
Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Contributing to OpenJDK:
Participating in stewardship
for the long-term

Joseph D. Darcy (darcy, jddarcy, @jddarcy, @jddarcy)
OpenJDK Compatibility & Specification Review (CSR) Group Lead,
JCP Spec Lead JSRs 269 (annotation processing) and 334 (Project Coin)
Inaugural lead engineer for OpenJDK 6

Java Platform Group, Oracle
JCP Executive Committee, April 12, 2023

1

http://openjdk.java.net/census#darcy
https://github.com/jddarcy/
https://twitter.com/jddarcy
https://mastodon.social/@jddarcy

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Who am I?

• Long-time JDK engineer; multiple projects including:

• Compatibility & Specification Review (CSR) Group Lead: review interface changes in
JDK feature and update releases, ≈400 issues reviewed per year

• Spec lead for:
• JSR 269 (annotation processing) in Java SE 6 and continuing maintenance lead

• JSR 334 in Java SE 7 (Project Coin – small language changes)

• Over 1,000 commits in OpenJDK mainline

2

https://wiki.openjdk.org/display/csr/Main
https://jcp.org/en/jsr/detail?id=269
https://jcp.org/en/jsr/detail?id=334
https://openjdk.org/projects/coin/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Outline

• OpenJDK Release Model

• Background

• JCP Model

• Compatibility Policies

• Possible API/feature lifecycles

• Logistics of Contributing to OpenJDK

• Suggestions on contributed to a JEP

• Other kinds of contributions

• General Contributions

• Questions and Discussion

3

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

A lookahead: ways to contribute

• Comment on GitHub PR’s or correspond on mailing lists

• Perhaps even initiate a mailing list thread or PR yourself ☺

• Send in feedback on JEPs (JDK Enhancement Proposals)

• Try out new features and write up your experience.

• See how the early access builds work in your CI system.

• Will discuss context of JDK development in much of the rest of the talk to
contribute more effectively.

4

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

OpenJDK Release Model

5

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

What is a JEP?

• JDK Enhancement Proposal; open to committers, used for:

• Policy documents (e.g. JEP 12: Preview Features)

• Project management of features (e.g. JEP 444: Virtual Threads) and so much more!
• Rational of the feature, design alternatives

• Sample usages

• “One stop shopping.”

• Submitted JEPs are requested to be
added to the technical roadmap

• Candidate JEPs are on the technical
roadmap

• Proposed to Target requests to
bind a JEP to a particular release

6

https://cr.openjdk.org/~mr/jep/jep-2.0-02.html
https://openjdk.org/bylaws#committer
https://openjdk.org/jeps/12
https://openjdk.org/jeps/444

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

JEPs I’ve worked on

• JEP 306: Restore Always-Strict Floating-Point Semantics (JDK 17)

• JEP 369: Migrate to GitHub (JDK 16)

• JEP 357: Migrate from Mercurial to Git (JDK 16)

• JEP 296: Consolidate the JDK Forest into a Single Repository (JDK 10)

• …

7

https://openjdk.org/jeps/306
https://openjdk.org/jeps/369
https://openjdk.org/jeps/357
https://openjdk.org/jeps/296

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 8

JEPs in JDK Feature Releases

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

What are “Preview” and “Incubator”
features?
Will be discussed later…

9

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Overview of JDK Release Process

• Previously, multi-year releases

• Since 2018 starting with JDK 10, new feature release every six months,
March and September. Each release developed over about 9 months.

• Four phases:

• Least-restricted development (≈six months)

• Rampdown Phase One (RDP 1)

• Rampdown Phase Two (RDP 2)

• Release-Candidate Phase (RC)

• The last RC build is then released as the GA build.

10

JEP 3: JDK Release Process

https://openjdk.org/jeps/3

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

March release year $Y
• Dev starts: early June$(Y-1)

• Rampdown 1 start: early December $(Y-1)

• Rampdown 2 start: mid January $Y

• Initial release candidate: early February $Y

• GA: late March $Y

September release year $Y
• Dev starts: early December $(Y-1)

• Rampdown 1 start: early June $Y

• Rampdown 2 start: mid July $Y

• Initial release candidate: early August $Y

• GA: late September $Y

11

Sample JDK release schedules

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Current JDK Release Process

• Predictable schedule

• Always an open-for-business repo for developers to push to

• Skipping details of:

• Handling of update releases

• LTS (long-term support) vs non-LTS – however; note that non-LTS releases are still
“real” releases worth using and testing on, etc.

• (Such details are JDK-vendor specific)

12

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Fixes per JDK Feature Release

13

0

500

1000

1500

2000

2500

3000

10 11 12 13 14 15 16 17 18 19 20

Is
su

es
 f

ix
ed

JDK Feature Release

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Bug fix observations

• About 2,400 fixes per JDK feature release

• Lots of changes to potentially comment on (or contribute!) beside large
features and JEPs

14

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Who has done what

15

The Arrival of Java 20! by Sharat Chander

https://inside.java/2023/03/21/the-arrival-of-java-20/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Background

16

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

JCP and Open Source

• Since JCP 2.5 in 2002, the JCP has allowed and embraced open source
development of the technologies standardized through the process

• For Java SE, the reference implementation is built from sources in OpenJDK
repositories

17

https://jcp.org/en/press/releases/enhance

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

What about the community?

• Good faith down payment by publication of HotSpot and javac sources in
2006; rest of JDK in 2007 (longer effort to remove all binary plugs, etc.)

• OpenJDK is licensed under open source licenses, predominantly GPLv2,
(with the ClassPath Exception for the libraries)

• Initial OpenJDK sources populated from the in-progress JDK 7.

• A “backward branch” from JDK 7 used to make OpenJDK 6.

• Red Hat’s IcedTea project first to get a OpenJDK 6 binary passing the Java SE 6 TCK.

18

https://web.archive.org/web/20080201104834/http:/blogs.sun.com/darcy/entry/forward_to_the_past
https://openjdk.org/projects/jdk6/
https://web.archive.org/web/20080621025447/http:/blogs.sun.com/darcy/entry/openjdk_6_congratulations_to_icedtea

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

JCP model

19

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 20

JCP Triad for the Java SE 20 Umbrella JSR 395

The Java Community Process, starting circa 1998

Specification Reference
Implementation

(RI)

Technology
Compatibility Kit

(TCK)

JLS
JVMS

java.*
javax.*

…

Build of OpenJDK 20
On Linux and Windows
https://jdk.java.net/java-se-ri/20

JCK 20

https://jcp.org/en/jsr/detail?id=395
https://jcp.org/en/home/index
https://jdk.java.net/java-se-ri/20

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Logistics

• A JSR is run to cover Java SE changes in each JDK feature release;
e.g: JSR 393 for Java SE 18, JSR 394 for Java SE 19, JSR 395: Java SE 20, etc.

• Without benefit of a MR (maintenance review) of the Java SE platform
specification, cannot make normative changes to the Java SE APIs in an
update release.

• This constraint precludes the additional of technically innocuous methods, often
caught by the signature test (checks for supersetting, subsetting).

• MRs of the platform are rarely done, but are done with sufficient cause,
such as JSR 337 MR 3 for adding TLS 1.3 to Java SE 8.

21

https://jcp.org/en/jsr/detail?id=393
https://jcp.org/en/jsr/detail?id=394
https://jcp.org/en/jsr/detail?id=395

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Different categories of interfaces and
maintenance domains
A JDK doesn’t just contain Java SE!

22

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

${VENDOR} JDK & OpenJDK builds, Java SE interfaces

23

${VENDOR} JDK

Java SE

Note: Figure not drawn to scale.

Typically more JDK sharing than pictured.

JVM

compiler

java.*

javax.*

sun.*, com.sun.*, jdk.*

build

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Implementations of many Java SE technologies are included
in the OpenJDK sources

• Java Virtual Machine (HotSpot)

• Java Language Specification (javac)

• Class libraries in the java.* and javax.* namespace
• (Java EE classes can also be in javax.* etc.)

• Most Java SE-related work now done under the umbrella JSR

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Not all (Open)JDK APIs are defined in the JCP

• Tools in various modules:

• jdk.compiler (javac)

• jdk.jpackage

• jdk.jshell

• Tree API (for abstract syntax trees, ASTs):
jdk.compiler/com.sun.source.*

25

Public exported APIs of the JDK but not Java SE:

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

JDK Internal APIs

• JDK Internal APIs should not be used outside of the JDK itself, including but
not limited to:

• sun.*

• jdk.internal.*

• non-public methods/fields in java.*

26

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Compatibility Policies

27

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

The constraints of success

• The Java platform’s success in part stems from strong compatibility policies

• Those policies constrain the kinds of changes that can be made in
subsequent releases

• Therefore, important to get an API/interface “right” in the first release it
ships in

• At least right enough in the factors that are impractical to change afterward;
taking YAGNI into account preview and incubator options, etc.

• Counterpoint: avoid issues like those in Python community with Python 3:
Mercurial's Journey to and Reflections on Python 3

28

https://openjdk.org/jeps/12
https://gregoryszorc.com/blog/2020/01/13/mercurial's-journey-to-and-reflections-on-python-3/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

What is the CSR?

• Compatibility and Specification Review

• Covers various kinds of exported interfaces of the JDK

• Looks after source, binary, and behavioral compatibility

• Reviews changes in the Java language, core libraries, as well as HotSpot

• On average ≈6% of fixes in a JDK feature release also go through CSR review

• CSRs used in preparation of JCP material for a feature release, HT Iris Clark:

• Java SE 21 CSR dashboard

• Java SE CSRs in Java SE 20 (JSR 395)

29

Process to review interfaces changes and an OpenJDK group

https://wiki.openjdk.org/display/csr/Main
https://bugs.openjdk.org/secure/Dashboard.jspa?selectPageId=21419
https://cr.openjdk.org/~iris/se/20/latestSpec/#Structure
https://openjdk.org/groups/csr/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Open CSRs per JDK feature release

30

Average ≈150/release under the six-month release model.

130

160

106

142
149

128

174

191

154

171

124

0

50

100

150

200

10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

er
 o

f
o

p
en

 C
SR

s

JDK Feature Release

Open CSRs per JDK feature release

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Background: JDK General Evolution Policy

“The general compatibility policy for exported APIs implemented in the JDK is:

1. Don’t break binary compatibility (as defined in the Java Language Specification)
without sufficient cause.

2. Avoid introducing source incompatibilities.

3. Manage behavioral compatibility changes.”

• Extends to language evolution too

• Continue to recognize old class files

• Limit cases where currently legal code stops compiling

• Avoid changes in code generation introducing behavioral change

• Goal: balance between stability and progress

31

From the OpenJDK CSR wiki page

https://docs.oracle.com/javase/specs/
https://wiki.openjdk.java.net/display/csr/Main

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Short compatibility definitions

• Binary compatibility: do programs still link?

• Source compatibility: do programs still compile and still compile to
equivalent class files?

• Behavioral compatibility: do programs still operate the same way at
runtime?

32

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Binary Compatibility

• Specific definition: the continued ability to link;
see JLS Chapter 13 Binary Compatibility

• Broken by, for example:

• removing types

• changing public methods to be private

• …

33

https://docs.oracle.com/javase/specs/jls/se20/html/jls-13.html

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Source Compatibility

• A surprisingly subtle topic!

• Degrees of source compatibility (CSR, Dev. Guide):

• Does the client code still compile (or not compile)?

• If the client code still compiles, do all the names resolve to the same binary names in
the class file?

• If the client code still compiles and the names do not all resolve to the same binary
names, does a behaviorally equivalent class file result?

• For example, adding overloaded methods/constructors to a class can
change how source code using that class is compiled; e.g. if a class has a
constructor taking a double, add a constructor taking a long.

34

https://wiki.openjdk.java.net/display/csr/Kinds+of+Compatibility
http://cr.openjdk.java.net/~darcy/OpenJdkDevGuide/OpenJdkDevelopersGuide.v0.777.html#source_compatibility

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Behavioral Compatibility

• Intuitively, before and after a change to the JDK, do “the same” or
“equivalent” inputs produce “the same” or “equivalent” results?

• Difficult to define equivalence in all cases:

• Reflective/introspective operations

• Side-channels (relative performance, etc.)

• (Also includes serialization compatibility)

35

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 36

Release Compatibility Regions

Behavioral

B
in

ar
y

Security Update Releases (CPU), 20.0.1, 20.0.2, …

Other Update Releases (PSU), 8u20, 8u40, …

Note: Figure not drawn to scale.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 37

Feature Release Compatibility Region

Behavioral

B
in

ar
y

Feature Release, JDK 20 GA, JDK 21 GA, …

Note: Figure not drawn to scale.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Example: changing the iteration order of HashSet

• Specification of HashSet.iterator():
“Returns an iterator over the elements in this set. The elements are

returned in no particular order.”

• Changing iteration order is allowed by the specification and:

• Binary compatible (same set of methods)

• Source compatible (compilation of clients independent of iterator method body)

• But a change in behavioral compatibility;
people can and do implicitly (and accidentally) rely on iteration order

• Therefore, this kind of change generally wouldn’t be made in either kind of
update release, but would be (and has been) made in a platform release.

38

For comparison see JEP 269: Convenience Factory Methods for Collections

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/HashSet.htmliterator()
http://openjdk.java.net/jeps/269

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Looking ahead

• What you can do: try out EA builds in your CI systems!

• quality-discuss outreach to open-source projects through OpenJDK

39

How to better accommodate behavioral changes

https://mail.openjdk.org/pipermail/quality-discuss/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Vacuously true, but aspirational, statement

Except for timing dependencies or other non-determinisms and given
sufficient time and sufficient memory space, a program written in the Java
programming language should compute the same result on all machines
and in all implementations.

Preface to the JLS, first edition

40

https://docs.oracle.com/javase/specs/jls/se6/html/j.preface.html

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Interpretation of and limits to compatibility

Old feature request from a customer circa 2006 for JDK 7 planning:
“What we're [at customer] talking about is compatibility between consecutive
feature releases. To give an example, binary compatibility [customer means
behavioral compatibility –Ed.] is extremely important to us:
We strongly believe that any Java binary application that is known to run without
any problems on Java SE platform version N should be able to run without any
problems on Java SE platforms of later versions as well (> N). There shouldn't be a
need to recompile, rebuild, retest, etc., Java applications upon upgrading the
underlying Java SE platform layer to a higher version. Similarly, we believe source
compatibility is extremely important and needs to be(come) a Java SE platform
feature by design as well.”

41

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Why this request is infeasible as stated

• Program tests for the Java version and fails if it isn’t equal to a particular value
 couldn’t update Java version number

• Program measures the relative performance of two methods. If the relative
performance isn’t with epsilon of the expected ratio, the program fails
 couldn’t add new intrinsics

• Program calls javac and expects a compilation failure on a given text
 couldn’t evolve the Java programming language

• Program intentionally causes a NPE and fails if the detail message doesn’t match
 couldn’t add helpful NullPointerExceptions

• Cloud vendor wants customer program P to use at least X CPU and Y memory
 can’t improve performance properties for end users

• …
42

Adversarial programs

https://openjdk.org/jeps/358

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

And really adversarial programs…

• Program tests for the presence of security vulnerabilities
 couldn’t fix security vulnerabilities

43

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Aside on source compatibility

• Customer request for greater source compatibility is likely a reaction to the
addition of “assert” as a keyword in Java SE 1.4 (JSR 41).

• Current keyword management policies mitigate the impact of such changes
today – contextual keywords (JLS §3.9), hyphenated-keywords, etc.

44

https://jcp.org/en/jsr/detail?id=41
https://openjdk.org/jeps/8223002
https://docs.oracle.com/javase/specs/jls/se20/html/jls-3.html#jls-3.9

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Actual examples

• Eclipse IDE “broke” when the JDK vendor name was changed from “Sun” to
“Oracle” (checked vendor to set command-line flags of the JVM)

• Many behavioral incompatibilities in JDK 9 are not due to the module
system, but from changing the version numbering from “1.8.x” to “9.0.y”.

• Judgement needed to balance stability with progress

• Reasonable behavioral compatibility is a shared responsibility of the users
and platform provider

• Platform provider should produce a good specification

• If users code to the specification, should have fewer problems updating

45

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Evolution of behavioral compatibility expectations

• In the beginning, the consensus was that details of toString and
hashCode needed to be specified to satisfy WORA properties; examples:
• Short.hashCode():

“Returns a hash code for this Short; equal to the result of invoking intValue().”
[So Short.hashCode() is constrained to only use half the bits of the 32-bit hash.
Alternative: “All distinct short values have distinct hash codes…”]

• Method.toString():
“The string is formatted as the method access modifiers, if any, followed by the
method return type, followed by a space, followed by the class declaring the
method, followed by a period, followed by the method name, followed by a
parenthesized, comma-separated list of the method's formal parameter types.” …

[Is it really necessary or helpful to give a parseable grammar of the toString output?]

46

JDK 1.0/1.1 era examples

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Short.htmlhashCode()
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/reflect/Method.htmltoString()

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Newer convention: less-specific specifications

• Annotation.toString():
“Returns a string representation of this annotation. The details of the
representation are implementation-dependent, but the following may be
regarded as typical:
@com.example.Name(first="Duke", middle="of", last="Java") ”

[Exact behavior of Annotation.toString() has changed several times
to be more faithful to annotations as used in source code.]

• javax.lang.model.Element.hashCode():
“Obeys the general contract of Object.hashCode.”
[Explicitly indicates there is nothing else to say.]

47

JDK 5.0 and 6

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/annotation/Annotation.htmltoString()
https://docs.oracle.com/en/java/javase/20/docs/api/java.compiler/javax/lang/model/element/Element.htmlhashCode()

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Set.of() iteration order

• Static factories to create unmodifiable sets; for such sets:

• “The iteration order of set elements is unspecified and is subject to change.”

• Implementation of the iteration order of these sets is randomized per JVM-
invocation.

48

JEP 269: Convenience Factory Methods for Collections, JDK 9

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/Set.html#unmodifiable
https://openjdk.org/jeps/269

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Q: What about cases where those
compatibility policies are too restrictive or
premature?
A: Preview Features and Incubator Modules

49

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Motivation: back during Project Coin in JDK 7…

• Working on various language changes including try-with-resources.

• Put out a call to try out try-with-resources:
• Implementation in promoted JDK 7 build

• Fully specified with a null-handling policy to throw NPE on a null resource

• Included library support and regression testing, etc.

• Time passed … and about six months later Rémi Forax sent in feedback
based on experience that the null-handing policy should be changed to
ignore a null resource.

• After due consideration, the null-handing policy was changed.

50

https://web.archive.org/web/20100824113157/http:/blogs.sun.com/darcy/entry/project_coin_try_out_try
https://web.archive.org/web/20100719125521/http:/blogs.sun.com/darcy/entry/project_coin_updated_arm_spec
https://bugs.openjdk.org/browse/JDK-6911258
https://bugs.openjdk.org/browse/JDK-6911261
https://mail.openjdk.org/pipermail/coin-dev/2011-January/002961.html
https://web.archive.org/web/20110311235401/http:/blogs.sun.com/darcy/entry/project_coin_null_try_with

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Handling the policy change

• Changing the null-handing policy as suggested would be outside the
scope of what would be considered an acceptable language change after
the feature was included in a Java SE release.

• Since JDK 7 was a multi-year release, updating the null-handing policy
could be made (update specification, implementation, and tests) before
GA.

• How could this kind of situation be accommodated in a six-month release?

51

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview Features and Incubator Modules
JEP 12: Preview Features & JEP 11: Incubator Modules

52

https://openjdk.org/jeps/12
https://openjdk.org/jeps/11

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview Features

“A preview feature is a new feature of the Java language, Java Virtual
Machine, or Java SE API that is fully specified, fully implemented, and yet
impermanent. It is available in a JDK feature release to provoke developer
feedback based on real world use; this may lead to it becoming permanent in
a future Java SE Platform.”

53

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview Features, cont.

“A preview feature is:

• a new feature of the Java language ("preview language feature"), or

• a new feature of the JVM ("preview VM feature"), or

• a new module, package, class, interface, method, constructor, field, or
enum constant in the java.* or javax.* namespace ("preview API")

whose design, specification, and implementation are complete, but which
would benefit from a period of broad exposure and evaluation before either
achieving final and permanent status in the Java SE Platform or else being
refined or removed.”

54

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview Features, cont.

“The key properties of a preview feature are:

1.High quality. A preview feature must display the same level of technical
excellence and finesse as a final and permanent feature of the Java SE Platform.
For example, a preview language feature must respect traditional Java principles
such as readability and compatibility, and it must receive appropriate treatment
in the reflective and debugging APIs of the Java SE Platform.

2.Not experimental. A preview feature must not be experimental, risky,
incomplete, or unstable. …

3.Universally available. The Umbrella JSR for the Java SE $N Platform enumerates
the preview features of the platform. …”

55

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview: discussion

• Analogy with try-with-resources: as a preview feature it would definitely have
had an explicit policy of null handling, but would have reserved the right to
change that policy before try-with-resources became a non-preview part of the
platform.

• Preview features are part of Java SE, but have a different cross-release
compatibility policy; they can be arbitrarily changed or even removed.

• Example language feature of pattern matching:
• JEP 406: Pattern Matching for switch (Preview) in JDK 17

• JEP 420: Pattern Matching for switch (Second Preview) in JDK 18

• JEP 427: Pattern Matching for switch (Third Preview) in JDK 19

• JEP 433: Pattern Matching for switch (Fourth Preview) in JDK 20

• JEP 441: Pattern Matching for switch, currently Candidate, (in JDK 21?)

56

https://openjdk.org/jeps/406
https://openjdk.org/jeps/420
https://openjdk.org/jeps/427
https://openjdk.org/jeps/433
https://openjdk.org/jeps/441

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview: discussion, cont.

• Use of Preview features is opt-in at compile-time and runtime

• See JEP 12 for detailed discussion of different use cases, preview language
features vs. preview APIs, reflective APIs, etc.

57

https://openjdk.org/jeps/12

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Incubator Modules

• tl;dr APIs live in jdk.incubator.*; not part of Java SE

• Opt-in for usage; can change or be dropped between releases.

• Example: Foreign-Memory Access API started incubating in JDK 14 (JEP
370); iteration of the API was a preview in JDK 19 (JEP 424).

58

JEP 11: Incubator Modules

https://openjdk.org/jeps/370
https://openjdk.org/jeps/424
https://openjdk.org/jeps/11

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Possible API/feature lifecycles

59

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 60

Common case

API/feature lifecycles

Normal

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 61

Incubator and/or Preview

API/feature lifecycles

Incubatoropt

Normal
Previewopt

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 62

Deprecation; see JEP 277: Enhanced Deprecation

API/feature lifecycles

Normal
Deprecatedopt

Dep. for Removalopt

Removedopt

https://openjdk.org/jeps/277

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Logistics of Contributing to OpenJDK
How to contribute
OpenJDK Developers’ Guide

63

https://openjdk.org/contribute/
https://openjdk.org/guide/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Security Vulnerabilities

• If you think you’ve found a security vulnerability, separate procedures
handled by the OpenJDK Vulnerabilities group.

64

https://openjdk.org/groups/vulnerability/report

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Basics: find a build to get started…

65

https://openjdk.org/

https://openjdk.org/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Build landing page

66

https://jdk.java.net/

https://jdk.java.net/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 67

For a given feature release project like JDK 21…

https://openjdk.org/projects/jdk/21/

https://openjdk.org/projects/jdk/21/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

General OpenJDK infrastructure

• Mailing lists; used for different technology areas (core-libs, HotSpot, client-
libs, etc.) and well as various projects (Amber, Valhalla, etc.)

• JBS – JDK Bug System: Jira instance, most bugs of interest are in the “JDK”
project

• OpenJDK Wiki

• OpenJDK Project on GitHub

68

Including, but not limited to:

https://mail.openjdk.org/mailman/listinfo
https://mail.openjdk.org/mailman/listinfo/core-libs-dev
https://mail.openjdk.org/mailman/listinfo/hotspot-dev
https://mail.openjdk.org/mailman/listinfo/client-libs-dev
https://openjdk.org/projects/amber
https://openjdk.org/projects/valhalla
https://bugs.openjdk.org/
https://wiki.openjdk.org/
https://github.com/openjdk/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Suggestions on contributing to a JEP

69

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Example: JEP 430: String Templates (Preview)

70

Send comments to
amber-dev@openjdk.org

https://openjdk.org/jeps/430

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Avoid

“I just read over the first half of the JEP; here is my hot-take on why these
proposed changes are not Java…”

71

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Recommendations and observations

• JEP text is a distillation of significant effort

• Suggestion: do the homework; read the whole JEP. For context, more
detailed discussion and rationale may be present in mailing list threads

• If available, try out build with the feature

• Send comments based on experience/retrofitting

72

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Other kinds of contributions

73

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Download an EA build and…

• Try it out in your CI system

• Report any issues (performance or functional regressions, etc.) to a mailing list or file
a bug (can be done without a JBS account).

• Program against preview features or incubator modules and report on
experiences

• If you help manage an open source project, consider joining the quality-
discuss efforts.

• If you only try out LTS releases, skipping over thousands and thousands of
bug fixes/improvements, possibly with behavioral compatibility impact.

• Can use javac –-release $OLD to reliably compile to supported older
releases.

74

https://bugreport.java.com/bugreport/
https://mail.openjdk.org/pipermail/quality-discuss/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Standing suggestions

• Reduce reliance on JDK internals!

• Both in your libraries own and your dependencies!

• Question every --add-exports or --add-opens that you see

• Move away from deprecated functionality; see $JDK/bin/jdeps

• Feedback sent before a JDK’s rampdown 1 starts is easier to act upon in
that release.

75

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

General Contributions

76

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

You can send in a large unsolicited GitHub PR as long as…

• …you don’t have any attachment to it.

• A PR can be much more expensive to maintain than to write.
(“Free puppy!”)

• A PR can even be much more expensive to review than to write.

• For example, for language changes, the cost of the change includes its
interactions with all existing language features, and all future language
features.

77

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Recommendations

• Solicit input on large changes on appropriate mailing list before
implementing them.

• This includes refactoring changes that touch many files; likely better to decompose
into one PR per review domain.

78

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Questions and Discussion

79

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Thank you!
Hope to see you in the OpenJDK community.

80

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

81

