Contributing to OpenlJDK:
Participating in stewardship
for the long-term

Joseph D. Darcy (Open|DK darcy, €)jddarcy, W@ijddarcy, @@jddarcy)
OpenJDK Compatibility & Specification Review (CSR) Group Lead,
JCP Spec Lead JSRs 269 (annotation processing) and 334 (Project Coin)
Inaugural lead engineer for OpenJDK 6

Java Platform Group, Oracle

JCP Executive Committee, April 12, 2023

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

http://openjdk.java.net/census#darcy
https://github.com/jddarcy/
https://twitter.com/jddarcy
https://mastodon.social/@jddarcy

Who am I?

* Long-time JDK engineer; multiple projects including:

* Compatibility & Specification Review (CSR) Group Lead: review interface changes in
JDK feature and update releases, =400 issues reviewed per year

* Spec lead for:
* JSR 269 (annotation processing) in Java SE 6 and continuing maintenance lead
* JSR 334 in Java SE 7 (Project Coin — small language changes)

* Over 1,000 commits in OpenJDK mainline

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://wiki.openjdk.org/display/csr/Main
https://jcp.org/en/jsr/detail?id=269
https://jcp.org/en/jsr/detail?id=334
https://openjdk.org/projects/coin/

Outline

* OpenlJDK Release Model

* Background
* JCP Model
* Compatibility Policies
* Possible API/feature lifecycles
* Logistics of Contributing to OpenJDK
* Suggestions on contributed to a JEP

* Other kinds of contributions
* General Contributions

* Questions and Discussion

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

A lookahead: ways to contribute

* Comment on GitHub PR’s or correspond on mailing lists
* Perhaps even initiate a mailing list thread or PR yourself ©

* Send in feedback on JEPs (JDK Enhancement Proposals)
* Try out new features and write up your experience.

* See how the early access builds work in your Cl system.

* Will discuss context of JDK development in much of the rest of the talk to
contribute more effectively.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

OpenlJDK Release Model

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

What is a JEP?

* JDK Enhancement Proposal; open to committers, used for:
* Policy documents (e.g. JEP 12: Preview Features)

Project management of features (e.g. JEP 444: Virtual Threads) and so much more!
* Rational of the feature, design alternatives

¢ Sample usages oK Leaq Closed/Rejected

neon
WV RPCETI]L

Draft >

* “One stop shopping.” g
_ L—»Submitted N i T e
* Submitted JEPs are requested to be (e N
: OpeniDK andidate Owner roposed to Drop
added to the technical roadmap ™
Proposed to Target
* Candidate JEPs are on the technical o o SRR
roadmap M ow k» Integrated
* Proposed to Target requests to ClosadWidrawii . -5 ﬁ
bind a JEP to a particular release oacifii ared

Infrastructure JEPS only

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://cr.openjdk.org/~mr/jep/jep-2.0-02.html
https://openjdk.org/bylaws#committer
https://openjdk.org/jeps/12
https://openjdk.org/jeps/444

JEPs I've worked on

* JEP 306: Restore Always-Strict Floating-Point Semantics (JDK 17)
EP 369: Migrate to GitHub (JDK 16)
* JEP 357: Migrate from Mercurial to Git (JDK 16)
EP 296: Consolidate the JDK Forest into a Single Repository (JDK 10)

https://openjdk.org/jeps/306
https://openjdk.org/jeps/369
https://openjdk.org/jeps/357
https://openjdk.org/jeps/296

JEPs in JDK Feature Releases

File Edit View Histery Bookmarks Tools Help _

A DK 19

c

X |+

O 48 = https://openjdk.org/projects/jdk/19/ kg R

¥ Most Visited) Getting Started #8 OpenlDK

Open)DK

Installing
Contributing
Sponsoring
Developers’ Guide
Vulnerabilities
DK GA/EA Builds
Mailing lists

Wiki -IRC

Bylaws - Census
Legal

JEFP Process

Source code
Mercurial
GitHub

Tools

Git

jtreg hamess

Groups

[overview]

Adoption

Build

Client Lipraries

Compatibility &
Specification
Review

Compiler

Conformance

Core Libraries

Goveming Beoard

HotSpot

IDE Tooling & Suppart

Internaticnalization

JMX

Members

Networking

Porters

Quality

Security

Serviceability

Vulnerability

Web

JDK 19

JDK 19 is the open-source reference implementation of version 19 of the Java SE
Platform, as specified by by |SR 394 in the Java Community Process.

JDK 19 reached General Availability on 20 September 2022. Production-ready
binaries under the GPL are available from Oracle; binaries from other vendors will
follow shortly.

The features and schedule of this release were proposed and tracked via the JEP

Process, as amended by the |JEP 2.0 proposal. The release was produced using the
JDK Release Process (JEP 3).

Features

A05: Record Patterns (Preview)

422: Linux/RISC-V Port

424: Foreign Function & Memory API (Preview)
425: Virtual Threads (Preview)

426: Vector API (Fourth Incubator)

427: Pattern Matching for switch (Third Preview)
428: Structured Concurrency (Incubator)

Schedule

2022/06/09 Rampdown Phase One (fork from main line)
2022/07/21 Rampdown Phase Two

2022/08/11 Initial Release Candidate

2022/08/25 Final Release Candidate

2022/09/20 General Availability

I ast undate: 2022/9/20 1413 1ITC

File Edit View History Bookmarks Tools Help _

A DK 20

c

x | +

O 8 == https://openjdk.org/projects/jdk/20,/ g L o=

£F Most Visited &) Getting Started <& OpenJDK

Open)DK

Installing
Cantributing
Spansoring
Developers’ Guide
Vulnerabilities
DK GAEA Builas
Mailing lists

Wiki -IRC

Bylaws - Census
Legal

JEP Process

Source code
Mercurial
GitHun

Tools

Git

jtreg namess

Groups

(overview)

Adoption

Build

Client Lipraries

Compatibility &
Specification
Review

Compiler

Confarmance

Core Libraries

Goveming Board

HotSpot

IDE Tooling & Suppart

Internationalization

MK

Members

Networking

Parters

Quality

Security

Servicenbility

Vulnerability

Web

Projects

overview, archive

Ambar

Audic Engine

CRaC

JDK 20

This release is the Reference Implementation of version 20 of the Java SE Platform,
as specified by JSR 395 in the Java Community Process.

JDK 20 reached General Availability on 21 March 2023. Production-ready binaries
under the GPL are available from Oracle; binaries from other vendors will follow
shortly.

The features and schedule of this release were proposed and tracked via the |JEP
Process, as amended by the |EP 2.0 proposal. The release was produced using the
JDK Release Process (JEP 3).

Features

429: Scoped Values (Incubator)

432: Record Patterns (Second Preview)

433: Pattern Matching for switch (Fourth Preview)
434: Foreign Funcrion & Memory APl (Second Preview)
436: Virtual Threads (Second Preview)

437: Structured Concurrency (Second Incubator)

438: Vector API (Fifth Incubator)

Schedule

2022/12/08 Rampdown Phase One (fork from main line)
2023/01/19 Rampdown Phase Two

2023/02/09 Initial Release Candidate

2023/02/23 Final Release Candidate

2023/03/21 General Availability

Last update: 2023/3/21 16:53 UTC

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

What are “Preview” and “Incubator”
features?

Will be discussed later...

Overview of JDK Release Process
JEP 3: JDK Release Process

* Previously, multi-year releases

* Since 2018 starting with JDK 10, new feature release every six months,
March and September. Each release developed over about 9 months.

* Four phases:
* Least-restricted development (=six months)
* Rampdown Phase One (RDP 1)
* Rampdown Phase Two (RDP 2)
* Release-Candidate Phase (RC)

* The last RC build is then released as the GA build.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

10

https://openjdk.org/jeps/3

Sample JDK release schedules

March release year SY September release year SY

* Dev starts: early JuneS(Y-1) %- Dev starts: early December S(Y-1)
Rampdown 1 start: early December S(Y-1) S Rampdown 1 start: early June SY
N

Rampdown 2 start: mid January SY &

* Rampdown 2 start: mid July SY

Initial release candidate: early February SY * Initial release candidate: early August SY
GA: late March SY * GA: late September SY

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

11

Current JDK Release Process

* Predictable schedule
* Always an open-for-business repo for developers to push to

* Skipping details of:
* Handling of update releases

* LTS (long-term support) vs non-LTS — however; note that non-LTS releases are still
“real” releases worth using and testing on, etc.

* (Such details are JDK-vendor specific)

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

12

Fixes per JDK Feature Release

3000

2500

2000
1500
1000
50
10 11 12 13 14 15 16 17 18 19 20

JDK Feature Release

Issues fixed

o

o

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

13

Bug fix observations

* About 2,400 fixes per JDK feature release

* Lots of changes to potentially comment on (or contribute!) beside large
features and JEPs

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

14

Who has done what
The Arrival of Java 20! by Sharat Chander

Issues fixed in JDK 11-JDK 20 per organization

M AliBaba B Amazon Ampere Computing ARM B Azul

B BellSoft M DataDog B Fujitsu B Google B Huawei

H IBM B Independent H Intel ISCAS JetBrains
Linaro Loongson Microdoc B Microsoft B NTT Data

Independent

NTT
Google Data m

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Bells m ke
oft

15

https://inside.java/2023/03/21/the-arrival-of-java-20/

Background

JCP and Open Source

* Since JCP 2.5in 2002, the JCP has allowed and embraced open source
development of the technologies standardized through the process

* For Java SE, the reference implementation is built from sources in OpenJDK
repositories

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://jcp.org/en/press/releases/enhance

What about the Open]DK community?

* Good faith down payment by publication of HotSpot and javac sources in
2006; rest of JDK in 2007 (longer effort to remove all binary plugs, etc.)

* OpenJDK is licensed under open source licenses, predominantly GPLv2,
(with the ClassPath Exception for the libraries)

* Initial OpenJDK sources populated from the in-progress JDK 7.

* A “backward branch” from JDK 7 used to make OpenJDK 6.
* Red Hat’s IcedTea project first to get a OpenJDK 6 binary passing the Java SE 6 TCK.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://web.archive.org/web/20080201104834/http:/blogs.sun.com/darcy/entry/forward_to_the_past
https://openjdk.org/projects/jdk6/
https://web.archive.org/web/20080621025447/http:/blogs.sun.com/darcy/entry/openjdk_6_congratulations_to_icedtea

JCP model

&

= Java
Community
ava Process

The Java Community Process, starting circa 1998
JCP Triad for the Java SE 20 Umbrella JSR 395

Specification Reference Technology
Implementation Compatibility Kit
(RI) (TCK)
JLS Build of OpenJDK 20 JCK 20
IVMS On Linux and Windows

https://ijdk.java.net/java-se-ri/20

java.*
javax.*

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 20

https://jcp.org/en/jsr/detail?id=395
https://jcp.org/en/home/index
https://jdk.java.net/java-se-ri/20

Logistics

* AJSR is run to cover Java SE changes in each JDK feature release;
e.g: JSR 393 for Java SE 18, JSR 394 for Java SE 19, JSR 395: Java SE 20, etc.

* Without benefit of a MR (maintenance review) of the Java SE platform
specification, cannot make normative changes to the Java SE APIs in an
update release.

* This constraint precludes the additional of technically innocuous methods, often
caught by the signature test (checks for supersetting, subsetting).

* MRs of the platform are rarely done, but are done with sufficient cause,
such as JSR 337 MR 3 for adding TLS 1.3 to Java SE 8.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 21

https://jcp.org/en/jsr/detail?id=393
https://jcp.org/en/jsr/detail?id=394
https://jcp.org/en/jsr/detail?id=395

Different categories of interfaces and
maintenance domains

A JDK doesn’t just contain Java SE!

S{VENDOR} JDK & OpenlJDK builds, Java SE interfaces

sun.*, com.sun.*, jdk.*

Open)DKbuild
JVM ’/////////

compiler

java.¥*
Javax.*

S{VENDOR]} JDK

Note: Figure not drawn to scale.
Typically more JDK sharing than pictured.

Java SE

Implementations of many Java SE technologies are included
in the OpenlDK sources

* Java Virtual Machine (HotSpot)
* Java Language Specification (javac)

* Class libraries in the java.* and javax.* namespace
* (Java EE classes can also be in javax. * etc.)

* Most Java SE-related work now done under the umbrella JSR

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Not all (Open)JDK APIs are defined in the JCP

Public exported APIs of the JDK but not Java SE:

* Tools in various modules:
* jdk.compiler (javac)
* jdk.jpackage
* jdk.jshell

* Tree API (for abstract syntax trees, ASTs):
jdk.compiler/com.sun.source.*

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

25

JDK Internal APIs

* JDK Internal APIs should not be used outside of the JDK itself, including but
not limited to:

° sun.*
* jdk.internal.*
* non-public methods/fields in java.*

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

26

Compatibility Policies

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

27

The constraints of success

* The Java platform’s success in part stems from strong compatibility policies

* Those policies constrain the kinds of changes that can be made in
subsequent releases

* Therefore, important to get an APl/interface “right” in the first release it
ships in

* At least right enough in the factors that are impractical to change afterward;
taking YAGNI into account preview and incubator options, etc.

* Counterpoint: avoid issues like those in Python community with Python 3:
Mercurial's Journey to and Reflections on Python 3

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 28

https://openjdk.org/jeps/12
https://gregoryszorc.com/blog/2020/01/13/mercurial's-journey-to-and-reflections-on-python-3/

What is the CSR?

Process to review interfaces changes and an OpenJDK group

* Compatibility and Specification Review
* Covers various kinds of exported interfaces of the JDK

* Looks after source, binary, and behavioral compatibility
* Reviews changes in the Java language, core libraries, as well as HotSpot
* On average =6% of fixes in a JDK feature release also go through CSR review

* CSRs used in preparation of JCP material for a feature release, HT Iris Clark:
* Java SE 21 CSR dashboard
* Java SE CSRs in Java SE 20 (JSR 395)

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

29

https://wiki.openjdk.org/display/csr/Main
https://bugs.openjdk.org/secure/Dashboard.jspa?selectPageId=21419
https://cr.openjdk.org/~iris/se/20/latestSpec/#Structure
https://openjdk.org/groups/csr/

Open CSRs per JDK feature release

Average =150/release under the six-month release model.

200

150

100

Number of open CSRs

50

o

130

10

160

11

12

Open CSRs per JDK feature release

174
149
142
I I |
13 14 15 16
JDK Feature Release

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

191
171
154
||||| |
17 18 19 20

30

Background: JDK General Evolution Policy
From the OpenJDK CSR wiki page

“The general compatibility policy for exported APls implemented in the JDK is:

1. Don’t break binary compatibility (as defined in the Java Language Specification)
without sufficient cause.

2. Avoid introducing source incompatibilities.
3. Manage behavioral compatibility changes.”

* Extends to language evolution too
* Continue to recognize old class files
* Limit cases where currently legal code stops compiling
* Avoid changes in code generation introducing behavioral change

* Goal: balance between stability and progress

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

31

https://docs.oracle.com/javase/specs/
https://wiki.openjdk.java.net/display/csr/Main

Short compatibility definitions

* Binary compatibility: do programs still link?

* Source compatibility: do programs still compile and still compile to
equivalent class files?

* Behavioral compatibility: do programs still operate the same way at
runtime?

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

32

Binary Compatibility

* Specific definition: the continued ability to link;
see JLS Chapter 13 Binary Compatibility

* Broken by, for example:
* removing types
* changing public methods to be private

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

33

https://docs.oracle.com/javase/specs/jls/se20/html/jls-13.html

Source Compatibility

* A surprisingly subtle topic!

* Degrees of source compatibility (CSR, Dev. Guide):
* Does the client code still compile (or not compile)?

* If the client code still compiles, do all the names resolve to the same binary names in
the class file?

* If the client code still compiles and the names do not all resolve to the same binary
names, does a behaviorally equivalent class file result?

* For example, adding overloaded methods/constructors to a class can
change how source code using that class is compiled; e.g. if a class has a
constructor taking a double, add a constructor taking a 1ong.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

34

https://wiki.openjdk.java.net/display/csr/Kinds+of+Compatibility
http://cr.openjdk.java.net/~darcy/OpenJdkDevGuide/OpenJdkDevelopersGuide.v0.777.html#source_compatibility

Behavioral Compatibility

* Intuitively, before and after a change to the JDK, do “the same” or
“equivalent” inputs produce “the same” or “equivalent” results?

* Difficult to define equivalence in all cases:

* Reflective/introspective operations
 Side-channels (relative performance, etc.)

* (Also includes serialization compatibility)

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

35

Release Compatibility Regions

Other Update Releases (PSU), 8u20, 8u40, ...

Note: Figure not drawn to scale.

Behavioral
Security Update Releases (CPU), 20.0.1, 20.0.2, ...

acle and/or its affiliates. All rights reserved

Feature Release Compatibility Region

Feature Release, JDK 20 GA, JDK 21 GA, ...

Note: Figure not drawn to scale.

Behavioral

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

37

Example: changing the iteration order of HashSet

* Specification of HashSet.iterator():
“Returns an iterator over the elements in this set. The elements are

returned in no particular order.”

* Changing iteration order is allowed by the specification and:

* Binary compatible (same set of methods)
* Source compatible (compilation of clients independent of 1terator method body)

* But a change in behavioral compatibility;
people can and do implicitly (and accidentally) rely on iteration order

For comparison see JEP 269: Convenience Factory Methods for Collections

* Therefore, this kind of change generally wouldn’t be made in either kind of
update release, but would be (and has been) made in a platform release.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 38

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/HashSet.htmliterator()
http://openjdk.java.net/jeps/269

Looking ahead

How to better accommodate behavioral changes

* What you can do: try out EA builds in your Cl systems!
* quality-discuss outreach to open-source projects through OpenJDK

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

9

https://mail.openjdk.org/pipermail/quality-discuss/

Vacuously true, but aspirational, statement

Except for timing dependencies or other non-determinisms and given
sufficient time and sufficient memory space, a program written in the Java
programming language should compute the same result on all machines
and in all implementations.

Preface to the JLS, first edition

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://docs.oracle.com/javase/specs/jls/se6/html/j.preface.html

Interpretation of and limits to compatibility

Old feature request from a customer circa 2006 for JDK 7 planning:

“What we're [at customer] talking about is compatibility between consecutive
feature releases. To give an example, binary compatibility [customer means
behavioral compatibility —Ed.] is extremely important to us:

We strongly believe that any Java binary application that is known to run without
any problems on Java SE platform version N should be able to run without any
problems on Java SE platforms of later versions as well (> N). There shouldn't be a
need to recompile, rebuild, retest, etc., Java applications upon upgrading the
underlying Java SE platform layer to a higher version. Similarly, we believe source
compatibility is extremely important and needs to be(come) a Java SE platform
feature by design as well.”

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 41

Why this request is infeasible as stated
Adversarial programs

Program tests for the Java version and fails if it isn’t equal to a particular value
—> couldn’t update Java version number

Program measures the relative performance of two methods. If the relative
performance isn’t with epsilon of the expected ratio, the program fails
= couldn’t add new intrinsics

Program calls javac and expects a compilation failure on a given text
= couldn’t evolve the Java programming language

Program intentionally causes a NPE and fails if the detail message doesn’t match
—> couldn’t add helpful NullPointerExceptions

Cloud vendor wants customer program P to use at least X CPU and Y memory
= can’t improve performance properties for end users

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

42

https://openjdk.org/jeps/358

And really adversarial programes...

* Program tests for the presence of security vulnerabilities
—> couldn’t fix security vulnerabilities

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

43

Aside on source compatibility

* Customer request for greater source compatibility is likely a reaction to the
addition of “assert” as a keyword in Java SE 1.4 (JSR 41).

* Current keyword management policies mitigate the impact of such changes
today — contextual keywords (JLS §3.9), hyphenated-keywords, etc.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://jcp.org/en/jsr/detail?id=41
https://openjdk.org/jeps/8223002
https://docs.oracle.com/javase/specs/jls/se20/html/jls-3.html#jls-3.9

Actual examples

* Eclipse IDE “broke” when the JDK vendor name was changed from “Sun” to
“Oracle” (checked vendor to set command-line flags of the JVM)

* Many behavioral incompatibilities in JDK 9 are not due to the module
system, but from changing the version numbering from “1.8.x” to “9.0.y".

* Judgement needed to balance stability with progress

* Reasonable behavioral compatibility is a shared responsibility of the users
and platform provider

* Platform provider should produce a good specification
* If users code to the specification, should have fewer problems updating

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 45

Evolution of behavioral compatibility expectations
JDK 1.0/1.1 era examples

* In the beginning, the consensus was that details of toString and
hashCode needed to be specified to satisfy WORA properties; examples:

* Short.hashCode():
“Returns a hash code for this Short; equal to the result of invoking intValue().”
[So Short.hashCode() is constrained to only use half the bits of the 32-bit hash.
Alternative: “All distinct short values have distinct hash codes...”]

* Method.toString():

“The string is formatted as the method access modifiers, if any, followed by the
method return type, followed by a space, followed by the class declaring the
method, followed by a period, followed by the method name, followed by a
parenthesized, comma-separated list of the method's formal parameter types.” ...

[Is it really necessary or helpful to give a parseable grammar of the toString output?]

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 46

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Short.htmlhashCode()
https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/reflect/Method.htmltoString()

Newer convention: less-specific specifications
JDK 5.0 and 6

* Annotation.toString():

“Returns a string representation of this annotation. The details of the
representation are implementation-dependent, but the following may be
regarded as typical:

@com.example.Name(first="Duke", middle="of", last="Java") ”

[Exact behavior of Annotation.toString() has changed several times

to be more faithful to annotations as used in source code.]

* javax.lang.model.Element.hashCode():
“Obeys the general contract of Object.hashCode.”
[Explicitly indicates there is nothing else to say.]

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 47

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/annotation/Annotation.htmltoString()
https://docs.oracle.com/en/java/javase/20/docs/api/java.compiler/javax/lang/model/element/Element.htmlhashCode()

Set.of () iteration order
JEP 269: Convenience Factory Methods for Collections, JDK 9

* Static factories to create unmodifiable sets; for such sets:
* “The iteration order of set elements is unspecified and is subject to change.”

* Implementation of the iteration order of these sets is randomized per JVM-
invocation.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

48

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/Set.html#unmodifiable
https://openjdk.org/jeps/269

Q: What about cases where those
compatibility policies are too restrictive or
premature?

A: Preview Features and Incubator Modules

Motivation: back during Project Coin in JDK 7...

* Working on various language changes including try-with-resources.

* Put out a call to try out try-with-resources:
* Implementation in promoted JDK 7 build
* Fully specified with a null-handling policy to throw NPE on a null resource
* Included library support and regression testing, etc.

* Time passed ... and about six months later Rémi Forax sent in feedback
based on experience that the null-handing policy should be changed to
ignore a null resource.

* After due consideration, the null-handing policy was changed.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 50

https://web.archive.org/web/20100824113157/http:/blogs.sun.com/darcy/entry/project_coin_try_out_try
https://web.archive.org/web/20100719125521/http:/blogs.sun.com/darcy/entry/project_coin_updated_arm_spec
https://bugs.openjdk.org/browse/JDK-6911258
https://bugs.openjdk.org/browse/JDK-6911261
https://mail.openjdk.org/pipermail/coin-dev/2011-January/002961.html
https://web.archive.org/web/20110311235401/http:/blogs.sun.com/darcy/entry/project_coin_null_try_with

Handling the policy change

* Changing the null-handing policy as suggested would be outside the
scope of what would be considered an acceptable language change after
the feature was included in a Java SE release.

* Since JDK 7 was a multi-year release, updating the null-handing policy
could be made (update specification, implementation, and tests) before

GA.
* How could this kind of situation be accommodated in a six-month release?

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Preview Features and Incubator Modules

JEP 12: Preview Features & JEP 11: Incubator Modules

https://openjdk.org/jeps/12
https://openjdk.org/jeps/11

Preview Features

“A preview feature is a new feature of the Java language, Java Virtual
Machine, or Java SE API that is fully specified, fully implemented, and yet
impermanent. It is available in a JDK feature release to provoke developer
feedback based on real world use; this may lead to it becoming permanent in
a future Java SE Platform.”

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 53

Preview Features, cont.

“A preview feature is:
* a new feature of the Java language ("preview language feature"), or
* a new feature of the JVM ("preview VM feature"), or

* a new module, package, class, interface, method, constructor, field, or
enum constant in the java.* or javax. * namespace ("preview API")

whose design, specification, and implementation are complete, but which
would benefit from a period of broad exposure and evaluation before either
achieving final and permanent status in the Java SE Platform or else being
refined or removed.”

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 54

Preview Features, cont.

“The key properties of a preview feature are:

1.High quality. A preview feature must display the same level of technical
excellence and finesse as a final and permanent feature of the Java SE Platform.
For example, a preview language feature must respect traditional Java principles
such as readability and compatibility, and it must receive appropriate treatment
in the reflective and debugging APls of the Java SE Platform.

2.Not experimental. A preview feature must not be experimental, risky,
incomplete, or unstable. ...

3.Universally available. The Umbrella JSR for the Java SE SN Platform enumerates
the preview features of the platform. ...”

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 55

Preview: discussion

* Analogy with try-with-resources: as a preview feature it would definitely have
had an explicit policy of null handling, but would have reserved the right to
change that policy before try-with-resources became a non-preview part of the
platform.

* Preview features are part of Java SE, but have a different cross-release
compatibility policy; they can be arbitrarily changed or even removed.

* Example language feature of pattern matching:
» JEP 406: Pattern Matching for switch (Preview) in JDK 17
JEP 420: Pattern Matching for switch (Second Preview) in JDK 18
JEP 427: Pattern Matching for switch (Third Preview) in JDK 19
JEP 433: Pattern Matching for switch (Fourth Preview) in JDK 20
JEP 441: Pattern Matching for switch, currently Candidate, (in JDK 217?)

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 56

https://openjdk.org/jeps/406
https://openjdk.org/jeps/420
https://openjdk.org/jeps/427
https://openjdk.org/jeps/433
https://openjdk.org/jeps/441

Preview: discussion, cont.

* Use of Preview features is opt-in at compile-time and runtime

* See JEP 12 for detailed discussion of different use cases, preview language
features vs. preview APIs, reflective APIs, etc.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

57

https://openjdk.org/jeps/12

Incubator Modules
JEP 11: Incubator Modules

* tl;dr APIs live in jdk.incubator.*; not part of Java SE
* Opt-in for usage; can change or be dropped between releases.

* Example: Foreign-Memory Access APl started incubating in JDK 14 (JEP
370); iteration of the APl was a preview in JDK 19 (JEP 424).

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

58

https://openjdk.org/jeps/370
https://openjdk.org/jeps/424
https://openjdk.org/jeps/11

Possible APl/feature lifecycles

APl /feature lifecycles

Common case

Normal

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

60

APl /feature lifecycles

Incubator and/or Preview

Incu batorc,:pt

™~ PrevievN

t
< > 2 Normal

APl /feature lifecycles

Deprecation; see JEP 277: Enhanced Deprecation

Normal -
™~ Deprecam
~_ opt

Dep. for Removal
™ Removed,,

https://openjdk.org/jeps/277

Logistics of Contributing to OpenJDK

How to contribute
OpenJDK Developers’ Guide

https://openjdk.org/contribute/
https://openjdk.org/guide/

Security Vulnerabilities

* If you think you’ve found a security vulnerability, separate procedures
handled by the OpenJDK Vulnerabilities group.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

64

https://openjdk.org/groups/vulnerability/report

Basics: find a build to get started.

https://openjdk.org/

File Edit View History Bookmarks Tools Help
& OpenIDK X +

<« [&] QO B 5= hitpsy/openjdk.org

Most Visited & Getting Started & Open)DK
9 P

1500 17

Installing
Contributing
Sponsoring
Developers' Guide

Wiki - IRC

Bylaws - Census
Legal

Workshop
JEP Process

Source code
Mercurial
GitHub

Tools
Git
jtreg harness

Groups

(overview)

Adoption

Build

Client Libraries

Compatibility &
Specification
Review

Compiler

Conformance

Core Libraries

Governing Board

HotSpot

IDE Tooling & Support

Internationalization

JMX

Members

Networking

Porters

Quality

Security

Serviceability

What is this? The place to collaborate on an open-
source implementation of the Java Platform, Standard
Edition, and related projects.

Download and install the latest open-source |DK.
Oracle's free, GPL-licensed, production-ready Open)DK
JDK 20 binaries for Linux, macQS, and Windows are
available at jdk.java.net/20; Oracle's commercially-
licensed JDK 20 binaries, based on the same code, are
here.

Learn about the key active Projects in the Community
including Amber (high-productivity language features),
Loom (lightweight concurrency), Panama (foreign
functions and foreign data), Valhalla (primitive types
and specialized generics), and, of course, the next
version of Java and the JDK.

[«
&

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

65

https://openjdk.org/

Build landing page

https://jdk.java.net/

File Edit View History Bookmarks Tools Help
& DK Builds from Oracle X | +

< C O 8 httpsi//jdkjavanet 120% 1Y

¥ Most Visited & Getting Started & OpenJDK

jdk.java.net

Production and Early-Access OpenJDK Builds, from Oracle

Ready for use: DK 20, JDK 19, JavaFX 20, JMC 8

Early access: JDK 21, Generational ZGC, JavaFX 21,
Jextract, Loom, Metropolis, Panama, & Valhalla

Looking to learn more about Java? Visit dev.java for the latest
Java developer news and resources.

Looking for Oracle JDK builds and information about Oracle’s
enterprise Java products and services? Visit the Oracle /DK
Download page.

:

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

66

https://jdk.java.net/

For a given feature release project like JDK 21...

File Edit View History Bookmarks Tools Help ~ O %
& OpenlDK X A IDK21 X+ A 0K 21
« => C QO B #° hitps//openjdkorg o 17 Y & @ = & G
¥ Most Visited &) Getting Started 4 OpenJDK
~
Cominaing Installing
ng Contributing
e m Speonsering
v s -
JoK GavEs Bultas SG‘VE‘DD;‘G Guide
ulnerabilities
:‘;I\Im‘;;(m DK GA/EA Builds
Bylaws - Census Mailing lists
e Wiki - IRC
erkener Byl Census
- aws
JER Pracess . What Is this? The place to collaborate on an open- Leyw
Saurce code source implementation of the Java Platform, Standard
mercunal _ Worksnop
GitHub Edition, and related projects.
Tosis JEP Process
e Source code
Jweg namess
Mercurial
Groups
(overy Download and install the latest open-source JDK. GitHub
A y
Bullg Oracle’s free, GPL-licensed, production-ready Open|DK Tools
:|en:;t|;Dranes DK 20 binaries for Linux, macOS, and Windows are Gre
cam 3 ; y
s available at Jdk.java.net/20; Oracle's commercially- treg harness
licensed JDK 20 binaries, based on the same code, are Groups
here. (overview)
Adoption
Build
Client Libraries
Learn about the key active Projects in the Community Compatibility &
including Amber (high-productivity language features), Specification
M Loom (lightweight concurrency), Panama (foreign Review
functions and foreign data), Valhalla (primitive types gg"mfg‘r‘;;”ﬁ
and specialized generics). and, of course, the next Core Libraries
version of Java and the JDK. Governing Board
If you want to learn how to use the Java that's HotSpot
available today, head over to dev.java IDE Tooling & Support
Internationalization
JLIbS
Members
Hack on the JDK itself, right here in the Open]DK. Networking
Community: Browse the code on the web, clone a Porters
repository to make a local copy, and contribute a Quality
patch to fix a bug, enhance an existing component, or Security
define a new feature Serviceability
Vulnerability
Web
Projects
(overview, archive)
Galanad Amber
Graal
Graphics Rasterizer Audio Engine
e Open)DK Committers’ Workshop: 10-11 August 2023
o7 Caciocavallo
o7 e Closures
- Code Tools
oK s Cain
jox 19 20,22 Common VM
DX Updiates
— Interface
Jlasaw v Compiler Grammar

File Edit View History Bookmarks Tools Help

x|+

QO 8 == hitps//openjdkorg/projects/idk/21/ %L

£} Most Visited &) Getting Started 4 Open)DK

JDK 21

This release will be the Reference Implementation of version 21 of the Java SE
Platform, as specified by JSR 395 in the Java Community Process.

Status

The main-line code repository is open for bug fixes, small enhancements, and JEPs
as proposed and tracked via the JEP Process.

Schedule
2023/06/08 Rampdown Phase One (fork from main line)
2023/07/20 Rampdown Phase Two
2023/08/10 Initial Release Candidate
2023/08/24 Final Release Candidate
2023/09/19 General Availability
Features

JEPs proposed to target JDK 21
430: String Templates (Preview)
444: Virtual Threads

review ends
2023/04/13
2023/04/07

JEPs targeted to JDK 21, so far
431: Sequenced Collections

Last update: 2023/4/6 21:58 UTC

https://openjdk.org/projects/jdk/21/

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

67

https://openjdk.org/projects/jdk/21/

General Open)DK infrastructure
Including, but not limited to:

* Mailing lists; used for different technology areas (core-libs, HotSpot, client-
libs, etc.) and well as various projects (Amber, Valhalla, etc.)

* JBS — JDK Bug System: Jira instance, most bugs of interest are in the “JDK”
project = B

* Open)JDK Wiki
* Open)JDK Project on GitHub

\\\\\\

Top languages

nnnnnnnnn

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

https://mail.openjdk.org/mailman/listinfo
https://mail.openjdk.org/mailman/listinfo/core-libs-dev
https://mail.openjdk.org/mailman/listinfo/hotspot-dev
https://mail.openjdk.org/mailman/listinfo/client-libs-dev
https://openjdk.org/projects/amber
https://openjdk.org/projects/valhalla
https://bugs.openjdk.org/
https://wiki.openjdk.org/
https://github.com/openjdk/

Suggestions on contributing to a JEP

Example: JEP 430: String Templates (Preview)

A JEP 430: String Templates (Previ 3

&]

£ Most Visited &) Getting Started

Open)DK

Installing
Contributing
Sponsoring
Developers' Guide
Vulnerabilities
DK GA/EA Builds

Mailing lists
Wiki - IRC

Bylaws - Census
Legal

Workshop
JEP Process

Source code
Mercurial
GitHub

Tools
Git
jtreg harness

Groups

(overview)

Adoption

Build

Client Libraries

Compatibility &
Specification
Review

Conformance
Core Libraries
Governing Board

IDE Tooling & Support
Internationalization
Mx

Members
Networking

Porters

Quality

Security
Serviceability
Vulnerability

Web

Projects
(overview, archive)
Amber

Audio Engine
CRaC

Caciocavallo

File Edit View History Bookmarks Tools Help

+

O B == hitps//openjdk.org/jeps/430 B e

& OpenlDK

JEP 430: String Templates (Preview)

Owner Jim Laskey
Type Feature

w

Scope SE
Status Proposed to Target
Release 21
Component imnguég?\
Discussi amber dash dev at openjdkdoy
Effort
Duration M

Reviewed by Alex Buckley, Brian Goetz, Maurizio Cimadamore
Endorsed by Brian Goetz
Created 2021/09/17 13:41
Updated 2023/04/06 21:41
Issue 8273943

Summary

Enhance the Java programming language with siring templates. String templates
complement Java's existing string literals and text blocks by coupling literal text
Compiler with embedded expressions and template processors to produce specialized
results. This is a preview language feature and API.

HotSpot Goals

= Simplify the writing of Java programs by making it easy to express strings
that include values computed at run time.

= Enhance the readability of expressions that mix text and expressions,
whether the text fits on a single source line (as with string literals) or spans
several source lines (as with text blocks).

= Improve the security of Java programs that compose strings from user-
provided values and pass them to other systems (e.g., building queries for
databases) by supporting validation and transformation of both the
template and the values of its embedded expressions.

Dotain flayvihility bas allowi lawa lihrariac ta dofina tho farmatting cunt

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

Send comments to
amber-dev@openjdk.org

70

https://openjdk.org/jeps/430

Avoid

“I just read over the first half of the JEP; here is my hot-take on why these
proposed changes are not Java...”

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

71

Recommendations and observations

* JEP text is a distillation of significant effort

* Suggestion: do the homework; read the whole JEP. For context, more
detailed discussion and rationale may be present in mailing list threads
* |If available, try out build with the feature
* Send comments based on experience/retrofitting

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

72

Other kinds of contributions

Download an EA build and...

* Try it out in your C| system

* Report any issues (performance or functional regressions, etc.) to a mailing list or file
a bug (can be done without a JBS account).

* Program against preview features or incubator modules and report on
experiences

* If you help manage an open source project, consider joining the guality-
discuss efforts.

* [f you only try out LTS releases, skipping over thousands and thousands of
bug fixes/improvements, possibly with behavioral compatibility impact.

* Can use javac --release $0LD to reliably compile to supported older
releases.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 74

https://bugreport.java.com/bugreport/
https://mail.openjdk.org/pipermail/quality-discuss/

Standing suggestions

* Reduce reliance on JDK internals!
* Both in your libraries own and your dependencies!
* Question every --add-exports or --add-opens that you see

* Move away from deprecated functionality; see $IJDK/bin/jdeps

* Feedback sent before a JDK’s rampdown 1 starts is easier to act upon in
that release.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

75

General Contributions

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

76

You can send in a large unsolicited GitHub PR as long as...

* ...you don’t have any attachment to it.

* A PR can be much more expensive to maintain than to write.
(“Free puppy!”)
* A PR can even be much more expensive to review than to write.

* For example, for language changes, the cost of the change includes its
interactions with all existing language features, and all future language
features.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

77

Recommendations

* Solicit input on large changes on appropriate mailing list before
implementing them.

* This includes refactoring changes that touch many files; likely better to decompose
into one PR per review domain.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

78

Questions and Discussion

Thank youl!

Hope to see you in the OpenJDK community.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved

80

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2009, 2023, Oracle and/or its affiliates. All rights reserved 81

