class.GetSuperclassTests
 <TR>
 <TD> keywords
 <TD> runtime positive
</TABLE>

<P>
<HR>
© 2001 Sun Microsystems, Inc. All Rights Reserved.
</BODY>
</HTML>

112 Java™ Technology Test Suite Development Guide 1.2 • November 2003

113

APPENDIX C

Introduction to Java Technology
API Specifications

The responsibility for writing a Java technology API specification is primarily the
concern of the specification writer. However, the compatibility test developer must
be able to analyze the specification and provide feedback to the writer in the event
of uncovering any flaws that would prevent valid testing.

In order to properly analyze a Java technology API specification for test
development purposes, it is helpful to have a familiarity with the structural levels
of its components. This appendix briefly introduces the structural components of
an API specification.

More in depth information on how to write an API specification can be found at
this URL:

http://java.sun.com/j2se/javadoc/writingapispecs/index.html

Specification Users
When participating in the specification development process, it is helpful to
remember that an API specification must address the needs of these three distinct
types of users:

■ Implementors of a given Java API specification
■ Compatibility test developers
■ Application developers

A complete and accurate specification must adequately address the needs of these
three user groups.

114 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Components of an API Specification
An API specification consists of the following types of components, with each
specifying a different level of information.

■ Top-level specification

■ Package specification

■ Class and interface specification

■ Field specification

■ Method specification

■ References to external specifications

The remaining sections describe these components.

Top-Level Specification
A top-level specification is composed of those specifications that apply to the entire
set of packages. It can include assumptions that underlie the other specifications
such as: all objects are presumed to be thread-safe unless otherwise specified.

In addition to the class specific requirements, there are overall Java technology API
documentation requirements with respect to handling unchecked exceptions (these
are derived from java.lang.RuntimeException). It is helpful for the
specification writer to include some statements that describe the general situations
when a Java application should be prepared to encounter one or more runtime
exceptions.

Appendix C Introduction to Java Technology API Specifications 115

Package Specification
A package specification includes any specifications that apply to the package as a
whole or to groups of classes in the package. It must include the following sections:

For details about how to actually structure the package information in the
package.html file according to Sun standards, see this URL:

http://java.sun.com/products/jdk/javadoc/writingdoccomments/
index.html#packagecomments

Class and Interface Specifications
This section applies to Java classes and interfaces. It may include graphic model
diagrams, such as state diagrams to describe static and dynamic information about
objects. Code examples are also useful and illustrative.

Executive
Summary

A precise and concise description of the package. Useful to
describe groupings of classes and introduce major terms.

OS/Hardware
Dependencies

Specifies any reliance on the underlying operating system
or hardware. For example, the java.awt package might
describe how the general behavior in that package is
allowed to vary from one operating system to another
(such as Microsoft Windows, Solaris™ and Macintosh
operating systems).

116 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Each class and interface specification must include the following sections:

Executive
Summary

A precise and concise description for the object. Useful to
describe groupings of methods and introduce major terms or
dependencies.

State Information Specifies the state information associated with the object,
described in a manner that decouples the states from the
operations that may query or change these states. This
should also include whether instances of this class are thread
safe if applicable. (For multi-state objects, a state diagram
may be the clearest way to present this information.) If the
class allows only single state instances, such as
java.lang.Integer, this section may be skipped.

OS/Hardware
Dependencies

Specifies any reliance on the underlying operating system or
hardware.

Allowed
Implementation
Variances

Specifies how any aspect of this object may vary by
implementation. This description should not include
information about current implementation bugs.

Security
Constraints

If the object has any security constraints or restrictions, an
overview of those constraints and restrictions must be
provided in the class specification. Documentation for
individual security constrained methods must provide
detailed information about security constraints.

Serialized Form This specification ensures that a serialized object can
successfully be passed between different implementations of
the Java technology. While public classes that implement
serializable are part of the serialized form, in some cases it is
also necessary to include non-public classes that implement
serializable. For more details, see the specific criteria at this
URL:

http://java.sun.com/j2se/javadoc/
writingapispecs/serialized-criteria.html

The serialized form specification defines the readObject
and writeObject methods, the fields that are serialized,
the data types of those fields, and the order those fields are
serialized.

Appendix C Introduction to Java Technology API Specifications 117

Field Specification
Each field specification must include the following sections:

Method Specification
This section applies to Java methods and constructors. Each method and
constructor specification must include the following:

What this field
models

Specifies what aspect of the object this field models.

Range of valid
values

Specifies all valid and invalid values for this field.
For each public and protected static final field whose type is
a primitive or String, specify its value. (A future version of
the Javadoc software tool will automatically add this value
to the specification, but until then the value is manually
included in the body of the comment.)

Null value If this is a reference field, a statement concerning whether
this value may be null, and how this object will behave in
such a case.

Expected Behavior Specifies the expected or desired behavior of this operation.
Describes what aspect of the object being modeled this
operation fulfills.

State Transitions Specifies what state transitions this operation may trigger.

Range of Valid
Argument Values

Specifies all valid and invalid values for each argument,
including expected behavior for invalid input value or range
of values.

Null Argument
Values

For each reference type argument, specifies the behavior
when null is passed in. NOTE: If possible, document the
general null argument behavior at the package or class level,
such as causing a java.lang.NullPointerException to
be thrown. Deviations from this behavior can then be
documented at the method level.

118 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Range of Return
Values

Specifies the range of possible return values, including
where the return value may be null.

Algorithms
Defined

When required by the specification, specifies the algorithms
used by this operation.

OS/Hardware
Dependencies

Specifies any reliance on the underlying operating system or
hardware.

Allowed
Implementation
Variances

Specifies what behavior may vary by implementation. This
description should not include information about current
implementation bugs.

Cause of
Exceptions

Specifies the exceptions thrown by the method, including the
argument values, and the state, or context that will cause the
specified exception to be thrown. The exceptions thrown
from a method need not be mutually exclusive. For more
detail about which exceptions should be documented, see
this URL:

http://java.sun.com/products/jdk/javadoc/api-
specs/throws-tag.html

Security
Constraints

If this operation may be security constrained, this must
specify the security check used to constrain this operation.
Mention if the method is implemented using an
AccessController.doPrivileged construct. Must also
include a general description of the context or situations
where this method may be security constrained.

Appendix C Introduction to Java Technology API Specifications 119

References to External Specifications
References to external specifications are usually given at either the package level or
the class level, as follows.

Package Level
References to
External
Specifications

These are package-wide specifications beyond those
generated by Sun or third-parties with the Javadoc
application. An example is the UNICODE specification for
the java.text package. These references can be links to
specifications published on the Internet, or titles of
specifications available only in print form. The references
must be only as narrow or broad in scope as the specification
requires. That is, if only a section of a referenced document
is considered part of the API specification, then it should
link or refer to only that section (refer to the non-
specification part of the document as a related document).
The idea is to clearly delineate what is part of the API
specification and what is not.

Class Level
References to
External
Specifications

These are class-level specifications written by Sun or third
parties beyond those generated by the Javadoc application.
References are not necessary here if they have been included
in the package specification.

120 Java™ Technology Test Suite Development Guide 1.2 • November 2003

121

Java TCK and CTT Glossary

The definitions in this glossary are intended for Java™ Compatibility Test Tools
(Java CTT) and Java Technology Compatibility Kits (TCK). Some of these terms
may have different definitions or connotations in other contexts. This is a generic
glossary covering all of Sun’s CTTs and TCKs, and therefore it may contain some
terms that are not relevant to the specific product described in this manual.

active agent A type of test agent that initiates a connection to the JavaTest harness. Active
test agents allow you to run tests in parallel using many agents at once and to
specify the test machines at the time you run the tests. Use the agent monitor
to view the list of registered active agents and synchronize active agents with
the JavaTest harness before running tests. See also test agent, passive agent, and
JavaTest agent.

active applet
instance An applet instance that is selected on at least one of the logical channels.

agent monitor The JavaTest window that is used to synchronize active agents and to monitor
agent activity. The Agent Monitor window displays the agent pool and the
agents currently in use.

agents See test agent, active agent, passive agent, and JavaTest agent.

all values All of the configuration values required for a test suite. All values includes the
test environment values specific to that test suite and the JavaTest standard
values.

API member Fields, methods and constructors for all public classes that are defined in the
specification.

API member tests Tests (sometimes referred to as class and method tests) that are designed to
verify the semantics of API members.

appeals process A process for challenging the fairness, validity, accuracy, or relevance of one
or more TCK tests. Tests that are successfully challenged are either corrected
or added to the TCK’s Exclude List. See also first-level appeals process, second-
level appeals process, and Exclude List.

122 Java™ Technology Test Suite Development Guide 1.2 • November 2003

Application IDentifier
(AID) An identifier that is unique in the TCK namespace. As defined by

ISO 7816-5, it is a string used to uniquely identify card applications and
certain types of files in card file systems. An AID consists of two distinct
pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary
identifier extension). The RID is a resource identifier assigned to companies
by ISO. The PIX identifiers are assigned by companies. There is a unique AID
for each package and a unique AID for each applet in the package. The
package AID and the default AID for each applet defined in the package are
specified in the CAP file. They are supplied to the converter when the CAP
file is generated.

Application
Management Software

(AMS) Software used to download, store and execute Java applications. Another
name for AMS is Java Application Manager (JAM).

Application
Programming

Interface (API) An API defines calling conventions by which an application program accesses
the operating system and other services.

Application Protocol
Data Unit (APDU) A script that gets sent to the test applet as defined by ISO 7816-4.

assertion A statement contained in a structured Java technology API specification to
specify some necessary aspect of the API. Assertions are statements of
required behavior, either positive or negative, that are made within the Java
technology specification.

assertion testing Compatibility testing based on testing assertions in a specification.

automatic tests Test that run without any intervention by a user. Automatic tests can be
queued up and run by the test harness and their results recorded without
anyone being present.

behavior-based
testing A set of test development methodologies that are based on the description,

behavior, or requirements of the system under test, not the structure of that
system. This is commonly known as “black-box” testing.

boundary value
analysis A test case development technique which entails developing additional test

cases based on the boundaries defined by previously categorized equivalence
classes.

class The prototype for an object in an object-oriented language. A class may also be
considered a set of objects which share a common structure and behavior. The
structure of a class is determined by the class variables which represent the
state of an object of that class and the behavior is given by a set of methods
associated with the class. See also classes.

classes Classes are related in a class hierarchy. One class may be a specialization (a
“subclass”) of another (one of its “superclasses”), may be composed of other
classes, or may use other classes in a client-server relationship. See also class.

Java TCK and CTT Glossary 123

compatibility rules Define the criteria a Java technology implementation must meet in order to be
certified as “compatible” with the technology specification. See also
compatibility testing.

compatibility
testing The process of testing an implementation to make sure it is compatible with

the corresponding Java technology specification. A suite of tests contained in
a Technology Compatibility Kit (TCK) is typically used to test that the
implementation meets and passes all of the compatibility rules of that
specification.

configuration Information about your computing environment required to execute a
Technology Compatibility Kit (TCK) test suite. The JavaTest harness version 3.x
uses a configuration interview to collect and store configuration information.
The JavaTest harness version 2.x uses environment files and parameter files to
obtain configuration data.

configuration editor The dialog box used by JavaTest harness version 3.x to present the configuration
interview.

configuration
interview A series of questions displayed by the JavaTest harness version 3.x to gather

information from the user about the computing environment in which the
TCK is being run. This information is used to produce a test environment that
the JavaTest harness uses to execute tests.

configuration value Information about your computing environment required to execute a TCK
test or tests. The JavaTest harness version 3.x uses a configuration interview to
collect configuration values. The JavaTest harness version 2.x uses
environment files and parameter files to obtain configuration data.

domain See security domain.

environment files Files used by the JavaTest harness 2.x to configure how the JavaTest harness
runs the tests on your system. Environment files have the filename extension
of .jte. Environment files are used in conjunction with parameter files.

equivalence class
partitioning A test case development technique which entails breaking a large number of

test cases into smaller subsets with each subset representing an equivalent
category of test cases.

Exclude List A list of TCK tests that a technology implementation is not required to pass in
order to certify compatibility. The JavaTest harness uses exclude list files
(*.jtx), to filter out of a test run those tests that do not have to be passed.
The exclude list provides a level playing field for all implementors by
ensuring that when a test is determined to be invalid, no implementation is
required to pass it. Exclude lists are maintained by the Maintenance Lead (ML)
and are made available to all technology licensees. The ML may add tests to
the exclude list for the test suite as needed at any time. An updated exclude
list replaces any previous exclude lists for that test suite.

124 Java™ Technology Test Suite Development Guide 1.2 • November 2003

first-level appeals
process The process by which a technology implementor can appeal or challenge a

TCK test. First-level appeals are resolved by the Expert Group responsible for
the technology specification and TCK. See also appeals process and second-level
appeals process.

framework See test framework.

Graphical User
Interface (GUI) Provides application control through the use of graphic images.

HTML test
description A test description that is embodied in an HTML table in a file separate from

the test source file.

implementation See technology implementation.

instantiation In object-oriented programming, means to produce a particular object from its
class template. This involves allocation of a data structure with the types
specified by the template, and initialization of instance variables with either
default values or those provided by the class’s constructor function.

interactive tests Tests that require some intervention by the user. For example, the user might
have to provide some data, perform some operation, or judge whether or not
the implementation passed or failed the test.

Java™ 2, Standard
Edition (J2SE™)

platform A set of specifications that defines the desktop runtime environment required
for the deployment of Java applications. The J2SE implementations are
available for a variety of platforms, but most notably the Sun Solaris
operating environment and Microsoft Windows.

Java Application
Manager (JAM) A native application used to download, store and execute Java applications.

Another name for JAM is Application Management Software (AMS).

Java Archive (JAR) A platform-independent file format that combines many files into one.

Java Compatibility
Test Tools (Java

CTT) Tools, documents, templates, and samples that can be used to design and
build TCKs. Using the Java CTT simplifies compatibility test development
and makes developing and running tests more efficient.

Java Community
Process (JCP) An open organization of international Java developers and licensees whose

charter is to develop and revise Java technology specifications, and their
associated Reference Implementation (RI), and Technology Compatibility Kit
(TCK).

Java Platform
Libraries The class libraries that are defined for each particular version of a Java

technology in its Java technology specification.

Java TCK and CTT Glossary 125

Java Specification
Request (JSR) The actual descriptions of proposed and final technology specifications for

the Java platform.

Java technology A Java technology is defined as a Java technology specification and its Reference
Implementation (RI). Examples of Java technologies are Java 2 Platform,
Standard Edition (J2SE™), the Connected Limited Device Configuration
(CLDC), and the Mobile Information Device Profile (MIDP).

Java Technology
Compatibility Kit See Technology Compatibility Kit (TCK).

Java technology
specification A written specification for some aspect of the Java technology.

JavaTest agent A test agent supplied with the JavaTest harness to run TCK tests on a Java
implementation where it is not possible or desirable to run the main JavaTest
harness. See also test agent, active agent, and passive agent.

JavaTest harness A test harness that has been developed by Sun to manage test execution and
result reporting for a Technology Compatibility Kit (TCK). The harness
configures, sequences, and runs test suites. The JavaTest harness is designed
to provide flexible and customizable test execution. It includes everything a
test architect needs to design and implement tests for Java technology
specifications.

keywords Used to direct the JavaTest harness to include or exclude tests from a test run.
Keywords are defined for a test by the test suite architect.

Maintenance Lead
(ML) The person responsible for maintaining an existing Java technology specification

and related Reference Implementation (RI) and Technology Compatibility Kit
(TCK). The ML manages the TCK appeals process, Exclude List, and any
revisions needed to the specification, TCK, or RI.

methods Procedures or routines associated with one or more class, in object-oriented
languages.

MultiTest A JavaTest library class that enables tests to include multiple test cases. Each
test case can be addressed individually in a test suite Exclude List.

namespace A set of names in which all names are unique.

object-oriented A category of programming languages and techniques based on the concept
of objects which are data structures encapsulated with a set of routines, called
methods, which operate on the data.

objects In object-oriented programming, objects are unique instances of a data
structure defined according to the template provided by its class. Each object
has its own values for the variables belonging to its class and can respond to
the messages (methods) defined by its class.

packages A namespace within the Java programming language. It can have class and
interfaces. A package is the smallest unit within the Java programming
language.

126 Java™ Technology Test Suite Development Guide 1.2 • November 2003

parameter files Files used by the JavaTest harness 2.x to configure individual test runs. For
JavaTest harness version 2.x parameter files have the filename extension
*.jtp. (JavaTest harness version 3.x does not use parameter files, but does
use files with the filename extension *.jti to store test harness
configurations.)

passive agent A type of test agent that must wait for a request from the JavaTest harness
before they can run tests. The JavaTest harness initiates connections to
passive agents as needed. See also test agent, active agent, and JavaTest agent.

prior status A JavaTest filter used to restrict the set of tests in a test run based on the last
test result information stored in the test result files (.jtr).

Profile Specification A specification that references one of the Platform Edition Specifications and
zero or more other Java technology specifications (that are not already a part
of a Platform Edition Specification). APIs from the referenced Platform
Edition must be included according to the referencing rules set out in that
Platform Edition Specification. Other referenced specifications must be
referenced in their entirety.

Program Management
Office (PMO) The administrative structure that implements the Java Community Process

(JCP).

protected API Some APIs, called protected APIs, require that an applet have permission to
access them. An attempt to use a protected API without the necessary
permissions cause a security exception error.

protection domain A set of permissions that control which protected APIs an applet can use.

Reference
Implementation (RI) The prototype or proof of concept implementation of a Java technology

specification. All new or revised specifications must include an RI. A
specification RI must pass all of the TCK tests for that specification.

second-level appeals
process Allows technology implementors who are not satisfied with a first-level

appeal decision to appeal the decision. See also appeals process and first-level
appeals process.

security domain A set of permissions that define what an application is allowed to do in
relationship to restricted APIs and secure communications.

security policy The set of permissions that a technology implementation or Application
Programming Interface (API) requires an application to have in order for the
application to access the implementation or API.

signature file A text representation of the set of public and protected features provided by
an API that is part of a finished TCK. It is used as a signature reference
during the TCK signature test for comparison to the technology
implementation under test.

Java TCK and CTT Glossary 127

signature test Checks that all the necessary API members are present and that there are no
extra members which illegally extend the API. It compares the API being
tested with a reference API and confirms if the API being tested and the
reference API are mutually binary compatible.

specification See Java technology specification.

standard values A configuration value used by the JavaTest harness to determine which tests in
the test suite to run and how to run them. The user can change standard
values using either the all values or Standard Values view in the configuration
editor.

structure-based
testing A set of test development methodologies that are based on the internal

structure or logic of the system under test, not the description, behavior, or
requirements of that system. This is commonly known as “white-box” or
“glass-box” testing. Compatibility testing does not make use of structure-
based test techniques.

system
configuration Refers to the combination of operating system platform, Java programming

language, and JavaTest harness tools and settings.

tag test description A test description that is embedded in the Java language source file of each
test.

Technology
Compatibility Kit

(TCK) The suite of tests, tools, and documentation that allows an implementor of a
Java technology specification to determine if the implementation is compliant
with the specification.

TCK coverage file Used in most TCKs developed by Sun to track the test coverage of a test suite
during test development. They bind test cases to their related assertion in the
technology specification that is being implemented and tested. The bindings
make it possible to generate statistical reports on test coverage.

technology
implementation Any binary representation of the form and function defined by a Java

technology specification.

technology
specification See Java technology specification.

test agent A Java application that receives tests from the test harness, runs them on the
implementation being tested, and reports the results back to the test harness.
Test agents are normally only used when the TCK and implementation being
tested are running on different platforms. See also active agent, passive agent,
and JavaTest agent.

test The source code and any accompanying information that exercise a particular
feature, or part of a feature, of a technology implementation to make sure that
the feature complies with the Java technology specification’s compatibility rules.

128 Java™ Technology Test Suite Development Guide 1.2 • November 2003

A single test may contain multiple test cases. Accompanying information may
include test documentation, auxiliary data files, or other resources used by
the source code. Tests correspond to assertions of the specification.

test cases A small test that is run as part of a set of similar tests. Test cases are
implemented using the JavaTest MultiTest library class. A test case tests a
specification assertion, or a particular feature, or part of a feature, of an
assertion.

test command A class that knows how to execute test classes in different environments. Test
commands are used by the test script to execute tests.

test command
template A generalized specification of a test command in a test environment. The test

command is specified in the test environment using variables so that it can
execute any test in the test suite regardless of its arguments.

test description Machine readable information that describes a test to the test harness so that it
can correctly process and run the related test. The actual form and type of test
description depends on the attributes of the test suite. A test description exists
for every test in the test suite and is read by the test finder. When using the
JavaTest harness, the test description is a set of test-suite-specific name/value
pairs in either HTML tables or Javadoc™-style tags.

test environment Consists of one or more test command template that the test script uses to
execute tests and set of name/value pairs that define test description entries or
other values required to run the tests.

test execution model The steps involved in executing the tests in a test suite. The test execution
model is implemented by the test script.

test finder When using the JavaTest harness, a nominated class, or set of classes, that read,
verify, and process the files that contain test description in a test suite. All test
descriptions that are located or found are handed off to the JavaTest harness
for further processing.

test framework Software designed and implemented to customize a test harness for a
particular test environment. In many cases test framework components have
to be provided by the TCK user. In addition to the test harness, a test
framework might (or might not) include items such as a: configuration
interview, Java Application Manager (JAM), test agent, test finder, test script, and
so forth. A test framework might also include other user-supplied software
components (plug-ins) to provide support for implementation-specific
protocols.

test harness The applications and tools that are used for test execution and test suite
management. The JavaTest harness is an example of a test harness.

test script A Java class whose job it is to interpret the test description values, run the
tests, and then report the results back to the JavaTest harness. The test script
must understand how to interpret the test description information returned
to it by the test finder.

Java TCK and CTT Glossary 129

test specification A human-readable description, in logical terms, of what a test does and the
expected results. Test descriptions are written for test users who need to
know in specific detail what a test does. The common practice is to write the
test specification in HTML format and store it in the test suite’s test directory
tree.

test suite A collection of tests, used in conjunction with the test harness to verify
compliance of the licensee’s implementation of a Java technology specification.
Every Technology Compatibility Kit (TCK) contains one or more test suites.

work directory A directory associated with a specific test suite and used by the JavaTest
harness to store files containing information about the test suite and its tests.

130 Java™ Technology Test Suite Development Guide 1.2 • November 2003

131

Index

Symbols
.jte, 52, 83
.jte files, 123
.jtp, 52
.jtp files, 126
.jtx, 86
.jtx files, 123

A
abstract classes, testing, 47
active agent, 121
active applet instance, 121
agent, 52
Agent Monitor, 121
agent see test agent
AID see Application IDentifier
all values, 121
anomalies, 85
APDU, 122
API, 122
API member, 121
API specification, 15, 113
appeals process, 121

first level, 124
second level, 126

Application IDentifier, 122
Application Management Software, 122
Application Protocol Data Unit, 122
assertion testing (definition of), 122
assertions, 12, 16, 122
automatic tests, 122

B
behavior-based testing, 9, 122
black-box testing, 122
boundary value analysis, 28, 31, 122
bug, 85

C
class specification, 116
classes, 122
compatibility rules, 123
compatibility testing, 10, 123
configuration, 123
Configuration Editor, 123
configuration wizard, 28
CTT see Java Compatibility Test Tools

D
data type assertions, 12
data type checking, 27
descriptions, test, 128
distributed test, 54

E
environment files, 123
equivalence class partitioning, 28, 123
Error test state, 55
exception classes, testing, 46
exclude list, 53, 86
Exclude Lists, 123
external specifications, 119

132 Java™ Technology Test Suite Development Guide 1.2 • November 2003

F
Fail test state, 55
field specification, 117
first-level appeals process, 124

G
glass-box testing, 127
Graphical User Interface, 124
GUI see Graphical User Interface

H
HTML test description, 124
HTML test descriptions, 58
HTMLTestFinder, 58

I
implementation see technology implementation
implied assertion, 21
inherited methods, testing, 48
initial files, 53
inspection, 84
instantiation, 124
interactive tests, 124
interface specification, 116
interfaces, testing, 48
ISO 7816-4, 122

J
J2SE see Java 2 Standard Edition
JAM see Java Application Manager
JAR see Java Archive
Java 2 Standard Edition, 124
Java Application Manager, 124
Java Archive, 124
Java Community Process, xiii, 124
Java Compatibility Test Tools, 124
Java Platform Libraries, 124
Java Specification Request, 125
Java technology, 125
Java Technology Compatibility Kit see Technology

Compatibility Kit, 125
Java technology specification, 125
Javadoc tag comments, 4, 15
JavaTest API, 32, 63

JavaTest harness, 3, 51
JavaTest harness agent, 52
JCP see Java Community Process
JSE see Java Specification Request
jte files, 123
jtp files, 126
jtx files, 123

K
keywords, 53, 62, 125

M
Maintenance Lead, 125
maintenance release, 87
method, 125
method specification, 117
ML see Maintenance Lead
MultiTest, 125
MultiTest, 63

N
namespace, 125
negative keyword, 54
negative test, 63
nontestable assertions, 19

O
object-oriented, 125
objects, 125

P
package, 125
package specification, 115
parameter files, 126
partial builds, 8
Pass test state, 55
patch, 86
peer review, 83
PMO see Program Management Office, 126
portable tests, 27
positive keyword, 55
positive test, 63
Prior Status, 53
prior status, 126

Index 133

process management components, 3
product testing, 10
Profile Specification, 126
Program Management Office, 126
protected API, 126
protection domain, 126

Q
quality assurance (QA), 79

R
Reference Implementation, 126
reference implementation (RI), 79
return values, 12
review, 84
RI see Reference Implementation, 126

S
second-level appeal process, 126
security domain, 126
security policy, 126
signature file, 126
signature testing, 49
Signature tests, 127
source code conventions, 26
source code requirements, 26
specification, 4
specification flaw or bug, 20
specification refinement cycle, 21
specification see Java technology specification
Status class, 63
structure-based testing, 9, 127
stub class, used in testing, 47
system configuration, 127

T
tag test description, 127
TagTestFinder, 58
TCK coverage file, 127
TCK see Technology Compatibility Kit, 127
Technology Compatibility Kit, 127
technology implementation, 127
technology see Java technology
test agent, 127

test case, 12
test case specification, 57
test case specifications, 6
test cases, 127
test command templates, 128
test commands, 128
test description, 57
test description field examples, 61
test descriptions, 6, 128
test design document, 5
test execution mode, 128
test execution steps, 54
test finder, 58, 128
test framework, 128
test harness, 51
test integration, 79
test integration plan, 5
Test interface, 63
test plan document, 4
test script, 128
test selection principles, 53
test source code, 26
test specification, 129
test suite configuration wizard, 28
test suites, 129
testable assertions, 12, 17
tests, 127

automatic, 122
interactive, 124

top-level specification, 114

W
white-box testing, 127
work directory, 129

134 Java™ Technology Test Suite Development Guide 1.2 • November 2003

	Java™ Technology Test Suite Development Guide 1.2
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction
	Test Development Processes and Infrastructure
	Process Management Components
	Accurate and Complete API Specification
	Test Plan Document
	Test Design Document
	Test Integration Plan
	Test Case Specifications
	Test Descriptions with the JavaTest Harness
	Tests

	General Time Line and Planning Considerations

	Test Case Planning and Design
	Behavior-Based Testing of the Specification
	Compatibility Testing vs. Product Testing
	Test Development Strategy
	Step 1: Identify Assertions in the Specification
	Step 2: Develop Test Cases for the Assertions

	Analyzing Java API Specifications
	Specification Assertions Must Be Clearly Stated
	Identifying Specification Assertions
	Testable
	Testable Assertions in Examples or Sample Code

	Required
	Implementation-Specific
	Ambiguous
	Not an Assertion

	Insufficient Specification Coverage
	Implied Assertions
	Refining the Specification

	Writing Java API Compatibility Tests
	Test Development Process
	Writing Compatibility Test Code
	Observing Source Code Conventions
	General Source Code Requirements
	Building Robust Portable Tests

	Test Case Development Techniques
	Equivalence Class Partitioning
	Equivalence Class Partitioning Example: Color (int, int, int)

	Boundary Value Analysis
	Boundary Value Analysis Example: Color (int, int, int)

	Writing the Test Code
	Example 1: TCK Tests for Integer.toString(int, int)
	Example 2: TCK Tests for Class.getModifiers()

	Common Errors in Writing TCK Tests.
	Common Error: Use of Platform-Specific Data
	Common Error: Modification of the System State
	Common Error: Stress Tests
	Common Error: Hard-Coded System-Specific Values
	Common Error: Thread Synchronization

	Special Class and Method Testing Issues
	Testing Exception Classes
	Testing Abstract Classes
	Testing Using a Stub Class

	Testing Interfaces
	Testing Inherited Methods
	Testing API Signatures

	Test Writing Exercises
	Exercise 1: java.lang.Integer
	Exercise 2: java.lang.Class

	Writing Tests for Execution by a Test Harness
	JavaTest Harness
	JavaTest Harness Agent

	How Tests Are Executed by the Harness
	How Tests Are Selected for a Test Run
	How Tests Are Executed
	Test Execution Steps Managed by the JavaTest Harness:

	Test Results

	Test Components Required by the JavaTest Harness
	Writing Test Descriptions for the JavaTest Harness
	Running Tests with the Test Finder
	Test Description Form and Content
	Creating JavaTest Harness HTML Test Description Tables
	Test Description Field Examples
	JavaTest Validation of Test Descriptions
	Using Keywords in Test Descriptions

	Using the JavaTest API Test Libraries
	The Test Interface
	Using the Status Class
	Using the MultiTest Class.

	Integrating Test Case Code with the JavaTest API
	Example 1: Integrating the Integer.toString(int, int) Test with the JavaTest Harness
	toString.html Test Description File

	Example 2: Integrating the Class.getModifiers() Test with the JavaTest Harness
	getModifiers.html Test Description File

	Test Writing Exercises

	Test Integration and Quality Assurance (QA)
	Product Testing the TCK Tests
	Testing Against the Reference Implementation (RI)
	Avoiding Overlap When Testing the RI and the TCK

	Testing the Integration of the TCK
	Integration Testing Issues

	Reviewing and Inspecting the Tests
	Reviews and Inspections
	Review
	Inspection

	Review vs. Inspection

	TCK Maintenance
	TCK Anomaly Analysis
	Test Appeals Process

	Exclude List for TCK Maintenance
	TCK Patches
	Maintenance Releases
	TCK Evolution
	Maintaining Multiple TCK Releases

	Test Writing Exercise Answers
	Exercise Answer: ToHexStringTests.java
	Exercise Answer: ToHexStringTests.html Test Description
	Exercise Answer: GetSuperclassTests.java
	Exercise Answer: getSuperclass.html Test Description

	HTML Test Description Code Listings
	toString.html Test Description Code
	getModifiers.html Test Description Code
	ToHexStringTests.html Test Description Code
	getSuperclass.html Test Description Code

	Introduction to Java Technology API Specifications
	Specification Users
	Components of an API Specification
	Top-Level Specification
	Package Specification
	Class and Interface Specifications
	Field Specification
	Method Specification
	References to External Specifications

	Java TCK and CTT Glossary
	Index

