
Java Update

Georges Saab
Senior Vice President, Development, Java | Chair, OpenJDK Governing Board

@gsaab

Chad Arimura
Vice President, Java Developer Relations

@chadarimura

Java 23

Oct 16, 2024

12 JDK Enhancement Proposals (JEPs) delivered

JDK 23
La

ng
ua

ge
 Im

pr
ov

em
en

ts
Libraries

455: Primitive Types in Patterns, instanceof, and switch Preview

476: Module Import Declarations Preview

477: Implicitly Declared Classes and Instance Main Methods Third

Preview

482: Flexible Constructor Bodies Second Preview

Plus thousands of performance, stability and security updates

openjdk.org/projects/jdk/23

 T
oo

ls

466: Class-File API Second Preview

469: Vector API Eighth Incubator

473: Stream Gatherers Second Preview

480: Structured Concurrency Third Preview

481: Scoped Values Third Preview

471: Deprecate the Memory-Access Methods in
sun.misc.unsafe for Removal

Stew
ardship

Copyright © 2024, Oracle and/or its affiliates2

Pe
rf

or
m

an
ce

an

d
R

un
ti

m
e

474: ZGC: Generational Mode by Default

467: Markdown Document Comments

Copyright © 2024, Oracle and/or its affiliates3

Thoughtful evolution and stewardship

Experimental Features

A test-bed mechanism used to gather feedback on
nontrivial HotSpot enhancements.

Incubator Modules

Enables the inclusion of JDK APIs and JDK tools that
might one day, after improvements and stabilizations,
be included and supported in the Java SE platform or
in the JDK.

Preview Features

A new feature of the Java language, Java Virtual
Machine, or Java SE API that is fully specified, fully
implemented, and yet impermanent. It is available in a
JDK feature release to provoke developer feedback
based on real world use; this may lead to it becoming
permanent in a future Java SE Platform.

Details:
https://inside.java/2024/06/20/newscast-71/

Summary

• The process is working; end-user feedback allows Java to evolve
through thoughtful ecosystem involvement and evaluation.

• Collective end-user feedback helped determine to end and explore new
approaches to achieve String Template intentions in future feature(s)

• First introduced as a preview feature in Java 21 (JEP 430)

• Introduced as a second preview in Java 22 (JEP 459)

String Templates Intended Goals

• …for expressions that combine strings with run-time values:

• Simplify and improve readability

• Improve security

• Enable transformation for non-strings

• Allow extension outside of JDK

Java and AI

Copyright © 2024, Oracle and/or its affiliates4

Integration with
Enterprise Data and

Cloud Services

Making the Java
Platform even better

for Native AI

Connecting Business
Logic to Native AI

Libraries

Copyright © 2024, Oracle and/or its affiliates 5

Oracle Java AI Three-Pronged Strategy

OCI AI Services and
OCI SDK For Java

Native Java
Frameworks such as
Tribuo, LangChain4j,

CoreNLP

Integrate services with
business logic using
Panama & GraalPy

Copyright © 2024, Oracle and/or its affiliates 6

Oracle Java AI triple-play advantage

We continuously
evolve Java to meet
your future app
development needs

Continuously improve developer
productivity through evolution of the
Java language.

Amber

Data-centric World

Create a scalable low-latency
garbage collector capable of
handling terabyte heaps.

ZGC

Massively scale lightweight threads,
making concurrency simple again.

Loom

Cloud-powered World

Improve the start-up time and time
to peak performance of cloud
applications.

Leyden

Extend the reach of Java
including to machine
learning models and
GPUs

Babylon

AI-driven World

Unify primitives and
classes to improve
productivity and
performance.

ValhallaJava has 30 years of
experience evolving with the

latest tech trends

Copyright © 2024, Oracle and/or its affiliates 7

Safe and efficient
interoperation with
native libraries and
native Java.

Panama

Copyright © 2024, Oracle and/or its affiliates8

March 17-20, 2025 | Redwood Shores, CA

javaone.com

Some of the prep: Integrity by default

Copyright © 2024, Oracle and/or its affiliates9

And now, JEP 14: Tip and Tail

Copyright © 2024, Oracle and/or its affiliates10

Thank you

https://openjdk.org

https://dev.java

https://inside.java

https://youtube.com/java

https://github.com/java

Copyright © 2024, Oracle and/or its affiliates11

@Java | @OpenJDK

Appendix

Copyright © 2024, Oracle and/or its affiliates12

A look back at the “bad old days”

• Previously had a coarse-grained, feature-boxed release model
• 2-4 years between releases, frequent delays, no predictability

• Expensive, heavyweight release management process

• Irresistible temptation to integrate features “under the wire”
(And also to backport many improvements)

• This wasn’t working for anyone
• Developers were frustrated by latency and delays to get new features

• Late integrations reduced stability of GA release

• Excessive backports risked stability of older trains
(and perversely, discouraged adoption of newer releases)

Copyright © 2024, Oracle and/or its affiliates13

Turning the ship

• We first asked: what does the ecosystem really need?
• Developers: want access to the latest features

• Enterprises: want stability for deployment

• Old model made no one happy

• New model: “tip and tail”, with six-month tip release cadence
• Features are integrated into the tip only when ready

• If you miss the train, no problem, another is coming soon

• Offer long-term commercial support (LTS) on select older releases (the “tail”)

• These get security updates and critical fixes only, ensuring stability

Copyright © 2024, Oracle and/or its affiliates14

Skepticism at first…

• The internal reaction was … skeptical

• “We can’t possibly run a release every six months, we’d
get eaten by process overhead”

• “We might not have anything to ship”

• “We’re going to get overwhelmed with backports”

• “We fear change”

• The ecosystem was even more skeptical…

• “Java 8 is all we’ll ever need”

• “We’ll get overwhelmed with releases”

• “You can’t possibly maintain quality at that pace”

• “We fear change”

Copyright © 2024, Oracle and/or its affiliates15

There were some technical challenges

• The repo structure designed in the late nineties made changes
across components take weeks
• The tests were managed separately from implementation code
• Lots of code complexity from trying to support multiple Java

versions with the JDK held back progress
• Build system needed an overhaul
• Dependency management was too ad hoc (pets rather than cattle)
• Improvements to infrastructure to support self service automated

build and test

Copyright © 2024, Oracle and/or its affiliates16

Cultural Change was required

• More than switching methodologies, it was switching mindsets
• Unlearning decades of experience and muscle memory
• Learning to NOT panic about missing the train

• Don’t backport what doesn’t need to be backported
• The tail is for stability, not for shiny features

• Learn to break features down into smaller deliverables
• Right size the release management processes

Copyright © 2024, Oracle and/or its affiliates17

The payoff

• This worked out better than we could have hoped!
• Release process could be slashed because release risk was so reduced

• Backports could be slashed because many fewer were needed

• Reduced backports meant more stability for LTS releases

• All this meant more time for development

• More features, faster!

• Everyone is happy
• Developers get features delivered earlier, more rapid progress, predictability

• Enterprises get commercially supported stable releases

• JDK developers spend more time developing, less in meetings

• Predictable, repeatable process reduced stress for everyone

Copyright © 2024, Oracle and/or its affiliates18

Copyright © 2024, Oracle and/or its affiliates19

And now, JEP 14: Tip and Tail

Copyright © 2024, Oracle and/or its affiliates20

	Slide 1
	JDK 23
	Slide 3
	Java and AI
	Slide 5
	Slide 6
	Slide 7
	March 17-20, 2025 | Redwood Shores, CA javaone.com
	Some of the prep: Integrity by default
	And now, JEP 14: Tip and Tail
	Slide 11
	Appendix
	A look back at the “bad old days”
	Turning the ship
	Skepticism at first…
	There were some technical challenges
	Cultural Change was required
	The payoff
	Slide 19
	And now, JEP 14: Tip and Tail

