Measure for Measure!
JSR-275 Public Review

Werner Keil

Santa Clara, California
January 12th, 2010

© 2007-2010 Creative Arts & Technologies (I M

Our Goal

AVOIDING INTERFACE
AND ARITHMETIC ERRORS

@TMedio

Emphasis

Most of today’s technologies including the Java
Language so far lack support for common non-
trivial Arithmetic problems like Unit Conversions.

CTM

Overview

* Present Situation

 Historic IT Errors and Bugs
« Cause of Conversion Errors

* Proposed Changes

« Unit and Measure Support
* Type Safety

e Case Studies
e Demo
* Q&A

4 © 2007-2010 Creative Arts & Technologies

CTM

What do these disasters have in common?

* Patriot Missile
The cause was an inaccurate calculation of the
time since boot due to a computer arithmetic error.

* Arilane 5 Explosion
The floating point number which a value was
converted from had a value greater than what
would be represented by a 16 bit signed integer.

CTM

What do these disasters have in common?

* Mars Orbiter
Preliminary findings indicate that one team used

English units (e.g. inches, feet and pounds) while
the other used metric units for a key spacecraft

operation.

* NASA lost a $125 million Mars orbiter because a Lockheed Martin engineering team used
English units of measurement while the agency's team used the more conventional Metric (SI)

system for a key spacecraft operation

 This also underlines the added risk when 3 party contractors are involved or projects are
developed Offshore

6 © 2007-2010 Creative Arts & Technologies (| M

Unit Tests wouldn‘t find these...

* All previous example illustrate three categories of
errors difficult to find through Unit Testing:

* Interface Errors (e.g. millisecond/second, radian/degree, meters/feet).
 Arithmetic Errors (e.g. overflow).
« Conversion Errors.

7 © 2007-2010 Creative Arts & Technologies (| M

Causes of Conversion Errors

* Ambiguity on the unit

« Gallon Dry / Gallon Liquid
« Gallon US / Gallon UK
* Day Sidereal / Day Calendar

* Wrong conversion factors:

static final double PIXEL TO INCH = 1 / 72;
double pixels = inches * PIXEL TO INCH

8 © 2007-2010 Creative Arts & Technologies (I M

Present Situation

- Java does not have strongly typed primitive types
(like e.g. Ada language).

* For performance reasons most developer prefer
primitive types over objects in their interface.

* Primitives type arguments often lead to name
clashes (methods with the same signature)

CTM

JSR-275

Base Classes

Namespace: javax.measure.*

Core parts or the API are one Iinterface and an
abstract base class

Measurable<Q extends Quantity> (interface)
Measure<V, Q extends Quantity> (abstract class)

10 © 2007-2010 Creative Arts & Technologies (| M

JSR-275

Packages

Unit
holds the SI, NonSI and UCUM units

*Quantity

holds dimensions like mass or length)

Converter
holds Unit Converters

*Format
holds common formatters including UCUM)

11 © 2007-2010 Creative Arts & Technologies (| M

JSR-275

Measurable (1)

Let’s take the following example

abstract class Person

{
void setWeight (double weight) ;

}

Should the weight be in Pound, Stone,
Kilogram, or what else ???

12 © 2007-2010 Creative Arts & Technologies (| M

JSR-275

Measurable (2)
Using Measurable there is no room for error

abstract class Person

{
void setWeight (Measurable<Mass> weight) ;

}

Not only the interface Is cleaner (the weight must
a be generic type), but also there is no
confusion on the measurement unit

13 © 2007-2010 Creative Arts & Technologies (I M

JSR-275
Measurable (3)

So while either of these calls are legitimate:

double weightInKg
double weightInlb

This one isn’t:

weight.doubleValue (KILOGRAM) ;
weight.doubleValue (POUND) ;

double weightInliter = weight.doubleValue (LITER) ;

// Compile Error

14 © 2007-2010 Creative Arts & Technologies

CTM

JSR-275
Units

15 © 2007-2010 Creative Arts & Technologies

Operations

public Unit<Q= toSI[)

public boolean isSI{)

public boolean isCompatible(Unit<> that)

public Unit<T> asType(Class<T> type)

public Dimension getDimension()

public UnitConverter getConverterTo(Unit<Qz> that)

Base units represent he building blocks on top of
which all others units are created. Base units are
typically dimensionally independent, i.e. Unit=Length=
METER = new Baselnit<Length={"m")

public Alternatel)nit<A> alternate(String symbal) ‘\1
public CompoundUnite@=> compound(Unit<Q@> that) \
public Unit<Q> transform(UnitConverter operation) | H
public Unit<Q> plus(double offset) <<b;nETr»g>> <0205 i
public Unit<Q> times(long factor) e \

public Unit<Q> times(double factor)
public Unit<= times(Unit<> that)
public Unit<> inverse()

public Unit<Q> divide(long divisor)
public Unit<Q> divide(double divisor)
public Unit<= divide(Unit<= that)
public Unit<> root(int n)

public Unit<> pow(int n)

. . ¢ . . .
==hinding=> <Q-=Q= Alternate units are used in expressions to
B

. . distinguish hetween guantities of a different
public Unit<> valueOff CharSequence csq) S naturgbut ofthe sam[?e dimensions. e,

} : Unit=Angle= RADIAM = ONE.alternate("rad"

‘IZIDer|vedUn|t<Q> | g vrad)

Product units represent units formed by
the product of rational powers of existing
units,i.e. Unit=Surface= SQUARE_INCH =
INCH.pow(2)

! Q

Annotated units do not change the semantic
of existing units. The annotation is written
(UCLUM) between curly braces hehind units.

Compound units are used to combine a unit with

a sub-unit (typically for formatting purpose), i.e.
For example "%{vol}", "kgitotaly’, or {RBCY' ! Unit<Duration= HOUR_MINUTE_SECOND =
(for "red blood cells”) are equivalent to "%",] HOUR.compound(MINUTE).compound(SECOND)
"kg", and "1" respectively..

Transformed units are created by applying a transformation
to an existing unit, i.e. Unit<Length= KILOMETER =
KILO(METER) equivalent to: Unit=Length= KILOMETER =
METER. transform({new RationalConverter(1000, 1))

JSR-275

Systems of Units

16

© 2007-2010 Creative Arts & Technologies

E systemOfUnits

Operations

public Unit<=[0."] getUnits()

N

Eisi

Operations

public S| getinstance()

3

EiNonsI

Operations

pubilic ManSl getinstancel)

P

ElMetricPrefix

ElBinaryPrefix

ElIndianPrefix

public Unit<Q:=

Cperations

Y OTTA(Unit<@> unit)

Cperations

public Unit<Q=

KIBI{ Unit<Q> unit)

public Unit<Q>

ZETTA{ Unit<Q@z unit)

public Unit<Q@=

MEBI(Unit<Q> unit)

public Unit<@3>

EXA(Unit<Q> unit)

public Unit<Q=

PETA(Unit<@= unit }

public Unit<@3>

TERA{ Unit<Q=> unit }

public Unit<Q=

GIGA[Unit=Q= unit)

public Unit<Q=

GIBI{ Unit<Q= unit }

public Unit=Q=

TEBI({ Unit<@= unit)

public Unit<@=

PEBI(Unit<@2> unit }

public Unit<Q=

EXBI{ Unit=Q> unit }

public Unit<@3>

MEGA{ Unit<Q> wnit)

public Unit<Q:=

KILO(Unit<Q= unit)

public Unit<@3>

HECTO{ Unit<Q> unit)

public Unit<Q=

DEKA(Unit=Q unit)

public Unit<@>

DECI Unit=Q@= unit }

public Unit<Qz=

CENTI(Unit<Q= unit)

public Unit<@>

MILLI{ Unit=@= unit)

public Unit<Q=

MICRO(Unit<@> unit)

public Unit<Q>

NANO(Unit<@= unit)

public Unit<@3>

PICO(Unit<Q= unit }

public Unit<Q=>

FEMTO(Unit<Q=> unit }

public Unit<@3>

ATTO(Unit=Q= unit)

public Unit<Q=

ZEPTO(Unit< @2 unit }

public Unit<@3>

YOCTO(Unit<Q> unit)

public Unit<Q>

Cperations

EK(Unit<Q> unit)

public Unit<Q>

DAS{ Unit<Q= unit)

public Unit<Q@:=

SAU(Unit<Q@= unit)

public Unit=Q=>

SAHASR(Unit<Q> unit)

public Unit<@:>

HASAAR(Unit<Q> unit)

public Unit<Q=

public Unit<@:=

LAKHI Unit<Qz> unit }
CRORE(Unit<@> unit }

public Unit<Q=

public Unit<Q3>

ARAWB(Unit<Q> unit)
KHARAWEB(Unit<Q= unit)

public Unit<Q=

NEEL{ Unit<Qz> unit }

public Unit<Q>

PADMA(Unit<Q> unit)

public Unit<Q=

SHANKHI Unit<Q> unit)

public Unit<Q>

MAHASHAMKH(Unit<@> unit)

JSR-275

Unit Converters

17

£l unitconverter

Operations
public UnitConverter inverse|)

public double convert| double value)
public BigDecimal convert{ BigDecimal value, MathContext ctx)
public UnitConverter concatenate(UnitConverter converter)

E|LinearConverter

T~

| AddConverter

ElLogConverter

\ \ EExPconvEnEr

=] MultiplyConverter

E|RationalConverter

© 2007-2010 Creative Arts & Technologies

CTM

JSR-275

Unit Operations

Result with same dimension Result with different dimension
Binary operations: Binary operations:

*plus (double) or (long) *root (int)

*times (double) or (long) spower (int)

divide (double) or (long) «times (Unit)

compound (Unit) «divide (Unit)

Unary operations:
sinverse()

18 © 2007-2010 Creative Arts & Technologies (| M

JSR-275

Measure or Measurable

Answer:

IS an interface allowing all kinds of
Implementations.

It is matching equivalent to e.g. java.lang.Number and
provides similarly named methods for conversion to
primitive types such as intValue(Unit) or doubleValue(Unit).

IS the combination of a numeric value and a
unit. Measurable is more flexible, but if you need to
retrieve the original numeric value stated in its original
unit and precision (no conversion), then Measure or
subclasses are your choice.

19 © 2007-2010 Creative Arts & Technologies (| M

JSR-275

Kenal.com

As the first official JSR our EG decided to
migrate to Kenai.com, Sun's Developer
Cloud for Java, JavaFX, MySQL,
Glassfish and other Open Source
Activities

Project Kenal
http://www.kenai.com

Search for JSR-275

CTM

http://www.kenai.com/

JSR-275

References

*GeoAPI

*Thales Group
*Orbitz/Ebookers.com

*[EM (Emergency Management)
‘UCUM

*OpenEHR

*Project Noodles

CTM

JSR-275

Languages and Platforms

*Java

*Groovy/Grails

*Scala

*Android

plus any other JVM-based language

CTM

JSR-275

Search Results

*Google: 270.000
*Once you enter at least “JSR-2”

*That is 3" largest for any single JSR
(only 168 and 256 have more)

*Bing: 694.000
*Yahoo: 412.000

CTM

Let’'s have a look at some...

DEMOS

24 © 2007-2010 Creative Arts & Technologies (I M

JSR-275
Case Study: Monetary System

Monetary systems are not subject to JSR-275, but this
llustrates, how easily the framework can be extended to non
physical or scientific quantities.

Such extension can be valuable by leveraging the
framework’s capabilities (formatting, conversion,...)

and applying its usefulness beyond what java.util.Currency
now provides

25 © 2007-2010 Creative Arts & Technologies (| M

JSR-275

Currency Conversion Classes

Quantity 'D Unit<Q) axtands Quantity> UnitConverter SystemOfunits
= — IDENTITY - ST
I +punu:atenate(UnitConverter) 7%
+etStandardUnits) Hrversel)
Money O +getDimenzion) _ iy
+getConverterTal Unit Monetarys'y'stem
i FAY
\ | CurrencyConverter T
' Currency .
+oetExchangeRater) ;
The Guantity type for . 7 _ ™
parameterization is Money. P / The monetary system is based
4 N on =0 4217 which is the
: _ _ international standard describing
CurrencyConverter is unusual in three-letter codes (also knawn as
Currency is a particular type that its values change with time, the currency code) to define the
OF Lnit, with @ dim ension of [§] and the conversion from Ato B is Rl e
: ' not the inverse of the conversion
from B to A (HECAUSE A CUrrency's

buying price can differ fram its
selling price).

26 © 2007-2010 Creative Arts & Technologies (| M

Let’'s have a look at some...

DEMOS

27 © 2007-2010 Creative Arts & Technologies (I M

JSR-275
Money Demo(1)

We'll extend MoneyDemo to show fuel costs in Indian Rupees.
First by adding a new currency to MonetarySystem.

// Use currency not defined as constant (Indian Rupee).

public static final DerivedUnit<Money> INR = monetary (
new Currency (,,INR")

) ;

Then add this line to MoneyDemo.
(also change static Import t0 MonetarySystem. *;)

UnitFormat.getInstance() .label (INR, ,Rp");

28 © 2007-2010 Creative Arts & Technologies (I M

JSR-275

Money Demo(2)

Next set the Exchange Rate for Rupees
((Currency) INR).setExchangeRate(0.022); // 1.0Rp = ~0.022 $

Note, the explicit cast is required here, because getUnits() in
SystemOfUnits currently requires a neutral <?> generic
collection type.

29 © 2007-2010 Creative Arts & Technologies (I M

JSR-275

Money Demo(3)

Then we add the following line to the “Display
cost.” section of MoneyDemo

System.out.println("Trip cost = " + tripCost + " (" +
tripCost.to(INR) + ")");

Resulting In this additional output:
Trip cost = 87.50 $ (3977.26 Rp)

30 © 2007-2010 Creative Arts & Technologies (I M

Let's talk

Q&A

31 © 2007-2010 Creative Arts & Technologies (I M

