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Java Release Model – Six month cadence
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Java Release Model - NFTC Releases
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Java Release Model - NFTC Releases
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• 12 On-time Feature Releases in 6 years, 3 of them with Long Term Support offered by Oracle
• No delayed features *

• Ability to adjust feature priority at any moment
• Higher quality releases

• No irresistible need to slip in features under the wire
• No overwhelming urge to backport new features to older releases

• Ability to incubate and/or preview features before making them final
• More engagement from Java Developers and System Administrators on non-final features
• Smaller features no longer wait for larger "release drivers"
• Faster adoption of new releases by tools and libraries

What did the six-month release cadence give us

December 2023Copyright © 2023, Oracle and/or its affiliates

* Features are not scheduled into a release until they are ready
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• Future of Java – Active OpenJDK Projects
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Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community
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1 Core
1 Thread
100% cpu use
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8 Cores
? Threads
100% cpu
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8 Cores
8 Threads
100% cpu

CPU Bound Application
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8 Cores
8 Threads at 1/2 use

50% cpu
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8 Cores
8 16 Threads at 1/2 use

100% cpu
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8 Core
32 Threads at 1/4 use

100% cpu
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8 Core
800 Threads at  1/100

100% cpu

IO Bound Application
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If it were this simple we wouldn't be talking about this right?

But…
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OS Threads are relatively expensive

• 2+kB of memory for metadata
• 1 MB+ of heap usage *

* Java Applications are limited to a few thousand threads by (mostly unused) memory

Java [OS] Threads are NOT enough for many IO Bound applications….

Pre-Loom: 1 Java Thread = 1 Operating System Thread
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Threads are great!
• Readable, sequential code with understandable control flow
• Great debugging and serviceability, with comprehensible stack traces
• Natural unit of scheduling for operating systems

But, threads are heavyweight
• Expensive to create, megabyte-scale stacks, can only create a few thousand
• The convenient thread-per-task model can bump into this ceiling 

Reactive frameworks promise better scaling, but at a significant cost
• Contorted programming model, hard to debug, incomprehensible stack traces

Project Loom

21

Don’t make users choose between efficient 

development and efficient deployment!
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Loom introduces virtual threads
• Lighter threads, which don’t drag around huge 

thread stacks
• Pay-as-you-go stacks (minimum size 200-300 

bytes), stored in the heap
• Scales to 1M+ concurrent connections on 

commodity hardware
Virtual threads are real threads!
• Implement java.lang.Thread, support 
ThreadLocal

• Clean stack traces, thread dumps
• Sequential-step debugging, profiling
• All your threaded code just works
• “Threads without the baggage”

Virtual Threads – JDK 21 

22

Virtual Threads

“Carrier” OS threads

transparently managed 
by a JVM scheduler
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Most server requests spend more time in IO than compute
If requests are bound to threads, then we’ll likely run out of threads before we run out of CPU
• Run out of threads because

we run out of memory
• Artificial throughput limit, 

raising cost of deployment
• With virtual threads, can 

keep taking load until CPU
is saturated

Breaking the bottleneck
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Virtual threads are designed to model a single task, rather than a mechanism for running tasks
• Cheap enough to have a thread for every user request and async task
• Can keep the happy “thread per request” model and still scale
• Pooling them is counterproductive!

Obviates the need for complex and ill-fitting async or “reactive” frameworks
• No need to change paradigms, just make threads better

Virtual threads transparently suspended / resumed when they block
• Blocking APIs throughout the JDK retrofitted to be aware of virtual threads

Same abstraction, new mindset
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Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community
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JEPs delivered *

• Local Variable Type Inference – JDK 10
• Local Variable Syntax for Lambda 

Parameters - JDK 11
• Switch Expressions - JDK 14
• Text Blocks - JDK 15
• Pattern Matching for instanceof - JDK 16
• Records - JDK 16
• Sealed classes - JDK 17
• Record Patterns - JDK 21
• Pattern Matching for switch - JDK 21
• String Templates - Preview, JDK 21
• Unnamed Patterns and Variables - Preview, 

JDK 21
• Unnamed Classes and Instance Main 

Methods - Preview, JDK 21

Work in progress…

• Type patterns for primitive types

• Reconstruction expressions for records 
(and eventually, classes)

• Deconstruction patterns for classes and 
interfaces

• Relaxed constructor ordering

Project Amber progress

26

* Details on each of Amber's JEP can be found in this 
presentation's appendix
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Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community
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ZGC

The “Z” garbage collector was introduced in JDK 15
• Terabyte-scale heaps, sub-millisecond pauses
• Pauses do not scale with heap size or live-set
• All the buzzwords – Concurrent, Parallel, 

Compacting, Region-based, Numa-Aware, 
Auto-tuning

• No longer have to worry about GC pauses
What’s the catch?
• The cost of this near-pauseless operation is about a 

2% throughput reduction
• And, uses more memory
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Generational ZGC

ZGC has been here for a while
• But has been single-generation

JDK 21 adds generational capability to ZGC
• Generational ZGC offers the same throughput with significantly less memory
• 75% less memory for same throughput on Cassandra benchmark
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Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community
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Project Panama is (partly) about better access to native (off-heap) memory and native code
In the early days of Java, native code was actively discouraged
• Pure Java FTW! 

But, there are some great native libraries that won’t be – and don’t need to be – rewritten in Java
• Off-CPU computing (Cuda, OpenCL)
• Machine learning (Blas, Blis, ONNX, Tensorflow)
• Graphics (OpenGL, DirectX, Vulkan)
• Many others (CRIU, fuse, io_uring, OpenSSL, V8, SQLite, ucx)

Project Panama
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Project Panama

We can access native libraries with JNI, but it is painful to use, unsafe
• Code in a brittle combination of Java and C
• Expensive to maintain, error-prone, poor error checking
• JNI errors can crash the JVM

Java developers often resort to ByteBuffer (or Unsafe) to manage “big data” off-heap
• ByteBuffers are clumsy, limited to 2GB
• Unsafe is, well, unsafe (and will eventually go away)

Panama is built for safety and performance from the ground up
• Highly optimized temporal and spatial bounds checking
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Project Panama

Panama gives us a better, safer, performant alternative to JNI, ByteBuffer, and Unsafe
• Final preview in JDK 21
• Based on newer, more optimizable VM facilities (MethodHandle, VarHandle)
• Safe, supported alternative for off-heap operations currently in Unsafe

Panama makes it easy to wrap native libraries with Java bindings and access them from Java code
• Bring native libraries into the Java ecosystem
• Encourage building and distributing Java bindings for popular native libraries
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Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community
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A look ahead – Project Leyden

Project Leyden is about improving the startup and warmup of Java applications
• Startup is the time it takes to get to the first useful unit of work
• Warmup is the time it takes for the application to reach peak performance

Java has historically favored long-term peak performance over startup 
• A good tradeoff for many applications

Java does a lot of work at startup – processing classfiles, interpretation, profile gathering, callsite 
linkage, JIT compilation
• Dynamic compilation produces better code than static compilation
• Good peak performance, but at the cost of startup and warmup
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Startup and warmup
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Startup and warmup
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Shifting computation

To push these curves down, we have to shift work off the critical path

• Could shift work later in time, such as by laziness

• Could shift work earlier in time, from run time to build time

The JDK already employs many computation-shifting techniques

• Constant folding, garbage collection, class loading, JIT compilation

Let’s shift more!

• Adapted the existing JIT compilers and Class Data Sharing (CDS) to precompute and store 
compilation profiles, compiled code, callsite linkage

• No changes to user code, no loss of dynamism

• Just a “training run” at build time
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Experimental Leyden result: javac
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Experimental Leyden result: Spring Boot
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Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community
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Shameless plug to ask for your help in evolving Java while protecting current programs
And to conclude.. 

Test… test… test

- Preview/Incubator features
 Even if only to say "no issues"

- Early Access of upcoming Feature  Versions
 You can test JDK 22 EA today

- Early Access of Project Builds
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Project Amber Features

Appendix
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Local-Variable Type Inference  JDK 10

URL url = new URL("http://www.oracle.com/");
  
URLConnection con = url.openConnection();  

InputStreamReader is = new InputStreamReader(con.getInputStream()));

Reader reader = new BufferedReader(is);
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Local-Variable Type Inference  JDK 10

var url = new URL("http://www.oracle.com/");
  
var con = url.openConnection();  

var is = new InputStreamReader(con.getInputStream()));

var reader = new BufferedReader(is);
      

Style Guide: https://openjdk.java.net/projects/amber/LVTIstyle.html
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Switch Expressions

int numLetters;
switch (day) {
    case MONDAY:
    case FRIDAY:
    case SUNDAY:
        numLetters = 6;
        break;
    case TUESDAY:
        numLetters = 7;
        break;
    case THURSDAY:
    case SATURDAY:
        numLetters = 8;
        break;
    case WEDNESDAY:
        numLetters = 9;
        break;
    default:
        throw new IllegalArgumentException("Not a day: " + day);
}
return numLetters;

JDK 14
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Switch Expressions

return switch (day) {
    case MONDAY, FRIDAY, SUNDAY -> 6;
    case TUESDAY   -> 7;
    case THURSDAY, SATURDAY -> 8;
    case WEDNESDAY  -> 9;
};

JDK 14
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Text Blocks  JDK 15

var html += "<tr>\n" + 
                          "<td>Retweets: " + t.getRetweetCount() + "</td>\n" +
                          "<td>Likes: " + t.getLikeCount() + " </td>\n" +
                          "<tr>\n ";
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Text Blocks  JDK 15

var html += """
                          <tr>
                          <td>Retweets: %s</td>
                          <td>Likes: %s</td>
                          <tr>
     """.formatted(t.getRetweetCount(),
          t.getLikeCount());

December 2023Copyright © 2023, Oracle and/or its affiliates59



Text Blocks  JDK 15

var html += """
                          <tr>
                          <td>Retweets: %s</td>
                          <td>Likes: %s</td>
                          <tr>
     """.formatted(t.getRetweetCount(),
          t.getLikeCount());

............

............

............

............
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Pattern Matching for instanceof  JDK 16

if (obj instanceof String) {
    String s = (String) obj;
    // use s
}

1) a test: is obj a String

2) declaration of a new variable s

3) casting of obj to String into variable s
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if (obj instanceof String s) {
    // use s
}

Pattern Matching for instanceof  JDK 16
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if (obj instanceof String s) {
    // use s
} else {
 //s is out of scope here!
}

Pattern Matching for instanceof  JDK 16
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class Point {
    final int x;
    final int y;

public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }

@Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) 
            return false;

        Point point = (Point) o;

        if (x != point.x) return false;
        return y == point.y;

    }

@Override
    public int hashCode() {
        int result = x;
        result = 31 * result + y;
        return result;
    }

}

public int x() { return x; }

    public int y() { return y; }

@Override
     public String toString() {
        return "Point{x=" + x + ", y=" + y + '}';
    }

Record Classes  JDK 16
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Record Classes  JDK 16

record Point (int x, int y) {}
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Sealed Types (classes and interfaces)  JDK 17

package com.example.geometry;

public abstract sealed class Shape permits Circle, Rectangle, Square {...}

public final class Circle    extends Shape {...}

public sealed class Rectangle extends Shape permits TransparentRectangle,

                                                    FilledRectangle {...}
public final  class TransparentRectangle extends Rectangle {...}

public final  class FilledRectangle      extends Rectangle {...}

public non-sealed class Square extends Shape {...}
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Record Patterns – JDK 21

Before
record Point(int x, int y) { }

static void printSum(Object obj) { 
    if (obj instanceof Point p) { 
        int x = p.x(); 
        int y = p.y();       
        System.out.println(x+y);
    } 
}
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Record Patterns

After
record Point(int x, int y) { }

static void printSum(Object obj) { 
    if (obj instanceof Point(int x, int y) { 
        System.out.println(x+y);
    } 
}
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More complicated Object Graphs

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE} 
record ColoredPoint (Point p, Color c) {} 
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
    if (r instanceof Rectangle(ColoredPoint ul,
                               ColoredPoint lr)) {
         System.out.println(ul.c());
    }
}
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More complicated Object Graphs

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE} 
record ColoredPoint (Point p, Color c) {} 
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
    if (r instanceof Rectangle(ColoredPoint (Point p, Color c),
                               ColoredPoint lr)) {
         System.out.println(c);
    }
}
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Type Inference

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE} 
record ColoredPoint (Point p, Color c) {} 
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
    if (r instanceof Rectangle(ColoredPoint (var p, Color c),
                               var lr)) {
         System.out.println(c);
    }
}
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Pattern Matching for switch - JDK 21

72

JEP 441

Enhance the Java programming language with with pattern matching for switch expressions and 
statements

Allows an expression to be tested against a number of patterns, each with a specific action, so that 
complex data-oriented queries can be expressed concisely and safely
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Pattern Matching for switch

Before
String formatter(Object o) {
    String formatted = "unknown";
    if (o instanceof Integer i) {
        formatted = String.format("int %d", i);
    } else if (o instanceof Long l) {
        formatted = String.format("long %d", l);
    } else if (o instanceof Double d) {
        formatted = String.format("double %f", d);
    } else if (o instanceof String s) {
        formatted = String.format("String %s", s);
    }
    return formatted;
}
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Pattern Matching for switch

After
String formatter(Object o) {
    return switch (o) {
        case null      -> "null";
        case Integer i -> String.format("int %d", i);
        case Long l    -> String.format("long %d", l);
        case Double d  -> String.format("double %f", d);
        case String s  -> String.format("String %s", s);
        default        -> o.toString();
    };
}
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Pattern Matching for switch – Case Refinement

static void test(Object o) {
    switch (o) {
        case String s:
            if (s.length() == 1) 
                {//handle single character strings}
       else 
                {//handle all other strings}
      break;
   ...
    };
}

75

The desired test: [if o is a String of 
length 0] is split between the case 
and the if statement
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Pattern Matching for switch – Optional when clause

static void test(Object o) {
    switch (o) {
        case String s when s.length() == 1 -> //single character strings
        case String s                      -> //all other strings

   ...
    };
}

76 Copyright © 2023, Oracle and/or its affiliates December 2023



String Templates (Preview)

77

JEP 430

String templates complement Java's existing string literals and text blocks by coupling literal text with 
embedded expressions and template processors to produce specialized results.

Goals
• Simplify how to express strings that include values computed at run time
• Enhance the readability of expressions that mix text and expressions
• Improve the security of programs that compose strings from user-provided values and pass them to 

other systems
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String s = x + " + " + y + 
" equals " + (x + y);  
//hard to read

String s = new StringBuilder( 
                .append(x) 
                .append(" + ") 
                .append(y) 
                .append(" equals ") 
                .append(x + y) 
                .toString();
//verbose

String s = String.format("%1$d + %2$d equals 
%3$d", x, y, x + y);
String t = "%1$d + %2$d equals 
%3$d".formatted(x, y, x + y);
//invites arity and type mismatch

MessageFormat mf = new MessageFormat("{0} + 
{1} equals {2}"); 
String s = mf.format(x, y, x + y);
//too much ceremony, unfamiliar syntax

String Templates - Motivation
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Why not add String Interpolation?

String Interpolation offers string literals that combine embedded expression as well as literal text.

const title = "My Web Page"; 
const text = "Hello, world"; 

var html = `<html> 
                <head>
                    <title>${title}</title>
                </head>
                <body>
                    <p>${text}</p>
                </body>
            </html>`;
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String Interpolation

Simplified assumptions meet real world

https://imgs.xkcd.com/comics/exploits_of
_a_mom.png
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As easy to use… but better

A little more work gets you a lot more safety

String Templates allow domain-specific validation and transformations to be built into the Template

With String Interpolation: 

Using String Templates: 

String name  = "Robert'); DROP TABLE Students; --";
String query = "INSERT INTO Students VALUES ('\{name}')";

INSERT INTO Students VALUES ('Robert'); DROP TABLE Students; --')

INSERT INTO Students VALUES ('Robert\'); DROP TABLE Students; --')
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String Templates 

Description

String name = "Joan"; 

String info = STR."My name is \{name}"; 

assert info.equals("My name is Joan"); 

82 Copyright © 2023, Oracle and/or its affiliates December 2023



String Templates 

Description

String info = STR."My name is \{name}"; 

1) Template Processor

2) Dot (U+002E) 3) Template with a embedded 
expression
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String Templates

STR Template Processor

int x = 10, y = 20;
String s = STR."\{x} + \{y} = \{x + y}"
// "10 + 20 = 30"

String t = STR."Access at \{req.date} \{req.time} from \{req.ipAddress}"; 
// "Access at 2022-03-25 15:34 from 8.8.8.8"
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String Templates

85

Multi Line Embedded Expressions

String time = STR."The time is \{ 
    // The java.time.format package is very useful
    DateTimeFormatter
      .ofPattern("HH:mm:ss")
      .format(LocalTime.now()) 
    } right now"; 

// "The time is 12:34:56 right now"
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String title = "My Web Page"; String text 
= "Hello, world"; 

String html = STR."""
    <html>
      <head>
        <title>\{title}</title>
      </head>
      <body>
        <p>\{text}</p>
      </body>
    </html>
    """;

 """
 <html>
   <head>
     <title>My Web Page</title>
   </head>
   <body>
     <p>Hello, world</p>
   </body>
 </html>
 """

String Templates
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String Templates

The FMT template processor

FMT is like STR but it also interprets format specifiers to the left of the embedded expressions
Format specifiers are the same as those defined in java.util.Formatter

double gallons = 12.34
double pricePerGallon = 3.865

FMT."Purchasing %1.2f\{gallons} gallons of gasoline at $%1.3f\{pricePerGallon} would 
cost $%1.2f\{gallons * pricePerGallon}"

// "Purchasing 12.34 gallons of gasoline at $3.865 per gallon would cost $47.69"
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Unnamed Patterns and Variables (Preview)

88

JEP 443

Enhance the Java language with unnamed patterns, which match a record component without stating 
the component's name or type, and unnamed variables, which can be initialized but not used. Both are 
denoted by an underscore character: _ 
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Pattern Matching with unused variables

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE} 
record ColoredPoint (Point p, Color c) {} 
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
    if (r instanceof Rectangle(ColoredPoint (var p, Color c),
                                            var lr)) {
         System.out.println(c);
    }
}
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Pattern Matching with Unnamed Patterns

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE} 
record ColoredPoint (Point p, Color c) {} 
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
    if (r instanceof Rectangle(ColoredPoint (_, Color c), _)) {

         System.out.println(c);
    }
}
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Unnamed Variables

String s = ...;

try { 
    int i = Integer.parseInt(s);
    ... i ... 
} catch (NumberFormatException ex) { 
    System.out.println("Bad number: " + s); 
}
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Unnamed Variables

String s = ...;

try { 
    int i = Integer.parseInt(s);
    ... i ... 
} catch (NumberFormatException _) { 
    System.out.println("Bad number: " + s); 
}
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Unnamed Classes and Instance Main Methods (Preview)

93

JEP 445

Make it possible for students to write their first programs without needing to understand language 
features designed for large programs.
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Unnamed Classes and Instance Main Methods 

94

My first Java program

public class HelloWorld { 
    public static void main(String[] args) {
        System.out.println("Hello, World!"); 
    } 
}

Class declaration and public access modifier

Parameters to interface with OS's shell

static modifier is part of class-and-object model
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Allow instance main methods

95

My first Java program

class HelloWorld { 
    void main() {
        System.out.println("Hello, World!"); 
    } 
}
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Introduce unnamed classes

96

My Java first program

 
    void main() {
        System.out.println("Hello, World!"); 
    }

Copyright © 2023, Oracle and/or its affiliates December 2023



Introduce unnamed classes

97

My Java first program

class <unnamed> { 
    void main() {
        System.out.println("Hello, World!"); 
    }
}
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Introduce unnamed classes

98

My Java first program

class <unnamed> { 
    String greeting() { return "Hello, World!"};
    void main() {
        System.out.println(greeting()); 
    }
}
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Introduce unnamed classes

My Java first program

class <unnamed> { 
    String greeting = "Hello, World!";
    void main() {
        System.out.println(greeting); 
    }
}
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