
Copyright © 2023 Oracle and/or its affiliates.

Iris Clark

Specification Lead

iris.clark@oracle.com
August 8, 2023

JSR 396: Java SE 21

Copyright © 2023 Oracle and/or its affiliates.

JSR 396: Java SE 21

Reference Implementation (RI) – JDK 21

• Latest: https://jdk.java.net/21 (build 34)
• Repository: https://github.com/openjdk/jdk21
• Rampdown Phase 2 (RDP2)

• Feature set frozen
• Development very strictly limited to selected bug fixes

• 12 Integrated SE JEPs; 129 approved SE CSRs
• General Availability (GA): 2023/09/19

Schedule

2022/12/07
Expert Group Formation

2023/07/18 – 2023/08/21
Public Review

2023/08/22 – 2023/08/28
Public Review –
Final Approval Ballot

2023/09
Final Release

Technology Compatibility Took Kit (TCK) – JCK 21
• Stabilization fork in Jul; Code freeze recently

Specification
• Latest: https://cr.openjdk.org/~iris/se/21/latestSpec (DRAFT 34)
• Public Review ends 21 Aug

https://jdk.java.net/21
https://github.com/openjdk/jdk21
https://cr.openjdk.org/~iris/se/21/latestSpec

Copyright © 2023 Oracle and/or its affiliates.

SE JEPs in Java SE 21

Virtual Machine

Language

440 Record Patterns

441 Pattern Matching for switch

430 String Templates (Preview)

443 Unnamed Patterns & Variables
(Preview)

445 Unnamed Classes & Instance main
Methods (Preview)

451 Prepare to Disallow the Dynamic
Loading of Agents

Libraries

431 Sequenced Collections

444 Virtual Threads

453 Structured Concurrency (Preview)

446 Scoped Values (Preview)

442 Foreign Function & Memory API
(Third Preview)

Security

452 Key Encapsulation Mechanism API

https://openjdk.org/jeps/440
https://openjdk.org/jeps/441
https://openjdk.org/jeps/430
https://openjdk.org/jeps/443
https://openjdk.org/jeps/445
https://openjdk.org/jeps/451
https://openjdk.org/jeps/431
https://openjdk.org/jeps/444
https://openjdk.org/jeps/453
https://openjdk.org/jeps/446
https://openjdk.org/jeps/442
https://openjdk.org/jeps/452

Copyright © 2023 Oracle and/or its affiliates.

An Aside: JEP 12: Preview Features

• Preview features are fully specified, fully implemented, but subject to change.
• Code using a preview feature may not necessarily compile or run in another release.
• Must be enabled at compile time and run time:

javac --release 21 –-enable-preview Main.java

java --enable-preview Main
java --source 21 --enable-preview Main.java // source code launcher
jshell --enable-preview

• All preview features in the current release must take one of the following actions in the
next feature release
• Remove
• Re-preview
• Standardize

Copyright © 2023 Oracle and/or its affiliates.

JEP 440: Record Patterns

Extend pattern matching to de-structure instances of Record classes.

static void printSum(Object obj) {
if (obj instanceof Point(int x, int y)) {

System.out.println(x+y);
}

}

History

• First previewed in Java SE 19, re-previewed in Java SE 20

Why

• More sophisticated data queries
• Another step towards declarative, data-focused programming

Copyright © 2023 Oracle and/or its affiliates.

JEP 441: Pattern Matching for switch

Enhance switch statements to support additional types and semantics.

static String formatterPatternSwitch(Object obj) {
return switch (obj) {

case Integer i -> String.format("int %d", i);
case String s -> String.format("String %s", s);
default -> obj.toString();

};
}

History

• First previewed in Java SE 17, re-previewed in Java SE 18, 19, and 20

Why

• Express complex data-oriented queries concisely and safely

Copyright © 2023 Oracle and/or its affiliates.

JEP 430: String Templates (Preview)

Introduce string composition that couples literal text with embedded expressions
and template processors.

String name = "Duke";
String info = STR."My name is \{name}";
assert info.equals("My name is Duke"); // true

Why

• Commonly used feature used in other popular programming languages
• Existing string composition techniques (String concatenation with ‘+’, StringBuilder,

Formatter.format()) are verbose
• String composition that achieves the clarity of string interpolation without the inherent

hazards (e.g. SQL injection attacks)

Copyright © 2023 Oracle and/or its affiliates.

JEP 443: Unnamed Patterns & Variables
(Preview)

Use the underscore character, ‘_’, to identify unnecessary nested patterns and
variables which must be declared but will not be used. Unnamed patterns may
be used in record patterns.

// before nested pattern
if (r instanceof ColoredPoint(Point(int x, int y), Color c)) {

... x ...
}

// after, using unnamed pattern
if (r instanceof ColoredPoint(Point(int x, _), _)) { ... x ... }

Why

• Improve readability of record patterns by eliding unnecessary patterns
• Improve maintainability by eliminating useless declarations

Reduce syntactic complexity of simple programs for novice users.

Why

• Traditional “Hello, World” exposes too many concepts that may intimidate beginning
programmers

• Reduce ceremony for simple programs such as scripts and command-line utilities

Copyright © 2023 Oracle and/or its affiliates.

void main() {
System.out.println("Hello, World!");

}

JEP 445: Unnamed Classes & Instance
main Methods (Preview)

Copyright © 2023 Oracle and/or its affiliates.

JEP 431: Sequenced Collections

Enhance the collections framework with new interfaces for sequenced collections
which have a well-defined order.

Why

• Simplifies code that depends only on sequence rather than class-specific behaviour

First element Last element

List list.get(0) list.get(list.size() – 1)

Deque deque.getFirst() deque.getLast()

SortedSet sortedSet.first() sortedSet.last()

LinkedHashSet linkedHashSet.iterator.next() // missing

SequencedCollection c.getFirst() c.getLast()

Copyright © 2023 Oracle and/or its affiliates.

JEP 444: Virtual Threads

Introduce lightweight threads that dramatically reduce the effort of writing,
maintaining, and observing high throughput concurrent applications.

try (var executor = Executors.newVirtualThreadPerTaskExecutor()) {
IntStream.range(0, 10_000).forEach(i -> {

executor.submit(() -> {
Thread.sleep(Duration.ofSeconds(1));
return i;

});
});

} // executor.close() is called implicitly, and waits

History

• First previewed in Java SE 19, re-previewed in Java SE 20

Why

• Concurrency limited by the number of platform threads, implemented as OS threads

Copyright © 2023 Oracle and/or its affiliates.

JEP 453: Structured Concurrency (Preview)

Introduce APIs to structure a task as a family of concurrent subtasks, and to
coordinate them as a unit.

Callable<String> task1 = ...
Callable<Integer> task2 = ...
try (var scope = new StructuredTaskScope<Object>()) {

Subtask<String> subtask1 = scope.fork(task1);
Subtask<Integer> subtask2 = scope.fork(task2);
scope.join();
... process results/exceptions ...

} // close

History

• First incubated in Java SE 19, re-incubated in Java SE 20

Why

• Provide structure for large numbers of virtual threads
• Streamline error handling, improving reliability and enhancing observability

Copyright © 2023 Oracle and/or its affiliates.

JEP 446: Scoped Values (Preview)

Introduce scoped values, which enable safe and efficient sharing of immutable
data within and across threads.

final static ScopedValue<...> NAME = ScopedValue.newInstance();

// In some method
ScopedValue.runWhere(NAME, “duke”, () -> { ... NAME.get() ... call methods ... });

// In a method called directly or indirectly from the lambda expression
... NAME.get() ...

History

• Incubated in Java SE 20

Why

• Alternative to thread-local variables and method arguments for sharing data across
components

Copyright © 2023 Oracle and/or its affiliates.

JEP 442: Foreign Function & Memory API
(Third Preview)

The API enables Java programs to call native libraries and process native data
without the brittleness and danger of JNI.

Linker linker = Linker.nativeLinker();
SymbolLookup stdlib = linker.defaultLookup();
MethodHandle strlen = linker.downcallHandle(

stdlib.find("strlen").orElseThrow(),
FunctionDescriptor.of(ValueLayout.JAVA_LONG, ValueLayout.ADDRESS));

try (Arena arena = Arena.ofConfined()) {
MemorySegment cString = arena.allocateUtf8String("Hello");
long len = (long)strlen.invokeExact(cString); } // 5

History

• Incubated in Java SE 17 and 18. First previewed in Java SE 19, re-previewed in Java SE 20

Why

• Provide a safer alternative to JNI

Copyright © 2023 Oracle and/or its affiliates.

JEP 451: Prepare to Disallow the Dynamic
Loading of Agents

Introduces a warning when dynamic loading of agents is attempted

WARNING: A {Java,JVM TI} agent has been loaded dynamically (file:/u/duke/agent.jar)
WARNING: If a serviceability tool is in use, please run with -XX:+EnableDynamicAgentLoading to hide this warning
WARNING: If a serviceability tool is not in use, please run with -Djdk.instrument.traceUsage for more information
WARNING: Dynamic loading of agents will be disallowed by default in a future release

Command-line option -XX:+EnableDynamicAgentLoading will suppress this warning in
Java SE 21 and will be required to enable dynamic agent loading in a future release.

History

• Originally proposed in 2017 circa Java SE 9 but deferred

Why

• Integrity by default

Copyright © 2023 Oracle and/or its affiliates.

JEP 452: Key Encapsulation Mechanism
API

Define APIs for key encapsulation mechanisms (KEMs) which use encryption to secure
symmetric keys using public key cryptography.
• Example KEM algorithms include:

• RSA-KEM
• Elliptic Curve Integrated Encryption Scheme (ECIES)
• Future NIST Post-quantum cryptography standard

Why

• Support current and future industry standards
• Defend against quantum attacks

Copyright © 2023 Oracle and/or its affiliates.

openjdk.org/projects/jdk/21

Copyright © 2023 Oracle and/or its affiliates.

Other JEPs

Other notable changes in Java SE 21

1 JSR Maintenance Release
269: Pluggable Annotations

Processing API [MR15]

2 Terminally Deprecated APIs Added
javax.management.remote.JMXConnector
.getMBeanServerConnection()

javax.swing.plaf.synth.SynthLookAndFeel
.load()

Copyright © 2023 Oracle and/or its affiliates.

129 Compatibility & Specification
Review (CSR) Requests
https://bugs.openjdk.org/issues/?filter
=43361

3 Removed APIs
java.lang.Compiler (9)
java.lang.ThreadGroup

.allowThreadSuspension(boolean) (14)
javax.management.remote.rmi

.RMIIOPServerImpl (9)

https://bugs.openjdk.org/issues/?filter=43361

• https://openjdk.org/projects/jdk/21/spec/

o https://jcp.org/en/jsr/detail?id=396

o JEPs: https://bugs.openjdk.org/secure/Dashboard.jspa?selectPageId=21418

o CSRs: https://bugs.openjdk.org/secure/Dashboard.jspa?selectPageId=21419

o https://mail.openjdk.org/mailman/listinfo/java-se-spec-experts

o https://jdk.java.net/21/

• https://openjdk.org/projects/jdk/22/spec/

• https://mail.openjdk.org

• https://github.com/openjdk

Copyright © 2023 Oracle and/or its affiliates.

Resources

