=2 |ava | }
a Community ------------ —-E—- - - —
Process !_)

JSR 282 Review

25" of September 2013

James Hunt

* Goals
* Background
* Justification
* History
* Technical Scope and Features
* Deliverables: Specification, RI, TCK, IP, Other
* Schedule
° Publicity, Collaboration, Participation, and Transparency
* Implementation Notes
* Issues
* Questions, discussion, next steps
= G

Community
Process 2

Java

* The original goal was to addresses some of the simpler
enhancements that have been requested in the Real-Time
Specification for Java (RTSJ) of which 21 where listed
explicitly.

* This has lead to a re-evaluation of the specification to
clarify 11l defined parts of the specification and complete
partially defined features such a user defined clocks and
happenings.

* Providing better integration with current conventional Java
implementations has also become important.

== |ava
Community
Process 3

Java

Background

* Update to JSR-1
Real-Time Specification for Java (RTSJ)

* RTSJ refines Java semantics and adds APIs for realtime
— no changes to Javac necessary

— fully compatible with conventional JVMs

* Targets all platforms
* Was included in J2ME
* This 1s a single JSR platform

* Necessary for extending Java ecosystem into realtime and
embedded systems

=’ 1EE
il Community
bl Process 4

Business/marketing/ecosystem justification

* The RTSJ was a good starting point for using Java for
realtime and embedded applications.

* JSR 282 updates the RTSJ to the current state of the art
by clarifying its semantics and filling in major gaps.
* The RTSJ extends the Java ecosystem into deeply

embedded systems, especially where realtime response 1s
required.

* This 1s not a new standard, but a refinement of an
existing one based on field experience.

* Required to make further inroads in replacing C and C++
in embedded systems, thus broadening the Java
ecosystem.

=24 lava
ol Community
Process

* The RTSJ was completed in December 1998
* JSR 282 was approved in August 2005

* Early Draft Review was started in March 2009
and completed in May 2009

* Peter Dibble left TimeSys in May 2010
* aicas became specification lead in October 2012
* Just finished IP transfer from TimeSys in August 2014

== lava
il Community
bl Process 6

The Expert Group

* The EG consists of the following members:
— Industrial: aicas, IBM, Atego, Ethan Blanton

— Academic: Andy Wellings (realtime system expert)
— Other Communities: Ben Brosgol (Ade Industrial)

* The EG meets weekly by teleconference

* The EG communicates internally with webex, e-mail, and
an SVN repository

== lava
il Community
bl Process 7

Technical scope and features

* Raw Memory

— Typed device access
— Factory Base
* ActiveEvents
— Unify API for Timer, Happening, & POSIXSignal
— Happening as Object
— User defined Clocks
* CPU Affinity

* Interrupt Service Routine Support

=’ PEIG
il Community
bl Process 8

Technical scope and features

* Stateful Events & Handlers

— Object and long payloads
— POSIX Realtime Signals
* New Scope Types
— PinnableMemory (support for PC pattern)
— StackedMemory (support for JSR 302)

* Modularization

— base and three optional modules

— make selectable at a reasonable granularity

=gl Java
il Community
bl Process 9

Implementations

* There are not yet any publicly available implementations
besides the TimeSys RI

* Two other vendors testing features on their own JVM

=’ 1EE
ol Community
Process 1 0

Java

RI and TCK development

* The TCK 1s an extension to the RTSJ TCK and 1s being
developed by the EG

* TimeSys had published an RI
* aicas 1s developing a new RI

Ml Process 11

* The licenses will be broadly similar to the RTSJ
— just received text from TimeSys

— 1n legal review

* We have not had any, but will set up a Contributor
Agreement similar to that of OpenJDK

* The collaboration tools are free to use as EG member
— Webex guest

— open source tools

* Completed IP transfer from TimeSys

=24 |=va

Java

Community
Process

12

Other deliverables

* The Specification 1s more than just the JavaDocs.

* It includes
— Semantics and

— Rationale (including some examples)
* EG will consider providing

— additional documentation,
— user's guide,
— sample code, and
— FAQ
* How do other EGs integrate this with their work?

=28 |ava

Java

Community
Process

13

Schedule

Second Draft Review Start Waiting on JCP
License Legal Review finished 07 Oct. 2014
Publish Licenses 10 Oct. 2014

EG Face-to-Face before JTRES (Full document review) | 12 Oct. 2014

Next Rl Release 1 Dec. 2014
Second Draft Review End End Dec. 2014
TCK finished End Jan 2015
Final Review Start Feb 2015

&
‘;_j: el Java
Pl Community
GGl Process 14

Publicity

* Java Technology for Real-time and Embedded Systems
— yearly conference dedicated to RTSJ and SCJ 1ssues

— meets every year since 2003
— more than 100 papers published
— Jtres2014.compute.dtu.dk/

* Open Group Real-Time and Embedded Forum
— regular updates presented

— http://www.opengroup.org/sanfrancisco2014/rtes

=2 Java
il Community
il Process 15

Collaboration with other community groups

* We are collaborating with JSR-302 to ensure maximal

compatibility between the specifications.
— 1ssues where collected from the JSR-302 EG

— all changes have been feed forward to JSR-302

— some small changes where made to support
implementing JSR-302 on the RTSJ

* Three EG members are also JSR-302 members

* We also collaborate with the Open Group Realtime and
Embedded Forum.

== Java
ol Community
Process 16

Participation and transparency

* Provide a pointer to the JSR page on JCP.org
— [Reviewers: check that 1s this up to date. Does 1t point to the
JSR’s project page and/or explain how to participate?]
° Provide a pointer to the “JSR project website" (eg, on
Java.net.)

— [Reviewers: how much content 1s here (how many
pages)? Is the online project easy to navigate? Does it
clearly explain how to participate?].

== |ava
Community
Process 17

Java

Issue tracker

* The work is nearly complete.

* Processed 38 specification issues
(major 1ssues to RTSJ that drove the JSR)

* 8 1ssues where dropped
(considered detrimental or too complex)

* 3 1ssues where delays to the next RTSJ version
(would overly delay specification release)

* 2 Superseded by later 1ssues
* 3 1ssues are not completely resolved

e 22 are finished
* User 1ssues will be tracked from upcoming Draft Review

=gl Java
il Community
bl Process 18

Mailing lists or forums

* This is a new requirement for us.
* Mailing list: jsr282-feedback@aicas.com
* Twitter: (@realtimejava #RTSJ

* Discussion:
http://www.linkedin.com/groups/RTSJ-81472167g1d=81
47216

* The Spec Lead has posted a few messages to twitter.

* We expect that the Draft Review that we are preparing
will bring traffic to the discussion page

* These are listed on JCP.org

=’ 1EE
il Community
Ml Process 19

http://www.linkedin.com/groups/RTSJ-8147216?gid=8147216
http://www.linkedin.com/groups/RTSJ-8147216?gid=8147216

Document archive

* Again, this is a new requirement for us.

* Spec revisions are available on the JSR-282 page:
https://www.aicas.com/cms/en/rts]

* Old versions will be maintained there as well.

—+l |ava
Community
Process

Java

20

https://www.aicas.com/cms/en/rtsj

Adopt-a-JSR

* Again, this is a new requirement that we where not
tracking until now.

* What do we have to do?

= Community
Process 21

Java

Implementation notes

* Specifying a realtime language extension for realtime
programming 1S quite complex:
— differing scheduling requirements:
fairness vs timeliness
— Synchronization 1s more critical
— must pay more attention to allocation

— must specify timing behavior without loss of portability

=28 |ava
Community
Process 22

Java

* Should be RTSJ 2.0, not 1.1.
* How to include key API in OpenJDK?

* Where does J2ME fit in today?

=g J=va
ol Community
Process 23

Java

Questions, discussion, next steps

el Commun ity
Process 24

Java

t

=28 Java i
a Community ------------ —-E—- - - —
Process !_)

Thank you!
http://jcp.org

