
Copyright © 2024 Oracle and/or its affiliates.

Iris Clark

Specification Lead

iris.clark@oracle.com
June 11, 2024

Java SE Platform JSRs

Copyright © 2024 Oracle and/or its affiliates.

2024 Maintenance Reviews

JSR 384 MR 3 (Java SE 11)
• Spec: java.awt.Robot (8331036)
• RI: 11.0.0.2 (https://github.com/openjdk/jdk11u-ri)
• TCK: JCK 11a (re-use)

Schedule

2024/04/16
Proposal e-mail

2024/05/16 – 2024/06/13
Maintenance Review

2024/06/18 – 2024/06/24
Maintenance Review
Ballot

2024/07
Maintenance Release

2024/10
OpenJDK & Oracle JDK
releases

JSR 392 MR 1 (Java SE 17)
• Spec: java.awt.Robot (8330603), KEM API (8330545),

java.version.maintenance.version (8330418)
• RI: 17.0.0.1 (https://github.com/openjdk/jdk17u-ri)
• TCK: JCK 17a

JSR 337 MR 6 (Java SE 8)
• Spec: java.awt.Robot (8331038)
• RI: 8u44 (https://github.com/openjdk/jdk8u-ri)
• TCK: JCK 8d (re-use)

https://bugs.openjdk.org/browse/JDK-8331036
https://github.com/openjdk/jdk11u-ri
https://bugs.openjdk.org/browse/JDK-8330603
https://bugs.openjdk.org/browse/JDK-8330545
https://bugs.openjdk.org/browse/JDK-8330418
https://github.com/openjdk/jdk17u-ri
https://bugs.openjdk.org/browse/JDK-8331038
https://github.com/openjdk/jdk8u-ri

Copyright © 2024 Oracle and/or its affiliates.

JSR 398: Java SE 23

Reference Implementation (RI) – JDK 23

• Latest: https://jdk.java.net/23 (build 26)
• Repository: https://github.com/openjdk/jdk/tree/jdk23
• Rampdown Phase 1 (RDP1)

• Feature set frozen
• Development limited to selected bug fixes

• 9 Integrated SE JEPs; 88 approved SE CSRs
• General Availability (GA): 2024/09/17

Schedule

2023/12
Expert Group Formation

2024/07 – 2024/08
Public Review

2024/08
Public Review –
Final Approval Ballot

2024/09
Final Release

Technology Compatibility Took Kit (TCK) – JCK 23
• Code freeze rapidly approaching; Stabilization fork soon thereafter

Specification
• Latest: https://cr.openjdk.org/~iris/se/23/latestSpec (soon!)
• Public Review to begin July

https://jdk.java.net/23
https://github.com/openjdk/jdk/tree/jdk23
https://cr.openjdk.org/~iris/se/23/latestSpec

SE JEPs in Java SE 23

Copyright © 2024 Oracle and/or its affiliates.

Language

455 Primitive Types in Patterns,
instanceof, & switch (Preview)

476 Module Import Declarations
(Preview)

482 Flexible Constructor Bodies
(Second Preview)

477 Implicitly Declared Classes &
Instance main Methods
(Third Preview)

Libraries

466 Class-File API (Second Preview)

473 Stream Gatherers (Second Preview)

480 Structured Concurrency
(Third Preview)

481 Scoped Values (Third Preview)

Tools

467 Markdown Documentation
Comments

https://openjdk.org/jeps/455
https://openjdk.org/jeps/476
https://openjdk.org/jeps/482
https://openjdk.org/jeps/477
https://openjdk.org/jeps/466
https://openjdk.org/jeps/473
https://openjdk.org/jeps/480
https://openjdk.org/jeps/481
https://openjdk.org/jeps/467

Copyright © 2024 Oracle and/or its affiliates.

Preview Features

• Preview features are fully specified, fully implemented, but subject to change.
• Code using a preview feature may not necessarily compile or run in another release.
• Must be enabled at compile time and run time:

javac --release 23 –-enable-preview Main.java

java --enable-preview Main
java --source 23 --enable-preview Main.java // source code launcher
jshell --enable-preview

• All preview features in the current release must take one of the following actions in the
next feature release: remove, re-preview, standardize

• The “History” section immediately after the “Summary” section describes the feature’s
evolution

Enhance pattern matching to support primitive types in contexts previously
restricted to reference and some integer types.

Why

• Eliminate restrictions on use of primitive type patterns to make the Java language
more consistent and more expressive across types

• Eliminates code which may be lossy when narrowing between types

Copyright © 2024 Oracle and/or its affiliates.

JEP 455: Primitive Types in Patterns,
instanceof, & switch
(Preview)

if (i instanceof byte b) {
// no loss

... b ...
}

Copyright © 2024 Oracle and/or its affiliates.

JEP 476: Module Import Declarations
(Preview)

Provides a simple means to import all public types in all packages of a module.

Why

• Eliminate the need for multiple import-on-demand declarations when using diverse
parts of an API exported by a module

• Simplify the re-use of modular libraries without requiring code to be in a module itself

import module java.base;

public class A {
public static void main(String... args) {

List<Path> l = new ArrayList<>[];
System.out.println(l.getClass().getName());

}
}

Copyright © 2024 Oracle and/or its affiliates.

JEP 482: Flexible Constuctor Bodies
(Second Preview)

In Java language constructors, allow selected statements that do not reference the
instance being created to appear before invoking super(…) or this(…).

Class A { ... A(int i) { ... throw new IllegalArgumentException(); ... } }
Class B extends A {

int save;
B(int i) {

if (i < 0) throw new IllegalArgumentException("Bad number: " + i);
save = i; // x belongs to “this”
super(i); }}

History

• First previewed in Java SE 22; New title and significant changes in Java SE 22

Why

• Allows argument validation, computation, and field initialization before delegation to
another constructor

Reduce syntactic complexity of simple programs for novice users.

History

• First previewed in Java SE 21; New title and significant changes in Java SE 22; Two
additions for automatic imports for implicitly declared classes

Why

• “Hello, World” exposes too many concepts that may intimidate beginning programmers
• Reduce ceremony for simple programs such as scripts and command-line utilities
Copyright © 2024 Oracle and/or its affiliates.

JEP 477: Implicitly Declared Classes
& Instance main Methods
(Third Preview)

void main() {
println("Hello, World!");

}

Copyright © 2024 Oracle and/or its affiliates.

JEP 466: Class-File API (Second Preview)

A standard API for parsing, generating, and transforming Java class files in package
java.lang.classfile and subpackages. Tree traversal and streaming are supported.
• Reading - ClassModel
• Writing - ClassBuilder and MethodBuilder
• Transforming - ClassTransform

History

• Previewed in Java SE 22; Updated in Java SE 23

Why

• Enables faster evolution of Java class file format defined by the Java Virtual Machine
Specification to provide support for new Java language features

• Eventually replace the JDK’s internal copy of the third-party ASM library

Presentation

• A Classfile API for the JDK, Brian Goetz, JVM Language Summit 2023 (video)

https://openjdk.org/projects/mlvm/jvmlangsummit/
https://www.youtube.com/watch?v=pcg-E_qyMOI

Copyright © 2024 Oracle and/or its affiliates.

JEP 473: Stream Gatherers
(Second Preview)

Enhances the Stream API with support for custom intermediate operations through the
java.util.stream.Gatherer interface. The java.util.stream.Gatherers class
provides methods supporting windowing, scanning, and folding.

// window of fixed size
List<List<Integer>> windowsOfThree

= Stream.of(0,1,2,3,4,5,6,7)
.gather(Gatherers.windowFixed(3))
.toList();

// windowsOfThree = [[0, 1, 2], [3, 4, 5], [6, 7]]

History

• First previewed in Java SE 22; Unchanged in Java SE 23

Why

• Fixed set of existing intermediate operations makes some complex tasks difficult
• Set of potential, useful intermediate operations is large

Copyright © 2024 Oracle and/or its affiliates.

JEP 480: Structured Concurrency
(Third Preview)

Introduce APIs to structure a task as a family of concurrent subtasks, and to
coordinate them as a unit.

Callable<String> task1 = ...
Callable<Integer> task2 = ...
try (var scope = new StructuredTaskScope<Object>()) {

Subtask<String> subtask1 = scope.fork(task1);
Subtask<Integer> subtask2 = scope.fork(task2);
scope.join();
... process results/exceptions ...

} // close

History

• Incubated in Java SE 19 and Java SE 20; Previewed in Java SE 21; Unchanged in
Java SE 22 and Java SE 23

Why

• Provide structure for large numbers of virtual threads
• Streamline error handling, improving reliability and enhancing observability

Copyright © 2024 Oracle and/or its affiliates.

JEP 481: Scoped Values (Third Preview)

Introduce scoped values, which enable safe and efficient sharing of immutable
data within and across threads.

final static ScopedValue<...> NAME = ScopedValue.newInstance();

// In some method
ScopedValue.runWhere(NAME, “duke”, () -> { ... NAME.get() ... call methods ... });

// In a method called directly or indirectly from the lambda expression
... NAME.get() ...

History

• Incubated in Java SE 20; Previewed in Java SE 21; Unchanged in Java SE 22; One
concern addresses in Java SE 23

Why

• Alternative to thread-local variables and method arguments for sharing data across
components

Copyright © 2024 Oracle and/or its affiliates.

JEP 467: Markdown Documentation
Comments

/// Returns `true` if, and only if, [#length()] is `0`.
///
/// @return `true` if [#length()] is `0`, otherwise
/// `false`
///
/// @since 1.6

public Boolean isEmpty()

Enable Markdown syntax in JavaDoc documentation.

Why

• Modernize JavaDoc syntax to support a simple, popular markup language
• API documentation comments are easier to write and read in source form

Copyright © 2024 Oracle and/or its affiliates.

openjdk.org/projects/jdk/23

Other notable changes in Java SE 23

2 JSR Maintenance Releases
199: Java Compiler API [MR 7]
269: Pluggable Annotations

Processing API [MR 17]

88 Compatibility & Specification
Review (CSR) Requests
https://bugs.openjdk.org/issues/?filter
=44960

7 Terminally Deprecated APIs Added
java.beans.beancontext package (23)
java.io.ObjectOutputStream.PutField.write (1.4)
java.net.MulticastSocket.getTTL (1.2.2)
java.net.MulticastSocket.setTTL (1.2.2)
java.net.MulticastSocket.send (1.4)
java.net.Socket(InetAddress, int. Boolean) (1.1)
java.net.Socket(String, int, Boolean) (1.1)

Copyright © 2024 Oracle and/or its affiliates.

4 Removed APIs, 1 Removed Feature
javax.management.loading.MLet (20)
javax.management.loading.MLetContent (20)
javax.management.loading.PrivateMLet (20)
javax.management.loading.MLetMBean (20)

JMX Subject Delegation (21)

https://bugs.openjdk.org/issues/?filter=44960

Copyright © 2023 Oracle and/or its affiliates.

JEP 459: String Templates
(Second Preview)

Introduce string composition that couples literal text with embedded expressions
and template processors.

String name = "Duke";
String info = STR."My name is \{name}";
assert info.equals("My name is Duke"); // true

History

• First previewed in Java SE 21; Practically unchanged in Java SE 22; Removed in Java SE 23

Why

• Commonly used feature in other popular programming languages
• Existing string composition techniques (String concatenation with ‘+’, StringBuilder,

Formatter.format()) are verbose
• String composition that achieves the clarity of string interpolation without the inherent

hazards (e.g. SQL injection attacks)

Copyright © 2024 Oracle and/or its affiliates.

Upcoming Ballots

June

• JSR 337 MR 6:
Java SE 8

• JSR 384 MR 3:
Java SE 11

• JSR 392 MR 1:
Java SE 17

July

• JSR 199 MR 7:
Java Compiler
API

• JSR 269 MR 17:
Pluggable
Annotation
Processing API

August

• JSR 398:
Java SE 23

Copyright © 2024 Oracle and/or its affiliates.

JSR 397: Java SE 23
Thank You!

• https://openjdk.org/projects/jdk/23/spec/

o https://jcp.org/en/jsr/detail?id=398
o JEPs: https://bugs.openjdk.org/secure/Dashboard.jspa?selectPageId=22205
o CSRs: https://bugs.openjdk.org/secure/Dashboard.jspa?selectPageId=22204
o https://mail.openjdk.org/mailman/listinfo/java-se-spec-experts
o https://jdk.java.net/23/

• https://openjdk.org/projects/jdk/24/spec/

• https://mail.openjdk.org

• https://github.com/openjdk

Copyright © 2024 Oracle and/or its affiliates.

Resources

