
Current Status

1

Eclipse Incubator
• https://projects.eclipse.org/projects/technology.microprofile - ASLv2 License

• http://microprofile.io/ - Home Page

• https://github.com/eclipse - Eclipse Foundation GitHub Organization

• microprofile

• Documentation

• microprofile-evolution-process

• Specification proposals

• microprofile-config

• Configuration API

• microprofile-health

• Health check API and support

• microprofile-fault-tolerance

• Standardizing fault tolerance policy API and integration

• microprofile-jwt-auth

• Standardizing JSON web token claims to support RBAC

2

https://projects.eclipse.org/projects/technology.microprofile
http://microprofile.io/
https://github.com/eclipse
https://github.com/eclipse/microprofile
https://github.com/eclipse/microprofile-evolution-process
https://github.com/eclipse/microprofile-config
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/

MicroProfile Roadmap
• MicroProfile 1.1 (2Q 2017)

• Prioritized list of features
• Config 1.0

• Planning an official Eclipse release of Config 1.0 by Devoxx UK (early
May)

• Fault Tolerance 1.0
• Emily working closely with community to nail down programming

models
• CDI-based vs standalone API

• Integration with (Hystrix) dashboard might get pushed out to FT 1.1
(MP 1.2)

• Planning an official Eclipse release of FT 1.0 by end of May/ early
June

• MicroProfile project needs an official MicroProfile 1.1
content and release

Devoxx	UK

3

MicroProfile Roadmap (cont)

• MicroProfile 1.2 (3Q 2017)
• Prioritized list of features

• Fault Tolerance 1.1 w/ (Hystrix) Dashboard
• Security (JWT Propagation)
• Health Check / Metrics / Monitor (single feature or multiple?)
• OpenTracing (Relatively new community request, stretch

goal)
• We would really like to push this for an August

delivery to allow a bigger splash at JavaOne, like
we did last year. Vendors would have some time to
develop real code for demonstrations and
presentations at JavaOne. Another stretch goal.

JavaOne

4

MicroProfile Roadmap (cont)

• MicroProfile 2.0 (3Q 2017)
• Update to latest Java EE 8 specs

• CDI 2.0
• JAX-RS 2.1
• JSON-P 1.1
• JSON-B 1.0 (???)

• Based on MP 1.0, 1.1, or 1.2 content?
• If MP 1.2 is “announced”, then MP 2.0 would contain the

updated Java EE 8 specs plus the MP 1.2 content

JavaOne

5

MP Configuration
• GOAL: Standardize Configuration API so

microservices can run in different environments
seamlessly

• APIs/SPIs for:

• Configuration providers to introduce configuration
sources with a priority for ordering, and type
converters

• Accessing configuration information and values

• Injecting configuration values
6

Simple Programmatic Example
public class ConfigUsageSample {

 public void useTheConfig() {

 // get access to the Config instance

 Config config = ConfigProvider.getConfig();

 String serverUrl = config.getValue("acme.myprj.some.url", String.class);

 Integer serverPort = config.getValue("acme.myprj.some.port", Integer.class);

 callToServer(serverUrl, serverPort);

 }

}

7

Simple DI Style Example
@ApplicationScoped

public class InjectedConfigUsageSample {

 @Inject

 private Config config; // Access full Config object

 @Inject

 @ConfigProperty(name=“myprj.some.url") // Required to exist or DeploymentException

 private String someUrl;

 @Inject

 @ConfigProperty(name=“myprj.some.port") // Not required

 private Optional<Integer> somePort;

 @Inject

 @ConfigProperty(name="myprj.some.dynamic.timeout", defaultValue="100")

 private javax.inject.Provider<Long> timeout; // Dynamically resolved on each Provider#get()

8

1

2

3

MP Fault Tolerance
• Effort to standardize APIs for dealing with latency and failures

• Take popular concepts from libraries such as Hystrix and Failsafe

• Initial focus

• TimeOut: Define a duration for timeout

• RetryPolicy: Define a criteria on when to retry

• Fallback: provide an alternative solution for a failed execution.

• Bulkhead: isolate failures in part of the system while the rest of the
system can still function.

• CircuitBreaker: offer a way of fail fast by automatically failing execution
to prevent the system overloading and indefinite wait or timeout by the
clients.

9

Requirements
• Loose coupling: Execution logic should not know anything about the execution

status or fault tolerance.

• Failure handling strategy should be configured when the execution takes place.

• Support for synchronous and asynchronous execution

• Integration with 3rd party asynchronous APIs. This is necessary to handle
executions that are completed at some time in the future, where retries will need to
be explicitly scheduled from within the asynchronous execution. This is common
when working with various 3rd party asynchronous tools such as Netty, RxJava,
Vert.x, etc.

• Require immutable failure handling policy configuration

• Some Failure policy configurations, e.g. CircuitBreaker, RetryPolicy, can be used
stand alone. For example, it has been very useful for circuit breakers to be
standalone constructs which can be plugged into and intentionally shared across
multiple executions. Likewise for retry policies. Additionally, an Execution construct
can be offered that allows retry policies to be applied to some logic in a
standalone, manually controlled way.

10

Possible CDI

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class FaultToleranceBean {
 int i = 0;
 @Retry(maxRetries = 2)
 public Runnable doWork() {

 // This unreliable service sometimes succeeds but
 // sometimes throws a RuntimeException
 Runnable mainService = () -> serviceA();
 return mainService;

 }
}

11

Possible CDI

// When `TimeOutException` was received, delay 2 seconds
and then retry 2 more times.

RetryPolicy rp = FaultToleranceFactory
 .getInstance(RetryPolicy.class)
 .retryOn(TimeOutException.class)
 .withDelay(2, TimeUnit.SECONDS)
 .withMaxRetries(2);
SyncExecutor se = Executor.with(rp);
se.get(() -> someCallable());

12

MP Health Check
• Goals

• MUST be compatibility with Kubernetes health
checks: http://kubernetes.io/docs/user-guide/
liveness/

• MUST be appropriate for machine-to-machine
communication

• SHOULD give enough information for a human
administrator

13

MP Health Check
• Goals

• MUST be compatibility with Kubernetes health
checks: http://kubernetes.io/docs/user-guide/
liveness/

• MUST be appropriate for machine-to-machine
communication

• SHOULD give enough information for a human
administrator

14

Concepts
• Producers (services, endpoints) expose at least a REST/HTTP /health endpoint

• Other protocols may be supported

• Producers have zero or more health check procedures configured

• Represent logical services whose health the producer depends on

• memory, disk space, bandwidth, database access, …

• Must have an id, “UP” or “DOWN” status as well as procedure specific
status properties

• Invocation of the /health endpoint results in the producer evaluating the
configured health check procedures and returning a status and possibly a
JSON payload representing the health check procedure information

• Overall health is logical combination of all procedures

15

Request Outcomes

16

Request HTTP
Status

JSON
Payload State Comment

/health 200 Yes UP Check with payload

/health 204 No UP Check without
procedures installed

/health 503 Yes Down Check failed

/health 500 No No
Request processing
failed (i.e. error in
procedure

Request Examples
Status 200:
{
 "outcome": "UP",
 "checks": [
 { "id": "myCheck",
 "result": "UP",
 "data": {
 "key": "value",
 "foo": "bar"
 }
 }, { “id”: “memory”,

“result”: “UP”,
“data”: {

“available”: 32768
“free”: 4096,
“units”: “Mb”

}
 }
]
}

17

Status 503:
{
 "outcome": "DOWN",
 "checks": [
 { "id": "myCheck",
 "result": "DOWN",
 "data": {
 "key": "value",
 "foo": "bar"
 }
 }, { “id”: “memory”,

“result”: “UP”,
“data”: {

“available”: 32768
“free”: 4096,
“units”: “Mb”

}
 }
]
}

Possible JAX-RS
@Path("/app")
public class HealthCheckResource {

 @GET
 @Path("/diskspace")
 @Health
 public HealthStatus checkDiskspace() {
 [...]
 }

 @GET
 @Path("/something-else")
 @Health
 public HealthStatus checkSomethingElse() {
 [...]
 }
}

18

Possible CDI
@ApplicationScoped()
public class HealthChecks {

 @Produces
 @Health
 public HealthStatus checkDiskspace() {
 [...]
 }

 @Produces
 @Health
 public HealthStatus checkSomethingElse() {
 [...]
 }
}

19

MP JWT RBAC
• Effort to standardize identity and access grants in a JSON Web

Token (JWT, RFC 7519).

• Builds on the JWT minimal set of claims to define claims for:

• caller identity

• caller roles

• Independent of services

• Specific to a service

• Requires use of JSON Web Signature (JWS, RFC 7515)

• With header alg=“RS256”; RSA public key signature with
SHA-256 hash algorithm

20

Example Token
Header:
{
 "alg": "RS256"
 "typ": "JWT"
}

21

Payload:
{
 "jti": "e64a4894-b181-4646-ab14-6d415a473749",
 "iss": "https://server.example.com",
 "sub": "24400320",
 "aud": "s6BhdRkqt3",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "auth_time": 1311280969,
 "preferred_username": “alice”,

 "realm_access": {
 "roles": ["role-in-realm", "user", “shared-service-role“]
 },
 "resource_access": {
 "my-service": {
 "roles": ["role-in-my-service"]
 },
 "my-service2": {
 "roles": [“role-in-my-service2"]
 }
 },
}

1
2

3

Proposed Principal

22

package org.eclipse.microprofile.jwt;

import java.security.Principal;
import java.util.Set;

public interface JWTPrincipal extends Principal {
 // Various standard claim accessors...
 String getIssuer();
 String getSubject();
 long getExpiration();
 long getIssuedAt();
 long getNotBefore();
 //...
 // Extension claims
 String getPrincipalName();
 Set<Principal> getRealmRoles();
 Set<String> getServiceNames();
 Set<Principal> getRolesForService(String serviceName);
}

JWTPrincipal

• Returned by various getCallerPrincipal,
getUserPrincipal container and security context
methods

• Available for injection

23

Community

24

