
Copyright	©	2023,	Oracle	and/or	its	affiliates

Project	Leyden

Mark	Reinhold	
Chief	Architect,	Java	Pla1orm	Group,	Oracle	

JCP	ExecuDve	CommiGee	
2023/9/14

Capturing	Lightning	in	a	Bo<le	



Leyden:	Goal

2Copyright	©	2023,	Oracle	and/or	its	affiliates

Improve	the	startup	time,	warmup	time,	and	footprint	
of	Java	programs



	 Shi$	computaDon	temporally,	
	 	 later	and	earlier	in	Dme	

	 Constrain	 Java’s	natural	dynamism,	
	 	 to	enable	more	and	beGer	shiOing	

	 Selec0vely,	per	the	needs	of	each	parDcular	program	

	Compa0bly,	 to	preserve	program	meaning

Leyden:	Means

3Copyright	©	2023,	Oracle	and/or	its	affiliates



• We	can	shiO	two	kinds	of	computaDon	
–Work	expressed	directly	by	a	program	(e.g.,	invoke	a	method)	

–Work	done	on	behalf	of	a	program	(e.g.,	compile	a	method	to	naDve	code)	

• Java	implementaDons	already	have	features	that	can	shiO	computaDon	
– AutomaDcally:	 Compile-Dme	constant	folding	(shiOs	EARLIER	in	Dme)	
	 Garbage	collecDon	(LATER)	

–Or	opDonally:	 Ahead-of-Dme	(AOT)	compilaDon	(EARLIER)	
	 Pre-digested	class-data	archives	(CDS)	(EARLIER)	
	 Lazy	class	loading	and	iniDalizaDon	(LATER)	

– Either	way,	always	preserving	program	meaning	per	the	SpecificaDon	
• So	as	to	ensure	compaDbility

ShiOing	computaDon

4Copyright	©	2023,	Oracle	and/or	its	affiliates



• Some	kinds	of	shiOing	will	likely	require	no	specificaDon	changes	
– E.g.,	expand	lambdas	into	ordinary	bytecode	(EARLIER)	

• Others	will	definitely	require	specificaDon	changes	
– E.g.,	eliminate	dead	code	(stripping)	(EARLIER)	

• Yet	others	will	be	new	pla^orm	features	that	allow	developers	
to	express	temporal	shiOing	directly	in	source	code	
– E.g.,	lazy	staDc	final	fields	(LATER)

Leyden	will	explore	new	ways	to	shiO	computaDon

5Copyright	©	2023,	Oracle	and/or	its	affiliates

https://openjdk.org/jeps/8209964


• ShiOing	computaDon	oOen	requires	code	analysis	
– But:	Java’s	dynamic	features	make	code	analysis	difficult	

• We	could	simplify	code	analysis	by	imposing	a	closed-world	constraint	
– Forbids	dynamic	class	loading	and	severely	limits	reflecDon	

–Many	applicaDons	don’t	work	under	this	constraint	

–Many	developers	aren’t	willing	to	live	with	this	constraint	

• Leyden	will	therefore	explore	a	spectrum	of	constraints,	
up	to	and	including	the	closed-world	constraint	
– Selec0vely	degrade	Java’s	natural	dynamism	
to	enable	more	and	beGer	shiOing	of	computaDon	

– Developers	can	choose	how	to	trade	funcDonality	for	performance

Constraining	dynamism

6Copyright	©	2023,	Oracle	and/or	its	affiliates



• A	condenser	is	a	tool	in	the	JDK	that:	
– Performs	some	of	the	computaDon	encoded	in	a	program	image	
• Thereby	shiOing	it	earlier	in	Dme	

– Transforms	the	image	into	a	new,	faster	image	that	may	contain:	
• New	code	(e.g.,	ahead-of-Dme	compiled	methods)	
• New	data	(e.g.,	serialized	heap	objects)	
• New	metadata	(e.g.,	pre-loaded	classes)	
• New	constraints	(e.g.,	no	class	redefiniDon)

Condensers:	Tools	for	shiOing	&	constraining	computaDon

7Copyright	©	2023,	Oracle	and/or	its	affiliates

The	key	new	concept	of	Leyden



• Condensers	are	meaning-preserving	
– The	resulDng	program	image	has	the	same	meaning	as	the	original	

• Condensers	are	composable	
– The	image	output	by	one	condenser	can	be	the	input	to	another	

– A	parDcular	condenser	can	be	applied	mulDple	Dmes,	if	needed	

• Condensers	are	selectable	
– Developers	choose	how	to	condense,	and	when	
• If	you’re	tesDng	or	debugging,	then	don’t	bother	—	just	run	normally	

– Insofar	as	shiOing	computaDon	requires	accepDng	constraints,	you	can	trade	
funcDonality	for	performance	via	the	condensers	that	you	choose

Key	properDes	of	condensers

8Copyright	©	2023,	Oracle	and/or	its	affiliates



• The	performance	of	your	program	depends	upon	
the	condensers	that	you	choose	

• Given	sufficiently	powerful	condensers:	
– If	you	shiO	enough	computaDon	earlier	or	later	in	Dme,	
you	might	even	be	able	to	produce	a	fully-staDc	naDve	image	

– This	will	likely	require	accepDng	many	constraints	

• Leyden	need	not	specify	fully-staDc	naDve	images	directly	
– Instead,	it	will	enable	sufficient	shiOing	of	computaDon	
and	constraining	of	dynamism	

– Fully-staDc	naDve	images	can	fall	out	as	an	emergent	property

Performance	is	an	emergent	property

9Copyright	©	2023,	Oracle	and/or	its	affiliates



• Introduce	condensers	into	the	Java	Pla^orm	
– Evolve	the	Java	Pla^orm	SpecificaDon	to	allow	
meaning-preserving	whole-program	transformaDons	

– Evolve	the	run-Dme	image	format	to	accommodate	
new	code,	data,	and	metadata	

• Explore	new	ways	to	shiO	computaDon	and	constrain	dynamism	

• Explore	related	improvements

Leyden	roadmap

10Copyright	©	2023,	Oracle	and/or	its	affiliates



• Introduce	condensers	
– Toward	Condensers	(prototype	and	design	note,	Goetz,	Reinhold,	&	Sandoz)	

• ShiO	computaDon	and	constrain	dynamism	
– Pre-generate	lambda	classes	(prototype	branch,	Heidinga)	

– Condensing	Indy	Bootstraps	(design	note,	Goetz)	
– Computed	Constants	(prototype	and	draO	JEP,	Minborg	&	Cimadamore)	

– Experiments	in	shiOing	speculaDve	compilaDon	(prototype	branch,	Rose	et	al.)	

• Related	improvements	
– HermeDc	applicaDon	packaging	(prototype	branch,	Zhou)	

– JMOD-less	linking	(prototype,	Gehwolf)

Leyden	progress!

11Copyright	©	2023,	Oracle	and/or	its	affiliates

openjdk.org/projects/leyden

https://openjdk.org/projects/leyden/


Experiments	in	Dme-shiOing	speculaDve	opDmizaDons

12

How	far	can	we	get	
without	imposing	new	constraints	on	existing	code,	
without	making	any	specification	changes,	and	

without	sacrificing	any	of	Java’s	natural	dynamism?	

How	far	can	we	get	
simply	by	leveraging	

existing	HotSpot	components?

Copyright	©	2023,	Oracle	and/or	its	affiliates



Ti
m
e	
pe

r	
ta
sk

0

100

200

300

Task	repeDDons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Typical
Ideal

A	tale	of	two	graphs:	What	startup	looks	like	today

13Copyright	©	2023,	Oracle	and/or	its	affiliates

H
Y

PO
T

H
ET

IC
A

L M
O

D
EL

Class	initialization	activity	
unique	to	first	iteration	
(CPU	milliseconds)

Online	JIT	activity	
for	warmup	
(CPU	seconds)



Ti
m
e	
pe

r	
ta
sk

0

100

200

300

Task	repeDDons

1 11 21 31 41 51 61 71 81 91 100

Typical
Ideal

A	tale	of	two	graphs:	At	larger	scales	it’s	all	warmup

14Copyright	©	2023,	Oracle	and/or	its	affiliates

Class	initialization	activity	
unique	to	first	iteration	
(CPU	milliseconds)

Online	JIT	activity	
for	warmup	
(CPU	seconds)

H
Y

PO
T

H
ET

IC
A

L M
O

D
EL



Ti
m
e	
pe

r	
ta
sk

0

100

200

300

Task	repeDDons

1 11 21 31 41 51 61 71 81 91 100

Typical
Ideal

Challenge:	Make	startup/warmup	faster	at	mulDple	scales

15Copyright	©	2023,	Oracle	and/or	its	affiliates

To	improve	startup,	
push	the	first	point	down

To	improve	warmup,	
push	the	entire	curve	down

H
Y

PO
T

H
ET

IC
A

L M
O

D
EL



StaDc	vs.	dynamic	opDmizaDon:	Choose	two

• The	Java	answer	is	never	“Choose	One,	Lose	One”	
– Java	balances	staDc	and	dynamic	reasoning	

• HotSpot	opDmizes	dynamic	computaDons	
– ConverDng	them,	in	effect,	to	staDc	computaDons	
– But	specula0vely	so:	 Can	dynamically	de-opDmize	
	 and	re-opDmize	when	things	change	

• We	can	shiO	these	opDmizaDons	earlier	in	Dme	
– SpeculaDvely	opDmizing	before	applicaDon	startup	

• Goal:	Drive	startup	Dme	and	warmup	Dme	into	the	noise,	
	 while	maintaining	compa0bility	
– No	new	constraints,	no	code	change	required

16Copyright	©	2023,	Oracle	and/or	its	affiliates



• Tier	0:	JVM	bytecode	interpreter	
– Collects	full	profile	informa0on	(execuDon	paths	and	types)	

• Tier	1:	Simplest	possible	code	
– No	profiling;	use	is	rare	

• Tier	2:	Simple	code	with	profiling	at	method	entry	only	
– Limited	use	

• Tier	3:	Simple	code	with	full	profiling	
– Spins	up	quickly	

• Tier	4:	OpDmized	code	which	benefits	from	profiling,	but	collects	none	
– Assumes	all	required	classes	have	been	iniDalized	

– Can	de-opDmize	on	awkward	inputs	(lower	Ders	cannot)	

– De-opDmizaDon	is	followed	by	further	profiling,	and	re-opDmizaDon

Background:	The	four	Ders	of	compilaDon	in	HotSpot

17Copyright	©	2023,	Oracle	and/or	its	affiliates



• Startup	is	handled	by	slower	Ders	0..3,	starDng	with	the	interpreter	(0)	
– Startup	resolves	symbols,	runs	class	iniDalizers,	etc.	

• Warmup	happens	as	code	shiOs	from	lower	Ders	to	higher	ones	
– First,	lower	Ders	gather	profiles	
– The	JIT	then	uses	those	profiles	to	opDmize	Tier	4	code	
• This	takes	Dme!	

• Peak	is	reached	when	all	hot	code	stabilizes	in	the	highest	Der	(4)

Tiered	compilaDon:	Startup,	warmup,	and	peak

18Copyright	©	2023,	Oracle	and/or	its	affiliates



• Key	idea:	Cache	profiles	and	compiled	code	
	 from	earlier	applicaDon	runs	for	use	in	later	runs	
– Earlier	runs	could	be	training	runs,	
which	syntheDcally	exercise	the	applicaDon	along	typical	paths	

–Or	they	could	be	actual	runs	in	producDon	

• At	startup,	we	can	quickly	JIT	code	based	on	cached	profiles	
• AlternaDvely,	we	can	even	more	quickly	(5–500x)	load	cached	code	
– Install	the	compiled	code	for	a	method	aOer	all	the	classes	
upon	which	it	depends	have	been	iniDalized	

• Even	beGer,	we	can	cache	two	kinds	of	code	ahead-of-Dme	
–With	class-iniDalizaDon	checks,	and	without	class-iniDalizaDon	checks	

– Install	the	former	iniDally,	then	swap	in	the	laGer	aOer	the	required	classes	have	been	iniDalized

AOT	compilaDon	=	Dynamic	compilaDon	shiOed	earlier

19Copyright	©	2023,	Oracle	and/or	its	affiliates



• Java	has	always	been	both	staDc	and	dynamic	
– Locally	staDc,	globally	dynamic	

• Cached	profiles	and	code	are	records	of	dynamic	observaDons	of	an	applicaDon	
– The	flip	side	of	staDc	applicaDon	analysis	—	but	requires	no	new	constraints!	

• They	are	used	speculaDvely	by	HotSpot	
– Just	as	they	always	have	been:	“Success	is	a	habit,	but	failure	is	an	opDon”	
– If	an	assumpDon	is	violated	then	we	de-opDmize,	re-profile,	and	re-opDmize	

• This	approach	copes	well	with	surprises	at	run	Dme	
– Code	someDmes	changes	between	training	and	producDon	

– ApplicaDons	someDmes	have	disDnct	phases	of	acDvity	

• Yet	this	is	not	surprising:	On-the-fly	adaptaDon	is	one	of	Java’s	disDnct	strengths!	
• Key	challenge:	OpDmizing	the	policies	that	govern	execuDon-mode	transiDons	

QuesOon:	Where	do	we	cache	profiles	and	compiled	code?

AOT-compiled	code	remains	speculaDve

20Copyright	©	2023,	Oracle	and/or	its	affiliates



• Introduced	in	JDK	5	(2004)	for	system	classes	and	serial	GC	only	
– Focus	was	on	client	applicaDon	startup	
– Cache	data	(i.e.,	parsed	class-file	bytes)	and	metadata	for	commonly-used	system	classes	

• Evolved	significantly	since	then	
– Support	all	GCs	
– Cache	commonly-used	applicaDon	classes	(JDK	10,	2018)	

– Cache	select	“pure”	heap	objects	(e.g.,	the	default	module	graph)	(JDK	12,	2019)	

• Enhancements	for	Leyden	
– Cache	dynamically-collected	compilaDon	profile	data	

– Cache	compiled	code

ApplicaDon	class-data	sharing	(CDS)

21Copyright	©	2023,	Oracle	and/or	its	affiliates

dev.java/learn/jvm/cds-appcds

Shifting	computation	backward	in	time	since	2004

https://dev.java/learn/jvm/cds-appcds/


• Preload	cached	classes	
– Cache	actual	class/interface	objects,	not	just	pre-parsed	data	and	metadata	

• Resolve	symbolic	field,	method,	and	class	references	in	constant	pools	

• Resolve	invokedynamic	call	sites	
– Expand	lambdas	and	string-concatenaDon	operaDons	into	their	dynamic	form	

• IniDalize	enum	classes	and	hidden	classes	
–We’ll	eventually	explore	more-extensive	early	iniDalizaDon	

“CDS”	has	never	been	a	great	name	—	we’ll	likely	rename	this	to	the	“startup	cache”

New	CDS	tricks:	Early	loading,	resoluDon,	and	iniDalizaDon

22Copyright	©	2023,	Oracle	and/or	its	affiliates



Ti
m
e	
pe

r	
ta
sk

0

100

200

300

Task	repeDDons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Typical
Ideal
Target

A	tale	of	two	graphs:	BeGer	startup	and	early	warmup

23Copyright	©	2023,	Oracle	and/or	its	affiliates

Classes	preloaded	
Some	indy	call	sites	pre-resolved	
Compiled	code	with	init	checks	installed

Optimized	code	without	init	checks	installed	
after	dependencies	are	initialized

Code	can	be	re-profiled	and	re-optimized	
to	adjust	for	actual	run-time	behavior

H
Y

PO
T

H
ET

IC
A

L M
O

D
EL

St
ar
tu
p	
im

pr
ov
em

en
t

Warmup	improvement



Ti
m
e	
pe

r	
ta
sk

0

100

200

300

Task	repeDDons

1 11 21 31 41 51 61 71 81 91 100

Typical
Ideal
Target

A	tale	of	two	graphs:	BeGer	long-term	warmup

24Copyright	©	2023,	Oracle	and/or	its	affiliates

Classes	preloaded	
Some	indy	call	sites	pre-resolved	
Compiled	code	with	init	checks	installed

Optimized	code	without	init	checks	installed	
after	dependencies	are	initialized

Code	can	be	re-profiled	and	re-optimized	
to	adjust	for	actual	run-time	behavior

H
Y

PO
T

H
ET

IC
A

L M
O

D
EL

St
ar
tu
p	
im

pr
ov
em

en
t

Warmup	improvement



Case	studies

25

javac	

XML	validaDon	

Spring	Boot

Copyright	©	2023,	Oracle	and/or	its	affiliates

WARNING: WORK IN PROGRESS 



Ti
m
e	
pe

r	
ta
sk

0

100

200

300

400

500

600

Task	repeDDons

1 2 3 4 5 6 7 8 9 10

Baseline
Leyden
Ideal

javac:	The	first	few	iteraDons

26Copyright	©	2023,	Oracle	and/or	its	affiliates

• Repeatedly	compile	
100	small	source	files		

• 2x	startup	improvement	
• No	change	to	existing	code

St
ar
tu
p	
im

pr
ov
em

en
t

Warmup	improvement



Ti
m
e	
pe

r	
ta
sk

0

25

50

75

100

Task	repeDDons

1 11 21 31 41 51 61 71 81 91 100

Baseline
Leyden
Ideal

javac:	More	iteraDons,	start	of	recompilaDon

27Copyright	©	2023,	Oracle	and/or	its	affiliates

Recompilation

Tuning	and	policy	
work	required	to	
bring	the	red	line	
down	further



• It	works	—	2x	startup	improvement	for	free!	
–We	can	shiO	opDmizaDon	work	earlier	in	Dme,	via	CDS	

– No	new	constraints,	no	changes	to	exisDng	code	

• There	is	no	one	“magic	bullet”	technique	
–We	have	several,	we’ll	keep	hunDng	for	more	

• MulDple	Dme	scales	of	warmup	are	important	
–We’ll	try	to	chase	them	all	

• This	machinery	doesn’t	tune	itself	
–Well-tuned	policy	is	a	way	of	life,	not	a	possession

Lessons	from	javac	case	study

28Copyright	©	2023,	Oracle	and/or	its	affiliates



SPECjvm2008	XML	validaDon	benchmark

29Copyright	©	2023,	Oracle	and/or	its	affiliates

Ti
m
e	
pe

r	
op

er
aD

on
	(m

s)

200

300

400

500

600

Sample	Dme	(seconds)

0 10 20 30

Baseline
CDS	only
Cached	code

Operation	time	sampled	
at	1s	intervals;	lower	is	
betterSt

ar
tu
p	
im

pr
ov
em

en
t

• 8x	startup	improvement	
• No	change	to	existing	code



• SomeDmes	startup	is	the	only	interesDng	win	
–Warmup	is	already	okay	for	smaller	applicaDons	

• In	this	case,	we	can	decisively	improve	startup	
– Compared	to	the	baseline	policy	

• Benchmark	noise	can	make	it	hard	to	decide	
when	we’ve	reached	peak	performance

Lessons	from	XML	validaDon	case	study

30Copyright	©	2023,	Oracle	and/or	its	affiliates



Default	(JDK	22)

Plain	CDS

Cache	classes	&	compiled	code

Cache	invokedynamic

Cache	compiled	code	w/	init	checks

Time	in	seconds,	average	of	three	runs

0.42

0.56

0.59

0.66

0.94

1.44

2.6x	improvement	with	no	change	to	exisOng	code

Spring	Boot	“Hello,	world”	startup

31Copyright	©	2023,	Oracle	and/or	its	affiliates



Default	(JDK	22)

Plain	CDS

Cache	classes	&	compiled	code

Cache	invokedynamic

Cache	compiled	code	w/	init	checks

Apply	Spring	Boot’s	AOT	config	tool

Time	in	seconds,	average	of	three	runs

0.42

0.56

0.59

0.66

0.94

1.44

2.6x	3.4x	improvement	with	no	change	to	exisOng	code

Spring	Boot	“Hello,	world”	startup

32Copyright	©	2023,	Oracle	and/or	its	affiliates



• There	are	many	tacDcs	which	can	improve	startup	
–We	win	big	because	the	tacDcs	work	in	synergy	

• Early	class	loading,	via	CDS,	is	a	big	win	
• Caching	compiled	code	is	a	big	win	

• Resolving	invokedynamic	call	sites	earlier	is	a	lesser	win	

• Clever	Der-4	code	that	contains	class-iniDalizaDon	checks	is	a	smaller	win	

• Using	Spring	Boot’s	ahead-of-Dme	configuraDon	tool	is	a	big	win	
– The	tool	scans	for	configuraDon	annotaDons	at	build	Dme	
and	generates	code	to	wire	up	components	quickly	at	run	Dme	
– It	is,	in	effect,	a	Spring-specific	condenser

Lessons	from	Spring	Boot	case	study

33Copyright	©	2023,	Oracle	and/or	its	affiliates



• This	overall	approach	shows	great	promise	
– Significant	gains	
– Full	compaDbility	
– No	new	constraints,	no	changes	to	the	programming	model,	no	changes	to	the	specificaDon	
– Retains	all	of	Java’s	natural	dynamism	

• This	is	largely	a	rearrangement	of	exisDng	JVM	components,	plus	some	new	policies	
– Current	patch	is	just	23K	lines	

• We’re	just	geyng	started!	
– A	small	team	has	been	working	on	this	only	since	March	

• Next	steps	…	
– Simplify	the	developer	workflow	into	condensers	(prototype	is	heavy	on	CLI	flag	soup)	
– Further	case	studies	to	improve	both	mechanisms	and	policies

Summary:	Time-shiOing	speculaDve	opDmizaDons	works!

34Copyright	©	2023,	Oracle	and/or	its	affiliates



Copyright	©	2023,	Oracle	and/or	its	affiliates

Project	Leyden

Mark	Reinhold	
Chief	Architect,	Java	Pla1orm	Group,	Oracle	

JCP	ExecuDve	CommiGee	
2023/9/14

Capturing	Lightning	in	a	Bo<le	


