
Show me (se/ee) the Money!

Better Financial API Support for

the Java Platform

© 2007-2009 Creative Arts & Technologies

Werner Keil

Princeton, New Jersey

September 10th, 2009

The Problem

•No real standardization for Financial APIs

•Closed Source Vendors may come and go or

simply abandon products leaving potentially

Thousands of customers without support overnight
• See Microsoft Money as the most infamous Financial Software example

2 © 2007-2009 Creative Arts & Technologies

Financial Crisis

•Crisis was caused by greed and speculation

•But also to a large extent misinformation

•Lack of compatibility between “hostile” markets

and competitors

•No real Open Standards aside from very few
• E.g. SWIFT or SEPA, etc.

•No Transparency

3 © 2007-2009 Creative Arts & Technologies

Java – The 90s

•Early examples by industry visionaries showed

what could have been done back in 1996/7 !!
• JUnit samples using Money and Currency by Beck and Gamma

However, even those luminaries could nor or did not want to “shine” outside

their own context and the use case of unit tests only.

• Roedy Green from Canadian Mind Products has provided not only great

books and articles, he actually said to have offered some advise and

contributions, but Sun or JavaSoft at this time did not accept them.

4 © 2007-2009 Creative Arts & Technologies

Java – Money Class by JUnit

public class Money {

private double amount;

private String currency;

public Money(double amount, String currency) {

this.amount = amount;

this.currency = currency;

}

public double getAmount() {

return this.amount;

}

public String getCurrency() {

return this.currency;

}

public Money add(Money oMoney) {

return new Money(this.amount +

oMoney.getAmount(),this.currency);

}

}

5 © 2007-2009 Creative Arts & Technologies

Java Currency

•The class java.util.Currency is best known to most

• It was added with 1.4

•Primarily offering the “View” element of common

MVC paradigm.

•No value (“Model”) taken into consideration. That

is left entirely to developers where BigDecimal is

usually recommended due to precision.

6 © 2007-2009 Creative Arts & Technologies

Java Currency (2)

•The class is the lowest common denominator of

ISO 4217 definitions for currency handling

•Most likely not in a separate JSR (if so only that for

SE 1.4)

• Inconsistent method signature
• getSymbol() vs.

• getCurrencyCode()

• → what other than the Currency code would a Currency class use? Or why

not call the other method getCurrencySymbol() ?

7 © 2007-2009 Creative Arts & Technologies

Time and Money (DDD)

•Another example to showcase concepts of Domain

Driven Design by Eric Evans

• It is said to still work by SF users, but its limitation

to Dollar and reduce it to a showcase and vehicle

for their books and trainings, far from a really

useful framework

•Evans was offered to join EG at least by JSR-310

but has turned down the offer

8 © 2007-2009 Creative Arts & Technologies

Solutions today

Handling currency calculations in Java

business application

•March 29, 2009 — Venkat

Recently I saw a weird floating issue in Java

application which made our currency calculation
wrong.

9 © 2007-2009 Creative Arts & Technologies

Solutions today (2)

•Can you guess what would be the output of the

code below?
System.out.println(38.0 - 26.6);

•Sun recommends to use BigDecimal for currency

calculation in Java. For example above code can

be changed as below:
System.out.println(BigDecimal.valueOf(38.0).subtract(BigDeci

mal.valueOf(26.6)));

• Is this pretty or efficient ?!

10 © 2007-2009 Creative Arts & Technologies

http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html
http://java.sun.com/j2se/1.4.2/docs/api/java/math/BigDecimal.html

Possible Alternatives

• ICU4J (Eclipse)

•Apache Commons Money / JodaMoney

•Grails Currency

•Unit Framework by JSR-275

•Eclipse Financial Platform
• Formerly known as OFMP

•Commercial/Product-based implementations
• MoneyDance

• JFire (Eclipse RCP Open Source CRM)

11 © 2007-2009 Creative Arts & Technologies

With Support for Conversion,...

• ICU4J (Eclipse)

•Apache Commons Money / JodaMoney

•Grails Currency

•Unit Framework by JSR-275

•Eclipse Financial Platform
• Formerly known as OFMP

•Commercial/Product-based implementations
• MoneyDance

• JFire (Eclipse RCP Open Source CRM)

12 © 2007-2009 Creative Arts & Technologies

JSR-275

13 © 2007-2009 Creative Arts & Technologies

Case Study: Monetary System

Monetary systems are not subject to JSR-275, but this

illustrates, how easily the framework can be extended to non

physical or scientific quantities.

Such extension can be valuable by leveraging the

framework‟s capabilities (formatting, conversion,…)

and applying its usefulness beyond what java.util.Currency

now provides

JSR-275

14 © 2007-2009 Creative Arts & Technologies

Currency Conversion Classes

DEMO

Let me show you the money…

15 © 2007-2009 Creative Arts & Technologies

Q & A

Let„s talk

21 © 2007-2009 Creative Arts & Technologies

