
Juergen Hoeller
Sébastien Deleuze
Tanzu Division, Broadcom

Spring release model

Copyright © 2005-2025 Broadcom, Inc. or its affiliates.

Disclaimer

This slidedeck does not represent the official feedback/opinion of Broadcom Inc. as a
company/vendor. It is a pragmatic feedback from Spring engineers to the Java Ecosystem
JCP Working Group.

Spring Framework release model on spring.io

● 1 year cadence
● Drives infrastructure

changes bottom-up
● Defines the JDK baseline
● Many library-like parts
● Common dependency,

embedded in many stacks

https://spring.io/projects/spring-framework#support

Spring Boot release model on spring.io (same for portfolio)

● 6 months cadence
● Closer to the application
● Manages many common

third-party dependencies
● Provides build plugins
● Can be embedded but often

used as a standalone stack

https://spring.io/projects/spring-boot#support

Spring Framework 6

● JDK baseline upgrade from Java 8 to Java 17
○ Spring tries to be a good JDK citizen while ensuring a reasonable level of

upgrade disruption for developers
○ Java 17 baseline initially perceived as aggressive when announced but now well

accepted and perceived as a good move for the ecosystem
○ Entire framework codebase upgraded to make optimal use of accumulated Java

17 language features: instanceof patterns, records, etc.
● In the same release, a hard upgrade from Java EE 8 to Jakarta EE 9/10

○ Jakarta package namespace as a breaking change has been difficult for users
○ Impacted Spring APIs like Spring MVC
○ This level of breakage is very unusual for Spring developers

● MRJAR allowed more flexibility for specific JDK API support
○ Virtual Thread support implemented with one specific Java 21 class in a single

core module

Challenges preventing baseline upgrades

● Spring Framework currently shades ASM for several
features:

○ Bytecode generation with CGLIB
○ Reading class metadata from bytecode
○ Spring Framework 7 will use the ClassFile API

for reading class files on Java 24+ (via MRJAR)
● Gradle is usually the main blocker for our build

https://github.com/spring-projects/spring-framework/issues/33616
https://docs.gradle.org/current/userguide/compatibility.html#java_runtime

Spring Framework 7 (WIP)

● For one more generation, staying on a Java 17 minimal requirement
○ Common industry consensus in 2025
○ Aligned with key third-party dependencies: Tomcat 11, Hibernate 7
○ First-class support for newer Java platform features through MRJAR

● Adopting JSpecify over Spring’s own nullness annotations
○ For Java tooling (IDEA, NullAway) as well as for Kotlin support

● Jakarta EE 11 baseline
○ EE 11 APIs on a Java 17 baseline
○ Servlet 6.1, JPA 3.2

● At the same time, embracing the latest Java 24/25
○ Java 25 LTS recommended from an application perspective
○ A lot of goodness: ClassFile API, AOT Cache, etc.
○ Virtual Threads without pinning on synchronization:

expecting a wave of VT adoption, more so than with Java 21

Feedback on the Tip & Tail release model
https://openjdk.org/jeps/14

● Spring mentioned as example for different strategies
○ Spring Framework for multiple release trains
○ Spring Boot for Tip & Tail

● Spring Framework traditionally operates with generations
○ Generational themes spanning multiple feature releases
○ Feature releases being rich but avoiding breakage
○ Baseline upgrades and removals only in new generation

● Pragmatic backporting to all active branches
○ Primarily CVEs and bug fixes
○ Platform compatibility issues
○ Selected performance enhancements

https://openjdk.org/jeps/14

Thanks!

