

JMX 1.2 Security
Access Control for the MBeanServer and its MBeans

Introduction

This proposal extends the current JMX specification with features that allow administrators
to control access to the MBeanServer and individual MBean APIs.

In addition to adding support for access control, it is an explicit goal of this proposal not to
invent any new security mechanisms. Only the mechanisms provided by the Java 2
platform security architecture and the Java Authentication Authorization Service (JAAS) will
be leveraged by this proposal.

JMX Security Exposures

Identifying the risks, or exposures, is the first step in the design of any security solution.
This section describes the JMX exposures this proposal addresses.

�� MBeanServer API Access. The core component of the JMX architecture at the agent
level is the MBeanServer. The MBeanServer provides access to all of the MBeans
registered with it. The MBeanServer provides additional management functionality
such as the creation of MBean instances and the management of MBeanServer
notifications. JMX 1.1 defined the permissions needed to access MBeanServer
instances; this proposal will impact and extend this part.

�� MBean API Access. MBeans are the mechanism for monitoring and manipulating
managed resources. An MBean allows a client to get and set resources attributes and
to affect the resources behavior via method invocations. In the current specification
none of these activities is secured. When MBeans are accessed through the
MBeanServer this access must be secured.

�� Trusted MBean Sources. It is important that only MBeans from trusted codebases can
be registered with the MBeanServer. If MBeans from arbitrary codebases are allowed
to register it would be easy for a hostile MBean to spoof another MBean and exercise
unauthorized control over managed resources.

JMX Permissions

This proposal addresses the exposures described above by defining new permission
types. A Java permission, java.security.Permission or one of its subclasses,
represents the authority to access some resource or to perform some operation. This is
exactly what is needed to address the MBeanServerFactory API and MBeanServer API.

MBeanServerPermission

public final class MBeanServerPermission
extends java.security.Permission

This class represents the authority to access MBeanServer instances.

The MBeanServerPermission contains a target name or a comma-separated list of target
names but no actions list; you either have the named permission or you don’t.Only the null
value or the empty string are allowed for the action to allow the policy object to create the
permissions specified in the policy file.

The target name is the name of the operation you invoke to access MBeanServer
instances.

The following table lists all the possible MBeanServerPermission target names and for
each provides a description of what the permission allows and a discussion of the risks of
granting the permission.

Permission Target Name What the Permission allows Associated Risks
newMBeanServer Creating new MBeanServer

instances of MBeanServer not
registered with the
MBeanServerFactory

Malicious code can create
MBeanServer instances.

createMBeanServer Creating and registering an
MBeanServer with the
MBeanServerFactory

Malicious code can create and
register MBeanServer
instances.

findMBeanServer Looking up an MBeanServer
instance registered with the
MBeanServerFactory

Malicious code can obtain a
reference to existing
MBeanServer instances.

releaseMBeanServer Deregistering an MBeanServer
from the MBeanServerFactory

Malicious code can remove
existing MBeanServer
instances

getMBeanServerBuilder Retrieve the
MBeanServerBuilder used to
create MBeanServer instances

Malicious code can obtain a
reference on the
MBeanServerBuilder

setMBeanServerBuilder Set the MBeanServerBuilder
used to create MBeanServer
instances

Malicious code can replace the
MBeanServerBuilder

* All the above All the above

Implementations should also prevent clients from instantiating concrete MBeanServer
implementation objects, e.g., via new com.sun.jdmk.MBeanServerImpl() .

This proposal will slightly extend the meaning of the “createMBeanServer” target name.
When MBeanServerPermission “createMBeanServer” is granted, then
MBeanServerPermission “newMBeanServer” is implied.

Target names can be specified in a comma separated list.

Example Policy

The simplest MBeanServer access policy is to grant all signers and codebases the
permission to create and access MBeanServer instances:

grant
{
 permission javax.management.MBeanServerPermission “*”;
};

Here is a more restrictive policy that grants ApplicationOne contained in applone.jar the
permission to create and release MBeanServers, but not to find them:

grant applone.jar
{
 permission javax.management.MBeanServerPermission
“createMBeanServer, releaseMBeanServer”;
};

Here is a policy that grants ApplicationTwo contained in appltwo.jar the permission to find
MBeanServers:

grant appltwo.jar
{
 permission javax.management.MBeanServerPermission
“findMBeanServer”;
};

MBeanPermission

public final class MBeanPermission
extends java.security.Permission

This class represents access to MBeanServer operations.

The MBeanPermission contains a target name and an action or a comma-separeted list of
actions.

The target name is of the form “classname#member[objectname]” :

� the classname denotes the java classname of the MBean.

The MBean classname is obtained using the MBeanInfo.getClassName() method
invoked on the MBeanInfo object of the specified MBean.

The classname can use wildcards following the same wildcard usage as the one
defined by the java.security.BasicPermission for target names.

� the member denotes the attribute name for a “get/setAttribute” and the operation name
for an “invoke”.

The member can use wildcards “*” to denote any attribute/operation in the MBean.

� the objectname denotes the ObjectName of the MBean subject of this operation.

The objectname can use wildcards following the JMX rules for ObjectName patterns.

The rules for target names are the following:

� each target name part (classname, member and objectname) is optional.

� when evaluating HAVE.implies(NEED) for the classname part:

� if HAVE omits the classname the result is true (this means that omitting the
classname in the policy file is equivalent to supplying “*”).

� if NEED omits the classname the result is true (this means that the classname is
not relevant to the permission being checked).

� when evaluating HAVE.implies(NEED) for the member part:

� if HAVE omits the member the result is true (this means that omitting the member
in the policy file is equivalent to supplying “#*”).

� if NEED omits the member the result is true (this means that the member is not
relevant to the permission being checked).

� when evaluating HAVE.implies(NEED) for the objectname part:

� if HAVE omits the objectname the result is true (this means that omitting the
objectname in the policy file is equivalent to supplying “[*:*]”).

� if NEED omits the objectname the result is true (this means that the objectname is
not relevant to the permission being checked).

� the evaluation of the HAVE.implies(NEED) for the three target name parts (classname,
member and objectname) must be true for the overall target name 'implies' to be true.

The actions list is a comma-separated list of the MBeanServer methods listed below or “*”
to denote any method. The actions list cannot be either null or the empty string.

The following table lists all the possible MBeanPermission actions and for each provides a
description of what the permission allows and a discussion of the risks of granting the
permission.

Permission Action Name What the Permission allows Associated Risks
addNotificationListener To add notification listeners to

specified MBeans that can emit
notifications

Listeners, filters and handbacks
can contain malicious code

getAttribute To get the value of an attribute
of an MBean

Malicious code can find out the
value of security-sensitive
attributes

getClassLoader To get the classloader
reference represented by the
named MBean

Malicious code can retrieve a
reference on a classloader and
add new classes to it

getClassLoaderFor To get the ClassLoader that
was used for loading the class
of the named MBean.

Malicious code can retrieve a
reference on a classloader and
add new classes to it

getClassLoaderRepository To get a reference on the
MBeanServer's classloader
repository

Malicious code can retrieve a
reference on the classloader
repository of the MBeanServer
and use it to load classes

getMBeanInfo To get the MBeanInfo of the
named MBeans

Malicious code can find out the
classname, constructors,
operations, attributes and
notifications of the MBean

getObjectInstance To get the ObjectInstance of
the named MBeans

Malicious code can find out the
classname of the MBean

instantiate To instantiate java classes or
MBeans

Malicious code can add new
classes to the JVM and retrieve
MBean object references

invoke To invoke operations on an
MBean

Malicious code can invoke
operations on the MBean (for
example start/stop a service,
etc)

isInstanceOf To know if the MBean is of a
certain class

Malicious code can find out the
class type of the MBean

isRegistered To know if an MBean is
registered with a certain
ObjectName

Malicious code can find out if
an MBean with a certain
ObjectName is registered

queryMBeans To query the MBeanServer for
registered MBeans

Malicious code can find out the
MBeans registered in the
MBeanServer

queryNames To query the MBeanServer for
registered MBeans

Malicious code can find out the
MBeans registered in the
MBeanServer

Permission Action Name What the Permission allows Associated Risks
registerMBean To register MBean instances The registered MBean can

contain malicious code
removeNotificationListener To remove listeners from

MBeans that can emit
notifications

Modify the behavior of MBeans
that registered as listeners of
another MBeans

setAttribute To set the value of an attribute
of an MBean

Malicious code can modify the
value of security-sensitive
attributes

unregisterMBean To unregister MBeans Modify the behavior of
applications that rely on the
presence of MBeans

* All the above All the above

There are MBeanServer operations that are not subject to any permission check, namely
getDefaultDomain and getMBeanCount .

This proposal will slightly extend the meaning of the “queryMBeans” target name. When
the MBeanPermission “queryMBeans” is granted, then the MBeanPermission
“queryNames” is implied.

The target name assumes a different (but intuitive) meaning when the action is
queryMBeans or queryNames. Instead of representing the ObjectName of the MBean(s)
on which the user is allowed to call the named action (like “getObjectInstance” or
“isInstanceOf”), the target name represents a “security filter” that filters out from the
returning set the ObjectNames of the MBeans that do not match in terms of classname
and objectname (see example below, and the implementation notes at the end).

Access to these MBeanServer operations is granted if the user has access to the
MBeanServer instance.

As shown below, certain actions require the presence of the operation or attribute name
(eventually implied by the presence of a wildcard), while others do not require it.

For example, let’s suppose to have the following MBean class, registered in the
MBeanServer under ObjectName “domain:key=value”.

package net.jmx;

public interface FooMBean
{
 public int getBar();
 public void setBar(int bar);
 public void doIt();
}

public class Foo implements FooMBean {...}

The target name of the “Bar” attribute is: net.jmx.Foo#Bar , or
net.jmx.Foo#Bar[domain:key=value] .

The target name of the “doIt” operation is: net.jmx.Foo#doIt , or
net.jmx.Foo#doIt[domain:key=value] .

No distinction is made between overloaded operations:

package net.jmx;

public interface FooMBean
{
 public int getBar();
 public void setBar(int bar);
 public void doIt();
 public void doIt(int param);
}
public class Foo implements FooMBean {...}

In this case net.jmx.Foo#doIt refers to both Foo.doIt() and to Foo.doIt(int
param) .

Attribute and operation names may be wildcarded. So, net.jmx.Foo#* designates all of
Foo’s attributes and operations.

classnames may also be wildcarded. So, net.jmx.* designates all operations and
attributes of all MBeans whose fully qualified classname starts with net.jmx .

In the rare case of MBeans that are inner classes, the syntax would be similar to this one:
net.jmx.Outer$Inner#* . It is not allowed to wildcard inner classes; the following
syntax (or any other variation) is thus illegal: net.jmx.Outer$* .

The ObjectName specified in square brackets must be a valid complete ObjectName or a
valid ObjectName pattern.

The target name net.jmx.Foo#doIt[*:*] is equivalent to net.jmx.Foo#doIt .

The target name net.jmx.Foo#*[confidential:*] refers to all operations and
attributes of the net.jmx.Foo MBean instances registered under the “confidential ”
domain with any property.

The getAttributes/setAttributes MBeanServer operations are protected by the individual
getAttribute/setAttribute operations. They must be checked and filtered out in a similar way
as the queryMBeans/queryNames operations are:

1. Check that the caller has the rights to getAttribute ignoring the member.

The MBeanServer would check for:

MBeanPermission(“myclass[d:k=v]”, “getAttribute”).

2. If the caller does not have the right, throw a SecurityException.

3. For each attribute in the attribute list:

* check that the caller has the right to get/set it

The MBeanserver would check for,

MBeanPermission(“myclass#attrn[d:k=v]”, “getAttribute)

attrn ---> n = 1..number of attributes

* if the caller does not have the right to get/set it remove the attribute from the list

4. Invoke the get/setAttributes operation on the MBeanServer with the reduced list of
attributes for which the caller has the right to perform the get/setAttribute operation.

5. Return the result of the operation.

Two MBeanPermissions must be granted to the caller in order to perform the
createMBean() MBeanServer operations: “instantiate” and “registerMBean”. This sounds
correct because the createMBean operation first instantiates the MBean class and then
registers the Mbean.

The “registerMBean” action is checked in both the createMBean and registerMBean
MBeanServer operations in two steps. This is due to the user being able to provide a null
ObjectName in the call and the real ObjectName in the MBean's preRegister method.

1. First, the MBeanServer checks that the caller has the right to invoke the
“registerMBean” operation with the ObjectName provided by the user in the call (or
omitted if the user provided null).

MBeanPermission(“classname[objectname]”, “registerMBean”) or

MBeanPermission(“classname”, “registerMBean”) if objectname is null.

2. Second, the MBeanServer checks that the caller has the right to invoke the
“registerMBean” operation with the ObjectName returned by the preRegister method in
the MBean.

MBeanPermission(“classname[objectname_from_preRegister]”, “registerMBean”)

The deserialize() MBeanServer operations are covered by the “getClassLoader”,
“getClassLoaderFor” and the “getClassLoaderRepository” actions depending on the
deserialize method being invoked. This sounds correct because the deserialize operations
will be implemented using these methods.

public ObjectInputStream deserialize(ObjectName name,
 byte[] data)
will be coverd by the action “getClassLoaderFor”.

public ObjectInputStream deserialize(String className,
 byte[] data)
will be coverd by the action “getClassLoaderRepository”.

public ObjectInputStream deserialize(String className,
 ObjectName loaderName,
 byte[] data)
will be coverd by the action “getClassLoader”.

Example Policy

The simplest MBean access policy is to grant all signers and codebases access to all
MBeans:

grant
{
 permission javax.management.MBeanPermission “*”, “*”;
};

Here is a more restrictive policy that grants ApplicationOne contained in applone.jar the
permission to get the MBeanServer's classloader repository:

grant applone.jar
{
 permission javax.management.MBeanPermission “”,
“getClassLoaderRepository”;
};

Here is a policy that grants ApplicationTwo contained in appltwo.jar the permission to call
the isInstanceOf and getObjectInstance operations for MBeans from any class but
registered under the “d1” domain:

grant appltwo.jar
{
 permission javax.management.MBeanPermission “[d1:*]”,
“isInstanceOf, getObjectInstance”;
};

Here is a policy that grants ApplicationThree contained in applthree.jar the permission to
find MBeanServers and to call the queryNames operation restricting the returned set to
only the MBeans under the “JMImplementation” domain:

grant applthree.jar
{
 permission javax.management.MBeanServerPermission
“findMBeanServer”;
 permission javax.management.MBeanPermission “JMImplementation:
*”, “queryNames”;
};

Let’s suppose that an MBeanServer accessible by ApplicationThree has 3 MBeans
registered under these ObjectNames:

JMImplementation:type=MBeanServerDelegate

:mbean=default

Domain:key=value

Then ApplicationThree can query the MBeanServer (since it has an MBeanPermission
with “queryNames” action):

MBeanServer server =
 MBeanServerFactory.findMBeanServer(null).get(0);
Set mbeans = server.queryNames(null, null);
The returned set only contains one ObjectName element, namely “JMImplementation:
type=MBeanServerDelegate”, since:

The client has an MBeanPermission with a “queryNames” action, so
the client is allowed to call MBeanServer.queryNames()

There is only one MBean whose ObjectName matches the
ObjectName pattern specified in the MBeanPermission granted in the
policy file.

Any MBeanPermission with a “queryNames” action will allow ApplicationThree to call
MBeanServer.queryNames(); if an MBeanPermission with a “queryNames” action is not
granted, a SecurityException is thrown. Otherwise, the ObjectName specified as target
name in the permission will filter out the returning set of ObjectNames that do not match.

The same applies to queryMBeans: the returning set will contain only ObjectInstances
whose ObjectName matches the specified permissions.

Here is a more restrictive policy that grants ApplicationOne permission to create and
manipulate the Foo MBean:

grant applone.jar
{
 permission javax.management.MBeanPermission “net.jmx.Foo”,
“instantiate, registerMBean”;
 permission javax.management.MBeanPermission
“net.jmx.Foo#doIt”, “invoke, addNotificationListener,
removeNotificationListener”;
};

The first permission ignores the objectname. The operation or attribute name is not
required by these two actions.

The second permission, however, uses the member part for the “invoke” action and
ignores it for the “add/removeNotificationListener” actions.

Here’s one that grants ApplicationTwo permission to listen for notifications on MBeans
whose classname are contained in the java package “net.jmx”:

grant appltwo.jar

{
 permission javax.management.MBeanPermission “net.jmx.*”,
“addNotificationListener, removeNotificationListener”;
};

The example below does not allow ApplicationThree to access the Foo MBean, since the
“setAttribute” action is not granted, the “getAttribute” action cannot be applied to MBean
operations, and the “invoke” action cannot be applied to MBean attributes:

grant applthree.jar
{
 permission javax.management.MBeanPermission “net.jmx.Foo#doIt”,
“getAttribute”;
 permission javax.management.MBeanPermission “net.jmx.Foo#Bar”,
“invoke”;
};

If the caller performs a getAttributes call in the MBeanServer the call will return an empty
set. The caller has the right to invoke getAttribute but none of the attributes in the list can
match the member part of the permission in the policy file.

MBeanTrustPermission

public final class MBeanTrustPermission
extends java.security.BasicPermission

This permission represents “trust” in a signer or codebase. MBeanTrustPermission
contains a target name but no actions list. A single target name, “register”, is defined for
this permission. Only the null value or the empty string are allowed for the action to allow
the policy object to create the permissions specified in the policy file.

If a signer, or codesource is granted this permission, then it is considered a trusted source
for MBeans. Only MBeans from trusted sources may be registered in the MBeanServer.

Example Policy

The simplest policy for MBean sources is to trust all of them:

grant
{
 permission javax.management.MBeanTrustPermission “register”;
};

The grant block below specifies a more restrictive policy that only trusts MBeans signed by
MyOrg:

grant signedBy “MyOrg”
{
 permission javax.management.MBeanTrustPermission “register”;
};

Server Impact

The impact of this proposal on JMX client programs is minimal. If access is denied due to
a lack of permission a java.lang.SecurityException is thrown. Since
SecurityException is a subclass of java.lang.RuntimeException none of the
MBeanServer methods that may throw it are obliged to declare it in their throws clause.

This proposal does impact MBeanServer implementations. Checks for each of the
permissions specified above must be done at the appropriate points in the MBeanServer
implementation code. How these checks are actually implemented is outside the scope of
this proposal.

MBeanServerPermission and MBeanPermission checks are done in the usual way:

SecurityManager sm = System.getSecurityManager();
if (sm != null)
{
 sm.checkPermission(new <required Permssion>);
}

A more detailed note for implementations of MBeanServer.queryMBeans() and
MBeanServer.queryNames().

First, clients that call these methods with no permissions will get back a SecurityException.
If an MBeanPermission with any target name and an action name that contains
“queryMBeans” or “queryNames” respectively is granted, then these methods will return a
Set that is filtered upon the specified permissions: the Set will contain only the MBeans
whose classnames and objectnames match those specified in the granted permissions,
and no SecurityException will be thrown.

Second, clients that call these methods with a non-null QueryExp argument whose
expression must access the MBeans to be applied (for example because contains a
javax.management.AttributeValueExp object) must also have the MBeanPermission
needed to apply the expression. If the client does not have the required MBeanPermission,
then the MBeanServer implementation must not throw a SecurityException to the client,
but instead must not return the MBean’s object name or object instance in the Set result of
the MBeanServer.queryNames() or MBeanServer.queryMBeans() call, respectively.

Checking for MBeanTrustPermission requires a different approach. The check is done by
determining whether or not the ProtectionDomain of the MBean to be registered implies
the MBeanTrustPermission.

