
Integrity by Default
Ron Pressler

September 2023

2 Copyright © 2023 Oracle and/or its affiliates

https://www.ibm.com/reports/data-breach

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

https://www.ibm.com/reports/data-breach
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

3 Copyright © 2023 Oracle and/or its affiliates

https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html

https://www.synopsys.com/software-integrity/resources/analyst-reports/cost-poor-quality-software.html

4 Copyright © 2023 Oracle and/or its affiliates

Integrity is an advanced concept, but it’s the
answer to the most serious, costly problems
that software developers face.

PART I

How things have changed

6 Copyright © 2023 Oracle and/or its affiliates

• A remarkable success considering age, size of ecosystem, depth of dependency
graphs

• Achieved through the Java SE Specification, but also applies to supported JDK
APIs

• Standard APIs are only removed by a deprecation process spanning multiple
releases (or by Maintenance Reviews)
• Even then, only done for APIs that are not widely used or have good alternatives

• Platform components may be restricted in a gradual process spanning multiple
releases and involving warnings

• Changes reviewed through the CSR process

Java’s Backward Compatibility

7 Copyright © 2023 Oracle and/or its affiliates

• Not just a principle, but one of Java’s greatest strengths!

• When companies invest in expensive software development, they want
to preserve their investment:

• Existing code continues working

• Platform evolves to offer better performance and new functionality
as requirements and environments change

Java’s Backward Compatibility

8 Copyright © 2023 Oracle and/or its affiliates

• In Java’s first decade, things were only added, rarely removed —
started small

• Then Java experienced some years of slow evolution

… At Least in Theory

9 Copyright © 2023 Oracle and/or its affiliates

Using internals

• Not many new APIs were added and some bugs remained unfixed

• Ecosystem reached for JDK internals

• New functionality

• Work around bugs

• Improve performance

10 Copyright © 2023 Oracle and/or its affiliates

• Not many new APIs were added and some bugs remained unfixed

• Ecosystem reached for JDK internals

• New functionality

• Work around bugs

• Improve performance

• Still, it was technical debt

Using internals

11 Copyright © 2023 Oracle and/or its affiliates

Using internals

• Not many new APIs were added and some bugs remained unfixed

• Ecosystem reached for JDK internals

• New functionality

• Work around bugs

• Improve performance

• Still, it was technical debt

• Effectively backward compatible because internals didn’t change
much

• Not many new APIs were added and some bugs remained unfixed

• Ecosystem reached for JDK internals

• New functionality

• Work around bugs

• Improve performance

• Still, it was technical debt

• Effectively backward compatible because internals didn’t change
much

12 Copyright © 2023 Oracle and/or its affiliates

Using internals

OSS
IFIC

ATIO
N

13 Copyright © 2023 Oracle and/or its affiliates

• Modules restricted access to internals breaking lots of libraries

• sun.misc.Unsafe was removed, breaking more libraries

What Happened in JDK 9?

14 Copyright © 2023 Oracle and/or its affiliates

Nah

• Modules restricted access to internals breaking lots of libraries
• Modules’ strong encapsulation of internals wasn’t turned on

until JDK 16. All runtime access to internals remained as it was
in JDK 8 until then

• sun.misc.Unsafe was removed, breaking more libraries

• sun.misc.Unsafe is still here, exactly as accessible as ever

15 Copyright © 2023 Oracle and/or its affiliates

What Really Happened?

Java picked up its pace

16 Copyright © 2023 Oracle and/or its affiliates

What Changed?

• The JDK is changing more quickly

• Reaching for internals can no longer work (the tech debt
collector has come)

• But it is also no longer needed as new standard APIs are added

17 Copyright © 2023 Oracle and/or its affiliates https://wiki.openjdk.org/display/JDK8/Java+Dependency+Analysis+Tool

https://wiki.openjdk.org/display/JDK8/Java+Dependency+Analysis+Tool

18 Copyright © 2023 Oracle and/or its affiliates

• The JDK is changing more quickly

• Reaching for internals can no longer work (the tech debt
collector has come)

• But it is also no longer needed as new standard APIs are added

• More of the runtime is written in Java

What Changed? (Internal)

19 Copyright © 2023 Oracle and/or its affiliates

• Java applications primarily run on the server with a wide and deep
dependency trees.

• Security focus has shifted from defending against malicious
code to the greater challenge of defending against
vulnerabilities in benevolent code

• One notable exception: Supply-chain attacks

• Server applications run in containers; want to “scale to zero”

What Changed? (External)

PART II

What is integrity?

21 Copyright © 2023 Oracle and/or its affiliates

• Invariant:
 A property that’s true everywhere in a section of code (entire program)

• Integrity Invariant:
 An invariant that is guaranteed to hold by the language/runtime

Example:

• No out-of-bounds access to an array may or may not be (but should be) an
invariant in a C program; requires a full-code analysis

• int[] a = new int[10] establishes an integrity invariant in Java that no
out-of-bound access can take place; guaranteed by the runtime

Integrity: The Ability to Promise

22 Copyright © 2023 Oracle and/or its affiliates

• No out-of-bounds array access

• No use-after-free

• No process crash

• No uninitialized data

• Runtime type-safety (String can’t be cast to Socket)

• Relative file paths are stable (no chdir operation)

Integrity invariants are safety properties: something “bad” never happens

Integrity Invariants in Java

} No undefined behavior

23 Copyright © 2023 Oracle and/or its affiliates

public final class Even {
 private int x = 0;
 public int value() { return x; }
 public void incrementByTwo() { x += 2; }
 public void decrementByTwo() { x -= 2; }
}

Encapsulation: The Mother of Java Integrity?

• New invariants can be created from an encapsulation invariant (no
access rule violations)

• All integrity invariants depend on encapsulation; those on previous
slides depend on native VM code being encapsulated from Java code.

24 Copyright © 2023 Oracle and/or its affiliates

The Structure of a Modern Java Program

Application code

25 Copyright © 2023 Oracle and/or its affiliates

The Structure of a Modern Java Program

Application code

Libraries

26 Copyright © 2023 Oracle and/or its affiliates

The Structure of a Modern Java Program

Application code

Libraries

27 Copyright © 2023 Oracle and/or its affiliates

Any 4th-level dependency could violate the invariant:

• Deep reflection: setAccessible

• sun.misc.Unsafe

• JNI

• Dynamically load an agent and either redefine the methods (or, if class is not yet
loaded, transform the field to public)

Impossible to establish any integrity invariant in Java if any of these is in play.
Invariance requires full-code analysis, same as buffer overflow in C

Encapsulation: The Mother of Java Integrity?

28 Copyright © 2023 Oracle and/or its affiliates

That’s why it matters that more of the runtime is being written in Java:

• JIT is written in Java: Java code could globally disable array bounds
checking by encroaching on the JIT’s encapsulation

• Thread scheduling and monitors written in Java: Java code could
globally disable the JMM by encroaching on the the implementation
of the thread scheduler or the implementation of monitors

Encapsulation: The Mother of Java Integrity?

29 Copyright © 2023 Oracle and/or its affiliates

But surely they wouldn’t, would they?

PART III

The importance of integrity

31 Copyright © 2023 Oracle and/or its affiliates

• Evolution

• Security

• Performance

The Importance of Integrity

32 Copyright © 2023 Oracle and/or its affiliates

• Freedom to fearlessly change internals not subject to backward compatibility

• Why do libraries reach for internals

• New functionality

• Work around bugs

• Improve performance

• No longer works in an age of faster-paced evolution

• No longer needed in an age of faster-paced evolution

• May be justified for a library individually, but over the wide and deep dependency
ecosystem it leads to a tragedy of the commons that demands regulation

• Technical debt is secretly foisted on client applications

Integrity & Evolution

33 Copyright © 2023 Oracle and/or its affiliates

Integrity & Security
public final class Session {
 private boolean superuser
 = authorizeSuperuser();

 public void sensitiveOperation() {
 if (superuser) doSensitiveOperation();
 else throw new UnauthorizedException();
 }
 private void doSensitiveOperation() { ... }
 private boolean authorizeSuperuser() { ... }
}

34 Copyright © 2023 Oracle and/or its affiliates

Integrity & Security
public final class Session {
 private boolean superuser
 = authorizeSuperuser();

 public void sensitiveOperation() {
 if (superuser) doSensitiveOperation();
 else throw new UnauthorizedException();
 }
 private void doSensitiveOperation() { ... }
 private boolean authorizeSuperuser() { ... }
} Could be redefined by an

agent to always return true

Could be set with deep
reflection, JNI, Unsafe

Could be called with deep
reflection/JNI

35 Copyright © 2023 Oracle and/or its affiliates

• Application, uses Session. It also employs library GoodSerializer to deserialize JSON.
GoodSerializer employs library NeutralEncapsulationBreaker to instantiate objects w/o
constructor and assign private fields

• A bug in GoodSerializer’s input sanitation means an attacker could send an input to get it to
set the private field superuser.

• Who’s at fault?

• Application is innocent and doing its best

• GoodSerializer is well-intentioned, but bugs happen

• NeutralEncapsulationBreaker has no vulnerability

• Any library that can break encapsulation, and any library that uses that library, becomes part
of the attack surface area of any code that relies on encapsulation for integrity; we’re back
to full-code analysis

Integrity & Security

36 Copyright © 2023 Oracle and/or its affiliates

• Integrity is not a security mechanism, but no robust security
mechanism can be created without it

• Offers “bulkheads” that compartmentalize the blast radius of a
vulnerability

Integrity & Security

37 Copyright © 2023 Oracle and/or its affiliates

• A Java library could write to the class files in the file system

• Plus: Spectre, Rowhammer etc.

• Integrity of components is best enforced by their owner

• File system: OS

• CPU cache: CPU

• Layers can cooperate, but each is in charge of its own integrity

• Java can and must enforce the integrity of the things it owns —
Java code and objects — but shouldn’t (and can’t reliably) do more

Integrity & Security: Aren’t we doomed, anyway?

38 Copyright © 2023 Oracle and/or its affiliates

• Constant folding: Can a final field be constant folded? No, may be
reassigned with deep reflection, JNI, or Unsafe.

• “Tree shaking”: Can a private method unused in a class be removed
by a Condenser (that must preserve program meaning)? No, may be
invoked with deep reflection or JNI (yes, we could try relying on
speculation, but it makes some things much more complicated)

• Mechanical, meaning preserving transformations require absolute
certainty

Integrity & Performance

39 Copyright © 2023 Oracle and/or its affiliates

• Tragedy of the Commons: A library author may feel individually
justified

• Unintentionality: A vulnerability in library X can unintentionally make
library Y use its superpowers for bad

• Certainty: Mechanical transformations require absolute certainty

But surely they wouldn’t, would they?

PART IV (and last)

Integrity by Default

41 Copyright © 2023 Oracle and/or its affiliates

• Disabling the integrity of an invariant has a global effect

• A library (4th-level dependency) or a framework must not make a global decision

Integrity by Default: Every exception to integrity must be explicitly acknowledged
by the application in a centralized program configuration

A centralized application configuration is an auditable record of integrity
exceptions and accepted risks

The final say on module boundaries and privileges is given to the application

Integrity by Default

42 Copyright © 2023 Oracle and/or its affiliates

Strong encapsulation: The encapsulation offered by Java’s access control
cannot be broken by code in a different module by any means unless:

• The declaring module explicitly grants some other module the permission to
do so in module-info or programmatically (java.lang.Module)

• Code passes on its privileges to other code with a MethodHandles.Lookup
capability object

• The application redraws the map of encapsulation boundaries with
--add-opens/--add-exports flags.

• The application grants “superpowers” (JNI, agent) to some/all code

Strong Encapsulation: The Mother of Java Integrity!

43 Copyright © 2023 Oracle and/or its affiliates

• --add-opens/exports are not a “JDK 8 compatibility mode”. A program with many such flags for
technical-debt reasons is a program that’s about to break.

• They’re “landmine markers” — keep you alive while you clear the landmines

• They add no burden because landmines must be found to be cleared

• Remember: The program will break even if we required no flags. Short of stopping Java’s evolution,
there’s nothing we can do about that

• Plus, ensure that no new uses of internals can be added unnoticed; there’s incompatibility pain only once
more and only one fix: stop using internals

• Without strong encapsulation by default, 8->9 migration pains would have continued forever and ever
and ever (and no other integrity benefits, either)

• There are worse fates than an exception

• If a library is not updated to not require flags that’s a red flag that it’s improperly maintained

Outdated Libraries

44 Copyright © 2023 Oracle and/or its affiliates

• In the real world, companies don’t have the resources to fix technical debt

• That’s absolutely true

• It’s also true that in the real world some countries don’t have resources to
fix bridges and make sure buildings are up to code

• And in the real world bridges collapse and buildings burn down

• There are consequences to risk whether we must take it or not

• Ignoring risk doesn’t make it go away; best to know where it is

• Tip: Add a comment/git message explaining why each flag is needed

Outdated Libraries

45 Copyright © 2023 Oracle and/or its affiliates

• Our advice:

• Develop at the tip, and only for some recent-enough JDK version

• Largely freeze old library versions.

• Backport only security patches and serious bugs — not much work

• That’s what we’ve done at Oracle with the JDK since we introduced
the LTS service

Supporting Old JDK Versions

46 Copyright © 2023 Oracle and/or its affiliates

• Unit tests

• Build tools and testing frameworks should automatically emit --add-exports, --add-opens,
and --patch-module for the module under test, as appropriate

• For mocking, use agents loaded at startup

• Frameworks

• Should not use add-opens flags; use MethodHandles.Lookup

• static { AcmeFramework.grantAccess(MethodHandles.lookup()); }

• APM tools — Use agents loaded at startup

• Serialization (A common cause of vulnerabilities)

• We have a vision for encapsulation-respecting serialization

• Until then try serializing only records, collections and other classes with well-known construction.

Operating beyond encapsulation boundaries

47 Copyright © 2023 Oracle and/or its affiliates

Foreign Code, Foreign Memory

National Security Agency | Cybersecurity Information Sheet | Software Memory Safety
Nov. ’22 https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/

Even with a memory safe language, memory management is not entirely memory safe. Most memory safe
languages recognize that software sometimes needs to perform an unsafe memory management function to
accomplish certain tasks. As a result, classes or functions are available that are recognized as non-memory safe and
allow the programmer to perform a potentially unsafe memory management task. Some languages require
anything memory unsafe to be explicitly annotated as such to make the programmer and any reviewers of the
program aware that it is unsafe. Memory safe languages can also use libraries written in non-memory safe
languages and thus can contain unsafe memory functionality. Although these ways of including memory unsafe
mechanisms subvert the inherent memory safety, they help to localize where memory problems could exist,
allowing for extra scrutiny on those sections of code.

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/

48 Copyright © 2023 Oracle and/or its affiliates

Where We Want to Be

The NSA information sheet continues:

For languages with an extreme level of inherent protection, considerable
work may be needed to simply get the program to compile due to the
checks and protections.

Not in Java!

• Java should be the safest mainstream programming language in the world

• Exceptions to integrity are tracked and localized in an auditable configuration

• The tax on those who don’t care is not large esp. if they use the classpath (no “localization”)

49 Copyright © 2023 Oracle and/or its affiliates

• Most programs can remain under full integrity due to recent work

• Enjoy portability and other benefits much more easily than ever

• The minority that don’t will be inconvenienced, but not much

• Simple enough to be on by default and reduce attack surface area

• Tighter regulation (integrity) = lower entropy (fewer possible programs)

• For new programs it’s easy (and better) to start with low entropy

• Old program need to expend energy to reach low entropy once

Why not opt-in to integrity?

50 Copyright © 2023 Oracle and/or its affiliates

A Gradual Yet Resolute Path Forward

• Deep reflection restricted since JDK 16

• Dynamically loaded agents will be restricted (non-SE/optional)

• JNI will be restricted (optional component)

• Unsafe will be removed (non-SE)

• FFM will be restricted (starts out restricted)

As always, we’ll emit warnings & give ecosystem time to adapt
Reminder 1: All command line options can be placed in shared, full or partial, configuration “@files”

Reminder 2: jlink is flexible and widely applicable (more than some seem to think)

51 Copyright © 2023 Oracle and/or its affiliates

A Gradual Yet Resolute Path Forward

• JEP draft: Integrity and Strong Encapsulation

• JEP 451: Prepare to Disallow the Dynamic Loading of Agents

• JEP draft: Prepare to Restrict The Use of JNI

• More to follow

https://openjdk.org/jeps/8305968
https://openjdk.org/jeps/451
https://openjdk.org/jeps/8307341

