Integrity by Default

Ron Pressler

September 2023

\\\\\\k& ORACLE O



Cybercrime To Cost The World $10.5 Trillion Annually By

2025 https://cybersecurityventures.com /cvbercrime-damages-6-trillion-by-2021

Figure 4-1 Cybercrime Trends in the US: Last 12 years

Investing now can save

millions | g’
US FBI IC3 Cybercrime *
Trends (12 years) /

USD 4.45 51%

51% of o g planningto

million e e
ofab each mcludlng inci dent response

(IR) planning and testing, employee
training, and threat detection and
response tools.

Thegl obal average cost of a data breach
n 2023 was USD 4.45 million, a 15%

eeeeeeeeeeee 3 years.

20% rise from 2019 to 2020
64% rise from 2020 to 2021
assume 42% for 2022

https://www.ibm.com/reports/data-breach

IC3 - Internet Crime Complaint Center

Microsoft: 70 percent of all security bugs
are memory safety issues E

2 Copyright © 2023 Oracle and/or its affiliates



https://www.ibm.com/reports/data-breach
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

CISO

Consortium for Information & Software Quality ™

US GDP for 2022 was ~$23.3 T
US IT labor base for 2022 was ~$1.51 T

The Cost of Poor Software
Quality in the US: A 2022 Report

CPSQ - $2.41

From Problem to Solutions

Technical Debt \
$1.52T /

(principal only)

HERB KRASNER /'/
MEMBER, ADVISORY BOARD o
CONSORTIUM FOR INFORMATION & SOFTWARE QUALITY (CISQ) ///
WWW.IT-CISQ.ORG - —
HKRASNER@UTEXAS.EDU
DATE: DECEMBER 15, 2022 ghifting

grogortlons

3 Copyright © 2023 Oracle and/or its affiliates



https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html

Integrity is an advanced concept, but it's the
answer to the most serious, costly problems

that software developers face.

4 Copyright © 2023 Oracle and/or its affiliates



PART |

How things have changed




Java's Backward Compatibility

- Aremarkable success considering age, size of ecosystem, depth of dependency
graphs

.« Achieved through the Java SE Specification, but also applies to supported JDK
APIs

« Standard APIs are only removed by a deprecation process spanning multiple
releases (or by Maintenance Reviews)

- Even then, only done for APIs that are not widely used or have good alternatives

. Platform components may be restricted in a gradual process spanning multiple
releases and involving warnings

- Changes reviewed through the CSR process

6 Copyright © 2023 Oracle and/or its affiliates E




Java's Backward Compatibility

- Not just a principle, but one of Java’s greatest strengths!

- When companies invest in expensive software development, they want
to preserve their investment:

. Existing code continues working

. Platform evolves to offer better performance and new functionality
as requirements and environments change

7 Copyright © 2023 Oracle and/or its affiliates




.. At Leastin Theory

In Java’s first decade, things were only added, rarely removed —
started small

Then Java experienced some years of slow evolution

8 Copyright © 2023 Oracle and/or its affiliates



Using internals

- Not many new APIs were added and some bugs remained unfixed
« Ecosystem reached for JDK internals

- New functionality

- Work around bugs

. Improve performance

9 Copyright © 2023 Oracle and/or its affiliates



Using internals

- Not many new APIs were added and some bugs remained unfixed
« Ecosystem reached for JDK internals

- New functionality

- Work around bugs

. Improve performance

. Still 1t was technical debt

In general, writing java programs that rely on sun.* is risky: they are not portable, and the APIs are not supported.

Copyright © 1996 Sun Microsystems, Inc., 2550 Garcia Ave., Mtn. View, CA 94043-1100 USA. All rights reserved. %f\é/

10 Copyright © 2023 Oracle and/or its affiliates
P



Using internals

- Not many new APIs were added and some bugs remained unfixed
« Ecosystem reached for JDK internals

- New functionality

- Work around bugs

. Improve performance

. Still 1t was technical debt

. Effectively backward compatible because internals didn't change

much
o

11 Copyright © 2023 Oracle and/or its affiliates




Using internals

- Not many new APIs were added and some bugs remained unfixed
. Ecosystem reached for JDK internals 0“

P:(\

- New functionality

- Work around bu \?\C
. Improve per@ %e

. Still 1t was technical debt
. Effectively backward compatible because internals didn’'t change

much
o

Copyright © 2023 Oracle and/or its affiliates




What Happened in JDK 97

- Modules restricted access to internals breaking lots of libraries

« sun.misc.Unsafe was removed, breaking more libraries

13 Copyright © 2023 Oracle and/or its affiliates



Nan

° N\ /IO a a 1 aV¥a a N 1NtArm a
v w C w C

- Modules’ strong encapsulation of internals wasn't turned on
until JDK 16. All runtime access to internals remained as it was

in JDK 8 until then

- sun.misc.Unsafe is still here, exactly as accessible as ever

14 Copyright © 2023 Oracle and/or its affiliates




JDK 9

The goal of this Project was to produce an open-source reference implementation of
the Java SE 9 Platform as defined by JSR 379 in the Java Community Process.

DK 9 reached General Availability on 21 September 2017. Production-ready binaries ~ 251: Multi-Resolution lma-ges

under the GPL are available from Oracle; binaries from other vendors will follow 252: Use CLDR Locale Data by Default
shortly. 253: Prepare JavaFX Ul Controls & CSS APIs for Modularization
The features and schedule of this release were proposed and tracked via the JEP 254: Compact Strings
Process, as amended by the JEP 2.0 proposal. 255: Merge Selected Xerces 2.11.0 Updates into JAXP
Feat 256: Beaninfo Annotations
ures 257: Update JavaFX/Media to Newer Version of GStreamer
102: Process API Updates 258: HarfBuzz Font-Layout Engine
110: HTTP 2 Client ) 259: Stack-Walking API
143: Improve Contended Locking 260: Encapsulate Most Internal APls
158: Unified JVM Logging
165: Compiler Control 261: Module System
193: Variable Handles 262: TIFF Image I/O
197: Segmented Code Cache 263: HiDPI Graphics on Windows and Linux
199: Smart Java Compilation, Phase Two 264: Platform Logging APl and Service
200: The Modular JDK 265: Marlin Graphics Renderer
? 201: Modular Source Code 266: More Concurrency Updates
211: Elide Dep!'ecahon Wav.'nlngs or'i Import Statements 267: Unicode 8.0
[ 212: Resolve Lint and Doclint Warnings : :
213: Milling Project Coin 268: XML Catalogs
214: Remove GC Combinations Deprecated in JDK 8 269: Convenience Factory Methods for Collections
215: Tiered Attribution for javac 270: Reserved Stack Areas for Critical Sections
216: Process Import Statements Correctly 271: Unified GC Logging
217: Annotations Pipeline 2.0 272: Platform-Specific Desktop Features

219: Datagram Transport Layer Security (DTLS) ) .
220: Modular Run-Time Images 273: DRBG-Based SecureRandom Implementations

221: Simplified Doclet API 274: Enhanced Method Handles
- - 222: jshell: The Java Shell (Read-Eval-Print Loop) 275: Modular Java Application Packaging
223: New Version-String Scheme 276: Dynamic Linking of Language-Defined Object Models
J ava p] C ke d u p ]tS p a Ce 224: HTMLS Javadoc 277: Enhanced Deprecation
225: Javadoc Search 278: Additional Tests for Humongous Objects in G1
::: ﬂf;:d';";f’gny flles 279: Improve Test-FaiIure Trogbleshooting
228: Add More Diagnostic Commands 280: Indify String Concatenation

229: Create PKCS12 Keystores by Default 281: HotSpot C++ Unit-Test Framework

231: Remove Launch-Time JRE Version Selection 282: jlink: The Java Linker

232: Improve Secure Application Performance 283: Enable GTK 3 on Linux

233: Generate Run—T‘lmg Compiler Tests Aulqmatically 284: New HotSpot Build System

23t s s onec by

237: Linux/AArch64 Port 287: SHA-3 Hash Algorithms

238: Multi-Release JAR Files 288: Disable SHA-1 Certificates

240: Remove the JVM T1 hprof Agent 289: Deprecate the Applet API

241: Remove the jhat Tool 290: Filter Incoming Serialization Data

243: Java-Level JVM Compiler Interface A 291: Deprecate the Concurrent Mark Sweep (CMS) Garbage Collector
244:TLS Application-Layer Protocol Negotiation Extension 292: Implement Selected ECMAScript 6 Features in Nashorn
245: Validate JVM Command-Line Flag Arguments .

246: Leverage CPU Instructions for GHASH and RSA 294: Linux/s390x Port

247: Compile for Older Platform Versions 295: Ahead-of-Time Compilation

248: Make G1 the Default Garbage Collector 297: Unified arm32/arm64 Port

249: OCSP Stapling for TLS 298: Remove Demos and Samples

250: Store Interned Strings in CDS Archives 299: Reorganize Documentation

15 Copyright © 2023 Oracle and/or its affiliates




What Changed?

- The JDKis changing more quickly

- Reaching for internals can no longer work (the tech debt
collector has come)

- Butitis also no longer needed as new standard APIs are added

16 Copyright © 2023 Oracle and/or its affiliates



Unsupported API (not for use)
core-libs

profected java.lang. ClassLoader::defneClass methad

sun.io

sun.misc.BASEé4Decoder, sun.misc.BASEG4Encoder,
‘com.sun org.apache.xml.internal security.utils. Base64

sun.misc.ClassLoaderUtil

sun.misc.Cleaner

sun.mise.Senice
sun.mise. Timer

sun.misc,Unsafe

sun.reflect Reflection getCallerClass
sun.utll.calendar.Zonelnio
security-libs

sun.security.action.”

sun.security krb5.®

sun.security.utll. SecurdtyConstants

sun.security.util. HostrameChecker

sun.security x509.%

‘com.sun.org.apache.xml.interal security
com.sun.net.ssl™”

sacurity provider Implementation class such &3

+ com.sun.net.sslinternal.ssl.Provider
+ sun.security.provider.Sun
* com.sun.crypto.provider.SunJCE

sun.security provider. PolicyFile) o

sun securityrfider PoicEi@py right © 202%-®raviergndyioesitsiaffiliates

Supported APis (please use instead)

java Jang.invoke, MethodHandles. Lookup: defineClass @since 9

java.nio.charsets @since 1.4

java.util Base64 @since 8

java.net.URLClassLoader.ckse() @since 7

java.lang.ref. PhantomReference @since 1.2

java.util ServiceLoader @since 1.6

Java.util. Timer @Esince 1.3

javaJang.invoke, VarHandle since 8
Jjava.lang.invoke.MethodHandles. Lookup: defineClase @sincs 8

java lang.invoke, MethodHandles. Leokup: defineHiddenClass @since 15

javaJang.invoke | o L @since 15

java.lang StackWaker: getCallerClass @since 9

Java.util.TimeZone or [ava.time API &since 8

java.security. o
11

Some provided n com.sun.security jss
javax security.auth. kerkeros. EncryptionKey @since 1.9

javax security.auth kerkeros.KerberosCredMessage @since 1.9

javax.security.auth.kerberos. KerberosTickel getSessionKey() @since 1.9

to call System. operty or other action &since

Javalang.| Java.net | 8 . O specific
class @since 1.1

Javax.net.ssl. SSLI e HTTPS"

or "LDAPS") can be used to enabled hostname checking during handshaking

Javax net.ssl. HpsURLConnection.setHostnameVerifier() can be
customized hostname verifier rules for URL operations.

javax security.auth x500.X500Principal @since 1.4

Javaxxml.crypto @since 1.6
Javax net.ssl ®@since 1.4

Java.security. Sacurity.getProvider| NAME) @ence 1.3

where NAME is the security provider name such as "SUN®, "SunJCE".

java.security. Palicy getinstance|"JavaPolicy”, new

https

Framewerks may use javalang.invoke MethodHandies::privateLookupin to oblain a Lookup object vith the permission fo access
the private members a target class in & different module f the framework is granted with deep reflaction access to the target

class,

See http:/iopenjdk.java.netfeps/135

JDK-6417205 may help with the resource issuet
Libraries accessing sun.misc.Cleaner have to b¢
jdk.internal. misc.Cleaner.

See JOK-6685587 and JDK-4724038

sun.misc,Unsafe consists of a number of use ca
releases:

» JEP 193: Enhanced Volatile
» JEP 187: Serlalzation 2.0
« JEP 189: Shenandoah:Low-Pause GC
* Arrays 2.0
« Project Panama
+ JEP 191:FFI
» JEP 370: Forcign-Memory Access AP (Incu
« JEP 371: Hiaden Classes
See also

+ JDK-8044082 Efficient array comparison inli
» JDK-8033148 Lexicographic comparators f

See JOK-8043814 (Stack Waking API)

AccassControllar.doprivilaged(

|Privilegediction<String»| () ->
It intemal classes are used to get the session ke

JDK-8043071 resclved in JDK 9 025

See also JOK-7192189 RFE 10 support the new

client-libs

java.awt.peer and java.awl.dnd.peer

com.sun.image.codec.jpeg.”™
sun.awtimage.codec
com.apple.eawt

JDBC

com.sun.rowsst.**

JAXP

org.w3c.dom.{html, css, stylesheets}

org.w3c.dom.xpath

com.sun.org.apache.xmiinternal. resolver.™

org.relaxng.catatype

Others
com.sun.lools javac.”™

ok nashom.internal.ir.**

Instead of doing:
if {c.getPeer!) !=null) {..}
could be replaced with:
it (c.isDisplayablel}) {... }
To test if a component has a LightweightPeer, use:

public boolean isLightweight() ; @since 1.2

To abtain the color model of the component comes from the peer, instead

of doing:
getPanel().getPeer(}.getColorMadel()

could be replaced with:

public ColorModel gelColorModel();

|avax.imagelo @since 1.4

jave.awt.Desktop @since 9

javax sql.rowset. RowSetProvider @since 7

org.w3c.com.{html, css, stylesheets} APls are JOK supported APls @since 9.

org.w3c.dom.xpath AP! is now JDK supported AP| @since 8

Javaxxm.catalog @since §

org.relaxng.”™ will be repackaged in JOK 9. Users should include the
org.relaxng.”* types in the classpath.

javax tools, javax.lang.model @since 1.6 com.sun.source.” @since 1.6

JEP 238 Parser API for Nashom

JOK-8056174 defines jdk security jarsigner.JarSigner API in JDK 9. This API can also be used to generate self-signed

certificates.

In general, you should avold depending on a specific provider as it may not be avalable on other Java Implementaticns. See
Oracle security providers documentation for more rationale.

wiki.openjdk.or

java.awtpeer.” and java awt.dnd.peer." types are encapsulated.

API reference to java.awt.peer.’ and java.awt.dnd.peer.’ types are removed in JOK 8. See JDK-8037739 and awt-dev

discussion

See JDK-5527962

Seehttpiopenjdk java.netfeps/272

JDK-8042244 resolved In JOK 9 b62

JDK-8042244 resolved in JOK 9 b62

JDK-8054196 for XPath support any API resolved in JDK 9 b49

See JDK-8023732 (XML Catalog API}

See JDK-8061466

‘com.sun.tools.javac.Main is a supported API.

JDK-8048178 (Nashom Parser API) resoived in JDOK 9 b55

display/JDK8/Java+Dependency+Analysis+Tool


https://wiki.openjdk.org/display/JDK8/Java+Dependency+Analysis+Tool

What Changed? (Internal)

- The JDKis changing more quickly

- Reaching for internals can no longer work (the tech debt
collector has come)

- Butitis also no longer needed as new standard APIs are added
- More of the runtime is written in Java

18 Copyright © 2023 Oracle and/or its affiliates



What Changed? (External)

Java applications primarily run on the server with a wide and deep
dependency trees.

. Security focus has shifted from defending against malicious
code to the greater challenge of defending against
vulnerabilities in benevolent code

- One notable exception: Supply-chain attacks

Server applications run in containers; want to “scale to zero”

19 Copyright © 2023 Oracle and/or its affiliates




PART |l

What is integrity?




Integrity: The Ability to Promise

. Invariant:
A property that's true everywhere in a section of code (entire program)

- Integrity Invariant:
An invariant that 1s guaranteed to hold by the language/runtime

Example:

- No out-of-bounds access to an array may or may not be (but should be) an
invariant in a C program; requires a full-code analysis

- int[] a = new int[10] establishes an integrity invariant in Java that no
out-of-bound access can take place; guaranteed by the runtime

21 Copyright © 2023 Oracle and/or its affiliates




INntegrity Invariants in Java

- No out-of-bounds array access

« No use-after-free No undefined behavior
« No process crash

- No uninitialized data

- Runtime type-safety (String can't be cast to Socket)
. Relative file paths are stable (no chdir operation)

Integrity invariants are safety properties: something “bad” never happens

22 Copyright © 2023 Oracle and/or its affiliates




Encapsulation: The Mother of Java Integrity?

public final class Even {
private int x = 0;
public int value() { return x; }
public void incrementByTwo() { X += 2;
public void decrementByTwo() { x -= 2;

¥

- New invariants can be created from an encapsulation invariant (no
access rule violations)

. Allintegrity invariants depend on encapsulation; those on previous
slides depend on native VM code being encapsulated from Java code.

23 Copyright © 2023 Oracle and/or its affiliates




The Structure of a Modern Java Program

Application code

24 Copyright © 2023 Oracle and/or its affiliates



The Structure of a Modern Java Program

Application code

Libraries

25 Copyright © 2023 Oracle and/or its affiliates




The Structure of a Modern Java Program

Application code

Libraries

26 Copyright © 2023 Oracle and/or its affiliates




Encapsulation: The Mother of Java Integrity?

Any 4th-level dependency could violate the invariant:
- Deep reflection: setAccessible

. sun.misc.Unsafe

. JNI

- Dynamically load an agent and either redefine the methods (or, if class is not yet
loaded, transform the field to public)

Impossible to establish any integrity invariant in Java if any of these is in play.
Invariance requires full-code analysis, same as buffer overflow in C

27 Copyright © 2023 Oracle and/or its affiliates



Encapsulation: The Mother of Java Integrity?

That's why 1t matters that more of the runtime is being written in Java:

- JIT is written in Java: Java code could globally disable array bounds
checking by encroaching on the JIT's encapsulation

- |

O

o

nread scheduling and monitors written in Java: Java code could
obally disable the JMM by encroaching on the the implementation

f the thread scheduler or the implementation of monitors

Copyright © 2023 Oracle and/or its affiliates E




But surely they wouldn't, would they?

29 Copyright © 2023 Oracle and/or its affiliates



PART [l

The importance of integrity




The Importance of Integrity

. Evolution

. Security

. Performance

31 Copyright © 2023 Oracle and/or its affiliates




Integrity & Evolution

- Freedom to fearlessly change internals not subject to backward compatibility
- Why do libraries reach for internals

- New functionality

- Work around bugs

- Improve performance

- No longer works in an age of faster-paced evolution

- No longer needed in an age of faster-paced evolution

- May be justified for a library individually, but over the wide and deep dependency
ecosystem it leads to a tragedy of the commons that demands regulation

. Technical debt is secretly foisted on client applications

32 Copyright © 2023 Oracle and/or its affiliates




INntegrity & Security

public final class Session {
private boolean superuser

= authorizeSuperuser();

public void sensitiveOperation() {
if (superuser) doSensitiveOperation();
else throw new UnauthorizedException();
}
private void doSensitiveOperation() { ... }

private boolean authorizeSuperuser() { ... }

33 Copyright © 2023 Oracle and/or its affiliates



INntegrity & Security

public final class Session { Could be set with deep

private boolean superuser reflection, JNI. Unsafe
= authorizeSuperuser();

public void sensitiveOperation() {

if (superuser) doSensitiveOperation();

else throw new UnauthorizedException(); Could be called with deep

} reflection/JNI
private void doSensitiveOperation() { ... }
private boolean authorizeSuperuser() { ... }
} Could be redefined by an

agent to always return true

34 Copyright © 2023 Oracle and/or its affiliates




INntegrity & Security

- Application, uses Session. It also employs library GoodSerializer to deserialize JSON.

GoodSerializer employs library NeutralEncapsulationBreaker to instantiate objects w/o
constructor and assign private fields

- A bugin GoodSerializer's input sanitation means an attacker could send an input to get it to
set the private field superuser.

- Who's at fault?
« Application is innocent and doing its best
- GoodSerializer is well-intentioned, but bugs happen
« NeutralEncapsulationBreaker has no vulnerability

.« Any library that can break encapsulation, and any library that uses that library, becomes part
of the attack surface area of any code that relies on encapsulation for integrity; we're back

to full-code analysis

35 Copyright © 2023 Oracle and/or its affiliates




INntegrity & Security

. Integrity is not a security mechanism, but no robust security
mechanism can be created without it

- Offers “bulkheads” that compartmentalize the blast radius of a
vulnerability

36 Copyright © 2023 Oracle and/or its affiliates



Integrity & Security: Aren't we doomed, anyway?

- A Java library could write to the class files in the file system

. Plus: Spectre, Rowhammer etc.

 Integrity of components is best enforced by their owner
 File system: OS
- CPU cache: CPU

- Layers can cooperate, but each is in charge of its own integrity

. Java can and must enforce the integrity of the things it owns —
Java code and objects — but shouldn't (and can't reliably) do more

37 Copyright © 2023 Oracle and/or its affiliates E




Integrity & Performance

. Constant folding: Can a final field be constant folded? No, may be
reassigned with deep reflection, JNI, or Unsafe.

. “Tree shaking”: Can a private method unused in a class be removed
by a Condenser (that must preserve program meaning)? No, may be

invoked with deep reflection or JNI (yes, we could try relying on
speculation, but it makes some things much more complicated)

- Mechanical, meaning preserving transformations require absolute
certainty

38 Copyright © 2023 Oracle and/or its affiliates




But surely they wouldn't, would they?

. Tragedy of the Commons: A library author may feel individually
justified

. Unintentionality: A vulnerability in library X can unintentionally make
library Y use its superpowers for bad

. Certainty: Mechanical transformations require absolute certainty

Copyright © 2023 Oracle and/or its affiliates E




PA RT |\/ (and last)

Integrity by Default




Integrity by Default

. Disabling the integrity of an invariant has a global effect
- Alibrary (4th-level dependency) or a framework must not make a global decision

Integrity by Default: Every exception to integrity must be explicitly acknowledged
by the application in a centralized program configuration

A centralized application configuration is an auditable record of integrity
exceptions and accepted risks

The final say on module boundaries and privileges is given to the application

41 Copyright © 2023 Oracle and/or its affiliates




Strong Encapsulation: The Mother of Java Integrity!

Strong encapsulation: The encapsulation offered by Java’'s access control
cannot be broken by code in a different module by any means unless:

- The declaring module explicitly grants some other module the permission to
do so in module-info or programmatically (java.lang.Module)

- Code passes on its privileges to other code with a MethodHandles. Lookup
capability object

- The application redraws the map of encapsulation boundaries with
--add-opens/--add-exports flags.

- The application grants “superpowers” (JNI, agent) to some/all code

42 Copyright © 2023 Oracle and/or its affiliates




Qutdated Libraries

--add-opens/exports are not a “JDK 8 compatibility mode”. A program with many such flags for
technical-debt reasons is a program that's about to break.

They're “landmine markers” — keep you alive while you clear the landmines
They add no burden because landmines must be found to be cleared

Remember: The program will break even if we required no flags. Short of stopping Java’s evolution,
there’s nothing we can do about that

Plus, ensure that no new uses of internals can be added unnoticed; there's incompatibility pain only once
more and only one fix: stop using internals

Without strong encapsulation by default, 8->9 migration pains would have continued forever and ever
and ever (and no other integrity benefits, either)

There are worse fates than an exception

If a library is not updated to not require flags that’s a red flag that it's improperly maintained

43 Copyright © 2023 Oracle and/or its affiliates E




Qutdated Libraries

In the real world, companies don't have the resources to fix technical debt

That's absolutely true

It's also true that in the real world some countries don't have resources to
fix bridges and make sure buildings are up to code

And in the real world bridges collapse and buildings burn down

There are consequences to risk whether we must take it or not

lgnoring risk doesn't make it go away; best to know where it is

Tip: Add a comment/git message explaining why each flag is needed

44 Copyright © 2023 Oracle and/or its affiliates




Supporting Old JDK Versions

. QOur advice:

- Develop at the tip, and only for some recent-enough JDK version
. Largely freeze old library versions.
. Backport only security patches and serious bugs — not much work

. [hat's what we've done at Oracle with the JDK since we introduced
the LTS service

45 Copyright © 2023 Oracle and/or its affiliates




Operating beyond encapsulation boundaries

Unit tests

. Build tools and testing frameworks should automatically emit --add-exports, --add-opens,
and --patch-module for the module under test, as appropriate
- For mocking, use agents loaded at startup

Frameworks
.« Should not use add-opens flags; use MethodHandles. Lookup
. static { AcmeFramework.grantAccess(MethodHandles.lookup()); }
APM tools — Use agents loaded at startup
Serialization (A common cause of vulnerabilities)
- We have a vision for encapsulation-respecting serialization
- Until then try serializing only records, collections and other classes with well-known construction.

46 Copyright © 2023 Oracle and/or its affiliates




~oreign Code, Foreign Memory

Even with a memory safe language, memory management is not entirely memory safe. Most memory safe
languages recognize that software sometimes needs to perform an unsafe memory management function to
accomplish certain tasks. As a result, classes or functions are available that are recognized as non-memory safe and
allow the programmer to perform a potentially unsafe memory management task. Some languages require
anything memory unsafe to be explicitly annotated as such to make the programmer and any reviewers of the
program aware that it is unsafe. Memory safe languages can also use libraries written in non-memory safe
languages and thus can contain unsafe memory functionality. Although these ways of including memory unsafe
mechanisms subvert the inherent memory safety, they help to localize where memory problems could exist,
allowing for extra scrutiny on those sections of code.

National Security Agency | Cybersecurity Information Sheet | Software Memory Safety
Nov. 22 https://www.nsa.gov/Press-Room/News-Highlights /Article /Article /3215760

47 Copyright © 2023 Oracle and/or its affiliates



https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/

Where We Want to Be

The NSA information sheet continues:

For languages with an extreme level of inherent protection, considerable
work may be needed to simply get the program to compile due to the
checks and protections.

Not in Java!

« Java should be the safest mainstream programming language in the world
« Exceptions to integrity are tracked and localized in an auditable configuration

- The tax on those who don't care is not large esp. if they use the classpath (no “localization”)

48 Copyright © 2023 Oracle and/or its affiliates




Why not opt-in to integrity?

- Most programs can remain under full integrity due to recent work

- Enjoy portability and other benefits much more easily than ever

- The minority that don’t will be inconvenienced, but not much

- Simple enough to be on by default and reduce attack surface area
. Tighter regulation (integrity) = lower entropy (fewer possible programs)

- For new programs it's easy (and better) to start with low entropy

.« Old program need to expend energy to reach low entropy once

49 Copyright © 2023 Oracle and/or its affiliates




A Gradual Yet Resolute Path Forward

Deep reflection restricted since JDK 16

Dynamically loaded agents will be restricted (non-SE/optional)
JNI will be restricted (optional component)

Unsafe will be removed (non-SE)

FFM will be restricted (starts out restricted)

As always, we'll emit warnings & give ecosystem time to adapt

Reminder 1: All command line options can be placed in shared, full or partial, configuration “@files”

Reminder 2: j1link is flexible and widely applicable (more than some seem to think)

50 Copyright © 2023 Oracle and/or its affiliates




A Gradual Yet Resolute Path Forward

. JEP draft: Integrity and Strong Encapsulation
- JEP 451: Prepare to Disallow the Dynamic | oading of Agents

. JEP draft: Prepare to Restrict The Use of JNI

. More to follow

51 Copyright © 2023 Oracle and/or its affiliates



https://openjdk.org/jeps/8305968
https://openjdk.org/jeps/451
https://openjdk.org/jeps/8307341

