
Advancing Java embedded
May 8 2017

Leonardo Lima,
Heather Vancura

2

Working group members

• Eclipse
• Fujitsu
• Gemalto
• London Java Community
• MicroDoc
• Oracle
• V2COM
• Werner Keil

3

Goals

• The JCP EC established the Java ME Working Group to
address the concern of EC Members about the current state
of Java ME

• Goals:
1. Describe technical and non-technical requirements for

Java to be relevant and useful in embedded devices and
IoT.

2. Provide grounds for discussion with Java leadership
within Oracle on how to improve Java ME, or the next
version of Java for Micro devices.

4

Use cases

• There are many different IoT use cases, with completely
different set of technical and business specifications.
We’re focusing on two different device classes that
group some of the desired characteristics

• Specialized device - targeted to a specific function, and
it runs on specialized hardware. This means that its
overall capabilities won’t change over its lifetime.

• Gateway device - has a broader scope of function, when
compared to a specialized device.

5

Technical
Specifications

6

Performance

• Specialized devices are associated with tasks that require
fast startup time

• Specialized devices are also sized to have just enough
processing power, to save on costs

• Gateway devices normally don’t suffer performance
penalties

7

• There are two size constraints on specialized devices:
RAM and ROM/Storage.

• RAM consumption on specialized devices is critical
• ROM (Flash or Disk storage) is also a critical constraint:

storage memory on these devices is costly and in many
processors, it’s built in into the processor

• For gateway devices, this is not always an issue
• For specialized devices - merge all binaries - VM and

User Code, “gutting” the VM and taking out unused
classes

Size

8

Language compatibility

• Java ME 8/MEEP was a huge step towards SE
compatibility and SE Embedded profiles made SE more
like ME when comparing sizes.
– But it’s either very small runtime without JNI or a bigger

runtime without some of the ME frameworks

9

Language compatibility

(Still) Missing in Java ME:

• Collection streams
• Reflection
• Runtime Annotations
• Concurrency utilities
• Collections and Math APIs

10

Language Compatibility

Useful IoT frameworks on ME missing in SE:

• Software provisioning
• Software management
• Application concurrency (MVM)
• Inter-application communication (IMC)
• Events
• Service Provider/Consumer pattern

11

Native Code support

• One of the more concrete things missing for embedded
development is better operating system/C/C++
integration.

• Libraries like JNA and Device I/O is a step in the right
direction, but these aren’t part of the Spec or the default
platform.

12

IoT specific or new APIs/JSRs

• Emerging standards for IoT communication today are
supported in Java (SE/EE) via JSRs (like JSON) or not
(like MQTT and COAP).

• Suggested areas for standardization
– REST client
– Communication protocols such as MQTT and/or COAP
– Device I/O (it does exist today, but it’s not a JSR)
– LWM2M

13

Update of old JSRs

• JSR 177
– Security is a critical aspect of IoT, and JSR 177 provides

Java ME applications with APIs for security and trust
services through the integration of a Security Element

• JSR 361
– Needs to be realigned with state-of-the-art features and

current embedded device market requirements.

14

Business
Specifications

15

Licensing

• Current business model for Java ME does not scale.
• It still uses the same old licensing model, while Java SE

moved on to a more open/public implementation that has a
frictionless technology onramp where technologies can be
implemented, tested and standardized.

16

Development Model

• Similar open collaborative development concept for Java
ME as for Java SE (one example, For Java SE
→OpenJDK + JSRs). Which implies that everybody can
get the source and port it to a target system.

• For business reasons, key technologies still need to be
defined as JSRs.

17

Board support packages

• Because embedded development is not a box package,
there’s the need for easier download availability from
hardware manufacturers.

• Hence, there is a need for a binary to download with porting
compatibility so that hardware vendors can easily port the
standard implementation to their hardware/boards

18

Other
Considerations

19

Broad set of requirements

• Every vertical and even use case in IoT has a different set
of requirements

• The current way of sharing a single platform/binary for the
whole JSR specification may be outdated.

• A better way would be a legal and safe method to pick-and-
choose the functionalities/classes that we need for our
target environment.

20

Low Java ME 8 adoption

• Business related aspects contributed to low Java ME 8
adoption immediately following the release.

• The technology met the needs, but the costs to migrate
were too high.

• In the meantime, most of these issues have been
resolved. So a next version, with updated technology and
licensing terms might see (much) better adoption.

21

JSR Leadership

• How does Oracle want others to contribute? Does it want
to lead or allow others to lead and collaborate in this
space?
– Some JSRs are either touching Oracle IP (such as Device

I/O) or are already lead by Oracle (such as JSR 177), so
we need a clear position from Oracle on such issues

• Most members on this Working Group would be willing
to participate in JSR activity, but not necessarily lead.
– Eclipse is interested as a potential source for communing

members interested in leading JSRs
– V2COM is interested in leading some of the JSR efforts
– Gemalto is interested in leading JSRs in the Java ME

domain

22

Market Demand

• Java is the only standardized platform which scales well.
Many people are not aware of this.

• Java as an IoT platform also offers the developer appeal of an
end of end technology platform.

• Is there (still) a market for Java ME on feature phones?

23

Competing technologies

• Node.JS (and embedded JavaScript)
• Android/iOS
• Android Things
• Windows IoT
• Ubuntu Core
• Eclipse Edje and “small Java VMs”
• mbedOS
• OSGi

24

Eclipse IoT survey

• Eclipse IoT Developer Survey. You can find a written
summary here and here, and the full slide deck here.

• The good news is that Java is doing very well on the
gateway and the cloud. On the cloud, node.js and
JavaScript are growing fast. In fact, if you add JS and
node together, arguably JS is the dominant language.

• On IoT Cloud Platforms, Java (46.3%) emerges as the
dominant language. JavaScript (33.6%), Node.js (26.3%)
and Python (26.2%) have some usage.

25

Eclipse IoT Survey

26

Questions, discussion, next steps

Thank You!

http://jcp.org
Thank you!

http://jcp.org

