
Java Update
For the JCP EC

Aurelio Garcia-Ribeyro
Senior Director Product Management
Java Platform Group
Dec, 2023

Copyright © 2023, Oracle and/or its affiliates

• Java Release Model – With most recent changes
• Future of Java – Active OpenJDK Projects

Agenda

December 2023Copyright © 2023, Oracle and/or its affiliates2

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Java Release Model – Major Releases

December 2023Copyright © 2023, Oracle and/or its affiliates

OpenJDK

Feature Releases

JDK 7

JDK 8

JDK 9

JDK 10

JDK 11

JDK 12

JDK 13

JDK 14

JDK 15

JDK 16

Minor Release

Critical Patch Update

Major Releases

3

Java Release Model – Six month cadence

December 2023Copyright © 2023, Oracle and/or its affiliates

JDK 8

JDK 11

JDK 12

JDK 13

JDK 14

JDK 15

JDK 16

JDK 17

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

OpenJDK

Major Releases

Feature Releases

JDK 7

4

Java Release Model - NFTC Releases

December 2023Copyright © 2023, Oracle and/or its affiliates

JDK 8

JDK 11

JDK 17

JDK 18

JDK 19

JDK 20

JDK 21

JDK 22

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

OpenJDK

Major Releases

Feature Releases

5

Java Release Model - NFTC Releases

December 2023Copyright © 2023, Oracle and/or its affiliates

JDK 8

JDK 11

JDK 17

JDK 21

JDK 22

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

JDK 23

JDK 24

JDK 25

6

Sept
2017

Mar
2018

Sept
2018

Mar
2019

Sept
2019

Mar
2020

Sept
2020

Mar
2021

Sept
2021

Mar
2014

3 +
Years

6
Months

6
Months

6
Months

6
Months

6
Months

6
Months

6
Months

6
Months

JDK 8 JDK 9 JDK 10 JDK 11 JDK 12 JDK 13 JDK 14 JDK 15 JDK 16 JDK 17 JDK 18

Mar
2022

6
Months

JDK 19

Sept
2022

6
Months

JDK 20 JDK 21

Mar
2023

6
Months

Sept
2023

6
Months

* Oracle offers LTS for this version

JE
Ps

56

91

12

17

8
5

16 14
17

14

9 7 6

15

* * * *

6 Month Release Cadence

Copyright © 2023, Oracle and/or its affiliates 7

Sept
2018

Sept
2021

Mar
2014

4 +
Years

3
years

JDK 8 JDK 11 JDK 17

2
Years

JDK 21

Sept
2023

JE
Ps

56

120 74 37

With LTS Blinders

Copyright © 2023, Oracle and/or its affiliates8

• 12 On-time Feature Releases in 6 years, 3 of them with Long Term Support offered by Oracle
• No delayed features *

• Ability to adjust feature priority at any moment
• Higher quality releases

• No irresistible need to slip in features under the wire
• No overwhelming urge to backport new features to older releases

• Ability to incubate and/or preview features before making them final
• More engagement from Java Developers and System Administrators on non-final features
• Smaller features no longer wait for larger "release drivers"
• Faster adoption of new releases by tools and libraries

What did the six-month release cadence give us

December 2023Copyright © 2023, Oracle and/or its affiliates

* Features are not scheduled into a release until they are ready

9

• Java Release Model – With most recent changes
• Future of Java – Active OpenJDK Projects

Agenda

December 2023Copyright © 2023, Oracle and/or its affiliates10

Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community

Copyright © 2023, Oracle and/or its affiliates11 December 2023

12

1 Core
1 Thread
100% cpu use

Copyright © 2023, Oracle and/or its affiliates December 2023

13

8 Cores
? Threads
100% cpu

Copyright © 2023, Oracle and/or its affiliates December 2023

14

8 Cores
8 Threads
100% cpu

CPU Bound Application

Copyright © 2023, Oracle and/or its affiliates December 2023

15

8 Cores
8 Threads at 1/2 use

50% cpu

Copyright © 2023, Oracle and/or its affiliates December 2023

16

8 Cores
8 16 Threads at 1/2 use

100% cpu

Copyright © 2023, Oracle and/or its affiliates December 2023

17

8 Core
32 Threads at 1/4 use

100% cpu

Copyright © 2023, Oracle and/or its affiliates December 2023

18

8 Core
800 Threads at 1/100

100% cpu

IO Bound Application

Copyright © 2023, Oracle and/or its affiliates December 2023

19

If it were this simple we wouldn't be talking about this right?

But…

Copyright © 2023, Oracle and/or its affiliates December 2023

OS Threads are relatively expensive

• 2+kB of memory for metadata
• 1 MB+ of heap usage *

* Java Applications are limited to a few thousand threads by (mostly unused) memory

Java [OS] Threads are NOT enough for many IO Bound applications….

Pre-Loom: 1 Java Thread = 1 Operating System Thread

20 Copyright © 2023, Oracle and/or its affiliates December 2023

Threads are great!
• Readable, sequential code with understandable control flow
• Great debugging and serviceability, with comprehensible stack traces
• Natural unit of scheduling for operating systems

But, threads are heavyweight
• Expensive to create, megabyte-scale stacks, can only create a few thousand
• The convenient thread-per-task model can bump into this ceiling

Reactive frameworks promise better scaling, but at a significant cost
• Contorted programming model, hard to debug, incomprehensible stack traces

Project Loom

21

Don’t make users choose between efficient

development and efficient deployment!

Copyright © 2023, Oracle and/or its affiliates December 2023

Loom introduces virtual threads
• Lighter threads, which don’t drag around huge

thread stacks
• Pay-as-you-go stacks (minimum size 200-300

bytes), stored in the heap
• Scales to 1M+ concurrent connections on

commodity hardware
Virtual threads are real threads!
• Implement java.lang.Thread, support
ThreadLocal

• Clean stack traces, thread dumps
• Sequential-step debugging, profiling
• All your threaded code just works
• “Threads without the baggage”

Virtual Threads – JDK 21

22

Virtual Threads

“Carrier” OS threads

transparently managed
by a JVM scheduler

Copyright © 2023, Oracle and/or its affiliates December 2023

Most server requests spend more time in IO than compute
If requests are bound to threads, then we’ll likely run out of threads before we run out of CPU
• Run out of threads because

we run out of memory
• Artificial throughput limit,

raising cost of deployment
• With virtual threads, can

keep taking load until CPU
is saturated

Breaking the bottleneck

23 Copyright © 2023, Oracle and/or its affiliates December 2023

Virtual threads are designed to model a single task, rather than a mechanism for running tasks
• Cheap enough to have a thread for every user request and async task
• Can keep the happy “thread per request” model and still scale
• Pooling them is counterproductive!

Obviates the need for complex and ill-fitting async or “reactive” frameworks
• No need to change paradigms, just make threads better

Virtual threads transparently suspended / resumed when they block
• Blocking APIs throughout the JDK retrofitted to be aware of virtual threads

Same abstraction, new mindset

24 Copyright © 2023, Oracle and/or its affiliates December 2023

Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community

25 Copyright © 2023, Oracle and/or its affiliates December 2023

JEPs delivered *

• Local Variable Type Inference – JDK 10
• Local Variable Syntax for Lambda

Parameters - JDK 11
• Switch Expressions - JDK 14
• Text Blocks - JDK 15
• Pattern Matching for instanceof - JDK 16
• Records - JDK 16
• Sealed classes - JDK 17
• Record Patterns - JDK 21
• Pattern Matching for switch - JDK 21
• String Templates - Preview, JDK 21
• Unnamed Patterns and Variables - Preview,

JDK 21
• Unnamed Classes and Instance Main

Methods - Preview, JDK 21

Work in progress…

• Type patterns for primitive types

• Reconstruction expressions for records
(and eventually, classes)

• Deconstruction patterns for classes and
interfaces

• Relaxed constructor ordering

Project Amber progress

26

* Details on each of Amber's JEP can be found in this
presentation's appendix

Copyright © 2023, Oracle and/or its affiliates December 2023

Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community

27 Copyright © 2023, Oracle and/or its affiliates December 2023

ZGC

The “Z” garbage collector was introduced in JDK 15
• Terabyte-scale heaps, sub-millisecond pauses
• Pauses do not scale with heap size or live-set
• All the buzzwords – Concurrent, Parallel,

Compacting, Region-based, Numa-Aware,
Auto-tuning

• No longer have to worry about GC pauses
What’s the catch?
• The cost of this near-pauseless operation is about a

2% throughput reduction
• And, uses more memory

28 Copyright © 2023, Oracle and/or its affiliates December 2023

29

500
450
400
350
300
250
200
150
100

50

GC pause times

Lower is better

m
ill

is
ec

on
ds

ZGCG1
0

Average
95th Percentile
99th Percentile
99.9th Percentile
Max

30

500
450
400
350
300
250
200
150
100

50

m
ic

ro
se

co
nd

s

,000
,000
,000
,000
,000
,000
,000
,000
,000
,000

GC pause times

ZGCG1
0

Lower is better

Average
95th Percentile
99th Percentile
99.9th Percentile
Max

1,000

ZGCG1

500
450
400
350
300
250
200
150
100

50
0

GC pause times

Lower is better

Average
95th Percentile
99th Percentile
99.9th Percentile
Maxm

ic
ro

se
co

nd
s

ZGC Improvements Over Time

0

1

2

3

4

5

6

JDK 11 JDK 15 JDK 17

G
C

 P
au

se
 T

im
es

 (m
s)

(Lower is better)

Average
95th percentile
99th percentile
99.9th percentile
Max

GC Pause Times

128G Heap
40 Hyper-threads (Intel)

32 Copyright © 2023, Oracle and/or its affiliates December 2023

Generational ZGC

ZGC has been here for a while
• But has been single-generation

JDK 21 adds generational capability to ZGC
• Generational ZGC offers the same throughput with significantly less memory
• 75% less memory for same throughput on Cassandra benchmark

33 Copyright © 2023, Oracle and/or its affiliates December 2023

Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community

34 Copyright © 2023, Oracle and/or its affiliates December 2023

Project Panama is (partly) about better access to native (off-heap) memory and native code
In the early days of Java, native code was actively discouraged
• Pure Java FTW!

But, there are some great native libraries that won’t be – and don’t need to be – rewritten in Java
• Off-CPU computing (Cuda, OpenCL)
• Machine learning (Blas, Blis, ONNX, Tensorflow)
• Graphics (OpenGL, DirectX, Vulkan)
• Many others (CRIU, fuse, io_uring, OpenSSL, V8, SQLite, ucx)

Project Panama

35 Copyright © 2023, Oracle and/or its affiliates December 2023

Project Panama

We can access native libraries with JNI, but it is painful to use, unsafe
• Code in a brittle combination of Java and C
• Expensive to maintain, error-prone, poor error checking
• JNI errors can crash the JVM

Java developers often resort to ByteBuffer (or Unsafe) to manage “big data” off-heap
• ByteBuffers are clumsy, limited to 2GB
• Unsafe is, well, unsafe (and will eventually go away)

Panama is built for safety and performance from the ground up
• Highly optimized temporal and spatial bounds checking

36 Copyright © 2023, Oracle and/or its affiliates December 2023

Project Panama

Panama gives us a better, safer, performant alternative to JNI, ByteBuffer, and Unsafe
• Final preview in JDK 21
• Based on newer, more optimizable VM facilities (MethodHandle, VarHandle)
• Safe, supported alternative for off-heap operations currently in Unsafe

Panama makes it easy to wrap native libraries with Java bindings and access them from Java code
• Bring native libraries into the Java ecosystem
• Encourage building and distributing Java bindings for popular native libraries

37 Copyright © 2023, Oracle and/or its affiliates December 2023

Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community

38 Copyright © 2023, Oracle and/or its affiliates December 2023

A look ahead – Project Leyden

Project Leyden is about improving the startup and warmup of Java applications
• Startup is the time it takes to get to the first useful unit of work
• Warmup is the time it takes for the application to reach peak performance

Java has historically favored long-term peak performance over startup
• A good tradeoff for many applications

Java does a lot of work at startup – processing classfiles, interpretation, profile gathering, callsite
linkage, JIT compilation
• Dynamic compilation produces better code than static compilation
• Good peak performance, but at the cost of startup and warmup

39 Copyright © 2023, Oracle and/or its affiliates December 2023

Startup and warmup

Copyright © 2023, Oracle and/or its affiliates40

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
pe

r t
as

k

Task repetitions

Typical
Ideal

Class initialization activity
unique to first iteration
(CPU milliseconds)

Online JIT activity
for warmup
(CPU seconds)

Startup and warmup

Copyright © 2023, Oracle and/or its affiliates41

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
pe

r t
as

k

Task repetitions

Typical
Ideal

To improve startup,
push the first point down

To improve warmup,
push the entire curve down

Shifting computation

To push these curves down, we have to shift work off the critical path

• Could shift work later in time, such as by laziness

• Could shift work earlier in time, from run time to build time

The JDK already employs many computation-shifting techniques

• Constant folding, garbage collection, class loading, JIT compilation

Let’s shift more!

• Adapted the existing JIT compilers and Class Data Sharing (CDS) to precompute and store
compilation profiles, compiled code, callsite linkage

• No changes to user code, no loss of dynamism

• Just a “training run” at build time

42 Copyright © 2023, Oracle and/or its affiliates December 2023

Experimental Leyden result: javac

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Baseline
Leyden
Ideal

• Repeatedly compile
100 small source files

• 2x startup
improvement,
significant warmup
improvement

• No change to existing
code

St
ar

tu
p

im
pr

ov
em

en
t

Warmup improvement

Task Repetitions

Ti
m

e
pe

r T
as

k

43 Copyright © 2023, Oracle and/or its affiliates

Experimental Leyden result: Spring Boot

0

0.5

1

1.5

2

2.5

3

3.5

4

Startup time (s)

Baseline (JDK 22) Unpacked With static CDS With dynamic CDS With Spring AOT tools

Spring Boot “Pet Clinic”
4.1x startup
improvement with no
change to existing code

44 Copyright © 2023, Oracle and/or its affiliates December 2023

Summary Pain point “Obvious”
Competition

Loom Lightweight concurrency “Threads are too expensive, don’t scale” Go, Elixir

Amber Right-sizing language ceremony “Java is too verbose”
“Java is hard to teach”

C#, Kotlin

ZGC Sub-millisecond GC pauses “GC pauses are too long” C, Rust

Panama Native code and memory interop
SIMD Vector support

“Using native libraries is too hard”
“Numeric loops are too slow”

Python, C

Leyden Faster startup and warmup “Java starts up too slowly” Go

Valhalla Value types and specialized generics “Cache misses are too expensive”
“Generics and primitives don’t mix”

C, C#

Babylon Foreign programming model interop “Using GPUs is too hard” LinQ, Julia

Active projects in the OpenJDK community

45 Copyright © 2023, Oracle and/or its affiliates December 2023

Shameless plug to ask for your help in evolving Java while protecting current programs
And to conclude..

Test… test… test

- Preview/Incubator features
 Even if only to say "no issues"

- Early Access of upcoming Feature Versions
 You can test JDK 22 EA today

- Early Access of Project Builds

51 Copyright © 2023, Oracle and/or its affiliates December 2023

Project Amber Features

Appendix

53 Copyright © 2023, Oracle and/or its affiliates December 2023

Local-Variable Type Inference JDK 10

URL url = new URL("http://www.oracle.com/");

URLConnection con = url.openConnection();

InputStreamReader is = new InputStreamReader(con.getInputStream()));

Reader reader = new BufferedReader(is);

December 2023Copyright © 2023, Oracle and/or its affiliates54

Local-Variable Type Inference JDK 10

var url = new URL("http://www.oracle.com/");

var con = url.openConnection();

var is = new InputStreamReader(con.getInputStream()));

var reader = new BufferedReader(is);

Style Guide: https://openjdk.java.net/projects/amber/LVTIstyle.html

December 2023Copyright © 2023, Oracle and/or its affiliates55

Switch Expressions

int numLetters;
switch (day) {
 case MONDAY:
 case FRIDAY:
 case SUNDAY:
 numLetters = 6;
 break;
 case TUESDAY:
 numLetters = 7;
 break;
 case THURSDAY:
 case SATURDAY:
 numLetters = 8;
 break;
 case WEDNESDAY:
 numLetters = 9;
 break;
 default:
 throw new IllegalArgumentException("Not a day: " + day);
}
return numLetters;

JDK 14

December 2023Copyright © 2023, Oracle and/or its affiliates56

Switch Expressions

return switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> 6;
 case TUESDAY -> 7;
 case THURSDAY, SATURDAY -> 8;
 case WEDNESDAY -> 9;
};

JDK 14

December 2023Copyright © 2023, Oracle and/or its affiliates57

Text Blocks JDK 15

var html += "<tr>\n" +
 "<td>Retweets: " + t.getRetweetCount() + "</td>\n" +
 "<td>Likes: " + t.getLikeCount() + " </td>\n" +
 "<tr>\n ";

December 2023Copyright © 2023, Oracle and/or its affiliates58

Text Blocks JDK 15

var html += """
 <tr>
 <td>Retweets: %s</td>
 <td>Likes: %s</td>
 <tr>
 """.formatted(t.getRetweetCount(),
 t.getLikeCount());

December 2023Copyright © 2023, Oracle and/or its affiliates59

Text Blocks JDK 15

var html += """
 <tr>
 <td>Retweets: %s</td>
 <td>Likes: %s</td>
 <tr>
 """.formatted(t.getRetweetCount(),
 t.getLikeCount());

............

............

............

............

December 2023Copyright © 2023, Oracle and/or its affiliates60

Pattern Matching for instanceof JDK 16

if (obj instanceof String) {
 String s = (String) obj;
 // use s
}

1) a test: is obj a String

2) declaration of a new variable s

3) casting of obj to String into variable s

December 2023Copyright © 2023, Oracle and/or its affiliates61

if (obj instanceof String s) {
 // use s
}

Pattern Matching for instanceof JDK 16

December 2023Copyright © 2023, Oracle and/or its affiliates62

if (obj instanceof String s) {
 // use s
} else {
 //s is out of scope here!
}

Pattern Matching for instanceof JDK 16

December 2023Copyright © 2023, Oracle and/or its affiliates63

class Point {
 final int x;
 final int y;

public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

@Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass())
 return false;

 Point point = (Point) o;

 if (x != point.x) return false;
 return y == point.y;

 }

@Override
 public int hashCode() {
 int result = x;
 result = 31 * result + y;
 return result;
 }

}

public int x() { return x; }

 public int y() { return y; }

@Override
 public String toString() {
 return "Point{x=" + x + ", y=" + y + '}';
 }

Record Classes JDK 16

December 2023Copyright © 2023, Oracle and/or its affiliates64

Record Classes JDK 16

record Point (int x, int y) {}

December 2023Copyright © 2023, Oracle and/or its affiliates65

Sealed Types (classes and interfaces) JDK 17

package com.example.geometry;

public abstract sealed class Shape permits Circle, Rectangle, Square {...}

public final class Circle extends Shape {...}

public sealed class Rectangle extends Shape permits TransparentRectangle,

 FilledRectangle {...}
public final class TransparentRectangle extends Rectangle {...}

public final class FilledRectangle extends Rectangle {...}

public non-sealed class Square extends Shape {...}

December 202366 Copyright © 2023, Oracle and/or its affiliates

Record Patterns – JDK 21

Before
record Point(int x, int y) { }

static void printSum(Object obj) {
 if (obj instanceof Point p) {
 int x = p.x();
 int y = p.y();
 System.out.println(x+y);
 }
}

67 Copyright © 2023, Oracle and/or its affiliates December 2023

Record Patterns

After
record Point(int x, int y) { }

static void printSum(Object obj) {
 if (obj instanceof Point(int x, int y) {
 System.out.println(x+y);
 }
}

68 Copyright © 2023, Oracle and/or its affiliates December 2023

More complicated Object Graphs

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE}
record ColoredPoint (Point p, Color c) {}
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
 if (r instanceof Rectangle(ColoredPoint ul,
 ColoredPoint lr)) {
 System.out.println(ul.c());
 }
}

69 Copyright © 2023, Oracle and/or its affiliates December 2023

More complicated Object Graphs

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE}
record ColoredPoint (Point p, Color c) {}
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
 if (r instanceof Rectangle(ColoredPoint (Point p, Color c),
 ColoredPoint lr)) {
 System.out.println(c);
 }
}

70 Copyright © 2023, Oracle and/or its affiliates December 2023

Type Inference

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE}
record ColoredPoint (Point p, Color c) {}
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
 if (r instanceof Rectangle(ColoredPoint (var p, Color c),
 var lr)) {
 System.out.println(c);
 }
}

71 Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching for switch - JDK 21

72

JEP 441

Enhance the Java programming language with with pattern matching for switch expressions and
statements

Allows an expression to be tested against a number of patterns, each with a specific action, so that
complex data-oriented queries can be expressed concisely and safely

Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching for switch

Before
String formatter(Object o) {
 String formatted = "unknown";
 if (o instanceof Integer i) {
 formatted = String.format("int %d", i);
 } else if (o instanceof Long l) {
 formatted = String.format("long %d", l);
 } else if (o instanceof Double d) {
 formatted = String.format("double %f", d);
 } else if (o instanceof String s) {
 formatted = String.format("String %s", s);
 }
 return formatted;
}

73 Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching for switch

After
String formatter(Object o) {
 return switch (o) {
 case null -> "null";
 case Integer i -> String.format("int %d", i);
 case Long l -> String.format("long %d", l);
 case Double d -> String.format("double %f", d);
 case String s -> String.format("String %s", s);
 default -> o.toString();
 };
}

74 Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching for switch – Case Refinement

static void test(Object o) {
 switch (o) {
 case String s:
 if (s.length() == 1)
 {//handle single character strings}
 else
 {//handle all other strings}
 break;
 ...
 };
}

75

The desired test: [if o is a String of
length 0] is split between the case
and the if statement

Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching for switch – Optional when clause

static void test(Object o) {
 switch (o) {
 case String s when s.length() == 1 -> //single character strings
 case String s -> //all other strings

 ...
 };
}

76 Copyright © 2023, Oracle and/or its affiliates December 2023

String Templates (Preview)

77

JEP 430

String templates complement Java's existing string literals and text blocks by coupling literal text with
embedded expressions and template processors to produce specialized results.

Goals
• Simplify how to express strings that include values computed at run time
• Enhance the readability of expressions that mix text and expressions
• Improve the security of programs that compose strings from user-provided values and pass them to

other systems

Copyright © 2023, Oracle and/or its affiliates December 2023

String s = x + " + " + y +
" equals " + (x + y);
//hard to read

String s = new StringBuilder(
 .append(x)
 .append(" + ")
 .append(y)
 .append(" equals ")
 .append(x + y)
 .toString();
//verbose

String s = String.format("%1$d + %2$d equals
%3$d", x, y, x + y);
String t = "%1$d + %2$d equals
%3$d".formatted(x, y, x + y);
//invites arity and type mismatch

MessageFormat mf = new MessageFormat("{0} +
{1} equals {2}");
String s = mf.format(x, y, x + y);
//too much ceremony, unfamiliar syntax

String Templates - Motivation

78 Copyright © 2023, Oracle and/or its affiliates December 2023

Why not add String Interpolation?

String Interpolation offers string literals that combine embedded expression as well as literal text.

const title = "My Web Page";
const text = "Hello, world";

var html = `<html>
 <head>
 <title>${title}</title>
 </head>
 <body>
 <p>${text}</p>
 </body>
 </html>`;

79 Copyright © 2023, Oracle and/or its affiliates December 2023

String Interpolation

Simplified assumptions meet real world

https://imgs.xkcd.com/comics/exploits_of
_a_mom.png

80 Copyright © 2023, Oracle and/or its affiliates December 2023

As easy to use… but better

A little more work gets you a lot more safety

String Templates allow domain-specific validation and transformations to be built into the Template

With String Interpolation:

Using String Templates:

String name = "Robert'); DROP TABLE Students; --";
String query = "INSERT INTO Students VALUES ('\{name}')";

INSERT INTO Students VALUES ('Robert'); DROP TABLE Students; --')

INSERT INTO Students VALUES ('Robert\'); DROP TABLE Students; --')

81 Copyright © 2023, Oracle and/or its affiliates December 2023

String Templates

Description

String name = "Joan";

String info = STR."My name is \{name}";

assert info.equals("My name is Joan");

82 Copyright © 2023, Oracle and/or its affiliates December 2023

String Templates

Description

String info = STR."My name is \{name}";

1) Template Processor

2) Dot (U+002E) 3) Template with a embedded
expression

83 Copyright © 2023, Oracle and/or its affiliates December 2023

String Templates

STR Template Processor

int x = 10, y = 20;
String s = STR."\{x} + \{y} = \{x + y}"
// "10 + 20 = 30"

String t = STR."Access at \{req.date} \{req.time} from \{req.ipAddress}";
// "Access at 2022-03-25 15:34 from 8.8.8.8"

84 Copyright © 2023, Oracle and/or its affiliates December 2023

String Templates

85

Multi Line Embedded Expressions

String time = STR."The time is \{
 // The java.time.format package is very useful
 DateTimeFormatter
 .ofPattern("HH:mm:ss")
 .format(LocalTime.now())
 } right now";

// "The time is 12:34:56 right now"

Copyright © 2023, Oracle and/or its affiliates December 2023

String title = "My Web Page"; String text
= "Hello, world";

String html = STR."""
 <html>
 <head>
 <title>\{title}</title>
 </head>
 <body>
 <p>\{text}</p>
 </body>
 </html>
 """;

 """
 <html>
 <head>
 <title>My Web Page</title>
 </head>
 <body>
 <p>Hello, world</p>
 </body>
 </html>
 """

String Templates

86 Copyright © 2023, Oracle and/or its affiliates December 2023

String Templates

The FMT template processor

FMT is like STR but it also interprets format specifiers to the left of the embedded expressions
Format specifiers are the same as those defined in java.util.Formatter

double gallons = 12.34
double pricePerGallon = 3.865

FMT."Purchasing %1.2f\{gallons} gallons of gasoline at $%1.3f\{pricePerGallon} would
cost $%1.2f\{gallons * pricePerGallon}"

// "Purchasing 12.34 gallons of gasoline at $3.865 per gallon would cost $47.69"

87 Copyright © 2023, Oracle and/or its affiliates December 2023

Unnamed Patterns and Variables (Preview)

88

JEP 443

Enhance the Java language with unnamed patterns, which match a record component without stating
the component's name or type, and unnamed variables, which can be initialized but not used. Both are
denoted by an underscore character: _

Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching with unused variables

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE}
record ColoredPoint (Point p, Color c) {}
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
 if (r instanceof Rectangle(ColoredPoint (var p, Color c),
 var lr)) {
 System.out.println(c);
 }
}

89 Copyright © 2023, Oracle and/or its affiliates December 2023

Pattern Matching with Unnamed Patterns

record Point(int x, int y) { }
enum Color {RED, GREEN, BLUE}
record ColoredPoint (Point p, Color c) {}
record Rectangle (ColoredPoint upperLeft, ColoredPoint lowerRight) {}

static void printUpperLeftColoredPoint(Rectangle r) {
 if (r instanceof Rectangle(ColoredPoint (_, Color c), _)) {

 System.out.println(c);
 }
}

90 Copyright © 2023, Oracle and/or its affiliates December 2023

Unnamed Variables

String s = ...;

try {
 int i = Integer.parseInt(s);
 ... i ...
} catch (NumberFormatException ex) {
 System.out.println("Bad number: " + s);
}

91 Copyright © 2023, Oracle and/or its affiliates December 2023

Unnamed Variables

String s = ...;

try {
 int i = Integer.parseInt(s);
 ... i ...
} catch (NumberFormatException _) {
 System.out.println("Bad number: " + s);
}

92 Copyright © 2023, Oracle and/or its affiliates December 2023

Unnamed Classes and Instance Main Methods (Preview)

93

JEP 445

Make it possible for students to write their first programs without needing to understand language
features designed for large programs.

Copyright © 2023, Oracle and/or its affiliates December 2023

Unnamed Classes and Instance Main Methods

94

My first Java program

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

Class declaration and public access modifier

Parameters to interface with OS's shell

static modifier is part of class-and-object model

Copyright © 2023, Oracle and/or its affiliates December 2023

Allow instance main methods

95

My first Java program

class HelloWorld {
 void main() {
 System.out.println("Hello, World!");
 }
}

Copyright © 2023, Oracle and/or its affiliates December 2023

Introduce unnamed classes

96

My Java first program

 void main() {
 System.out.println("Hello, World!");
 }

Copyright © 2023, Oracle and/or its affiliates December 2023

Introduce unnamed classes

97

My Java first program

class <unnamed> {
 void main() {
 System.out.println("Hello, World!");
 }
}

Copyright © 2023, Oracle and/or its affiliates December 2023

Introduce unnamed classes

98

My Java first program

class <unnamed> {
 String greeting() { return "Hello, World!"};
 void main() {
 System.out.println(greeting());
 }
}

Copyright © 2023, Oracle and/or its affiliates December 2023

Introduce unnamed classes

My Java first program

class <unnamed> {
 String greeting = "Hello, World!";
 void main() {
 System.out.println(greeting);
 }
}

99 Copyright © 2023, Oracle and/or its affiliates December 2023

