
Chapter 3 Policy Configuration Subcontract JavaTM Authorization Contract for Containers 25

translation that would result from following the instructions in the remainder of

this section.

A WebResourcePermission and a WebUserDataPermission3 object must be

added to the excluded policy statements for each distinct url-pattern

occurring in the security-constraint elements that contain an auth-

constraint naming no roles (i.e an excluding auth-constraint). The

permissions must be constructed using the qualified (as defined in “Qualified

URL Pattern Names”) pattern as their name and with actions obtained by

combining (as defined in “Combining HTTP Methods”) the collections containing

the pattern and occurring in a constraint with an excluding auth-constraint.

The constructed permissions must be added to the excluded policy statements by

calling the addToExcludedPolicy method on the PolicyConfiguration

object.

A WebResourcePermission must be added to the corresponding role for each

distinct combination in the cross-product of url-pattern and role-name

occurring in the security-constraint elements that contain an auth-

constraint naming roles. When an auth-constraint names the reserved

role-name, "*", all of the patterns in the containing security-constraint

must be combined with all of the roles defined in the web application. Each

WebResourcePermission object must be constructed using the qualified pattern as

its name and with actions defined by combining (as defined in “Combining HTTP

Methods”) the collections containing the pattern and occurring in a constraint that

names (or implies via "*") the role to which the permission is being added. The

resulting permissions must be added to the corresponding roles by calling the

addToRole method on the PolicyConfiguration object.

A WebResourcePermission must be added to the unchecked policy statements

for each distinct url-pattern occurring in the security-constraint

elements that do not contain an auth-constraint. Each

WebResourcePermission object must be constructed using the qualified pattern as

its name and with actions defined by combining (as defined in “Combining HTTP

Methods”) the collections containing the pattern and occurring in a security-

constraint without an auth-constraint. The resulting permissions must

be added to the unchecked policy statements by calling the

addToUncheckedPolicy method on the PolicyConfiguration object.

A WebUserDataPermission must be added to the unchecked policy statements

for each distinct combination of url-pattern and acceptable connection type

3. The WebUserDataPermission objects allow a container to determine when to reject a

request before redirection if it would ultimately be rejected as the result of an excluding

auth-constraint.

JavaTM Authorization Contract for Containers WHAT A JAVA EE PLATFORM’S DEPLOYMENT

Maintenance Release 1.3

26

resulting from the processing of the security-constraint elements that do

not contain an excluding auth-constraint. The mapping of security-

constraint to acceptable connection type must be as defined in “Mapping

Transport Guarantee to Connection Type”. Each WebUserDataPermission object

must be constructed using the qualified pattern as its name and with actions

defined by appending4 a representation of the acceptable connection type to the

HTTP method specification obtained by combining (as defined in “Combining

HTTP Methods) the collections containing the pattern and occurring in a

security-constraint that maps to the connection type and that does not

contain an excluding auth-constraint. The resulting permissions must be

added to the unchecked policy statements by calling the

addToUncheckedPolicy method on the PolicyConfiguration object.

A WebResourcePermission and a WebUserDataPermission must be added to

the unchecked policy statements for each url-pattern in the deployment

descriptor and the default pattern, "/", that is not combined by the web-

resource-collection elements of the deployment descriptor with every

possible HTTP method value5. The permission objects must be constructed using

the qualified pattern as their name and with actions represented by an HTTP

method specification that identifies all of the HTTP methods that do not occur in

combination with the pattern. The resulting permissions must be added to the

unchecked policy statements by calling the addToUncheckedPolicy method

on the PolicyConfiguration object. The form of the HTTP method

specification used in the permission construction depends on the representation of

the methods that occurred in combination with the pattern. If the methods that

occurred are represented by an HttpMethodExceptionList as defined in “HTTP

Method Exception List”), the permissions must be constructed using an

HTTPMethodList naming of all of the HTTP methods named in the exception list.

Conversely, if the methods that occurred are represented by an HTTPMethodList,

the permissions must be constructed using an HTTPMethodExceptionList naming

all of the HTTP methods that occurred with the pattern.

4. The value null should be used as the actions value in the construction of a

WebUserDataPermission when both the HTTP method specification, and the

representation of the acceptable connection type may be represented by null. If only one

of the action components may be represented by null the other should be used as the

actions value.
5. The set of all possible HTTP methods is non-enumerable and contains the traditional

HTTP methods (i.e., DELETE, GET, HEAD, OPTIONS, POST, PUT, TRACE) and any

method conforming to the “extension-method” syntax defined in IETF RFC 2616

“Hypertext Transfer Protocol -- HTTP/1.1”. A null or the emptyString HTTP method

specification is used to this set.

Chapter 3 Policy Configuration Subcontract JavaTM Authorization Contract for Containers 27

Qualified URL Pattern Names

The URL pattern qualification described in this section serves to capture the best-

matching semantics of the Servlet constraint model in the qualified names such

that the WebResourcePermission and WebUserDataPermission objects can be

tested using the standard Java SE permission evaluation logic.

The WebResourcePermission and WebUserDataPermission objects resulting

from the translation of a Servlet deployment descriptor must be constructed with a

name produced by qualifying the URL pattern. The rules for qualifying a URL

pattern are dependent on the rules for determining if one URL pattern matches

another as defined in Section 3.1.3.3, “Servlet URL-Pattern Matching Rules”, and

are described as follows:

• If the pattern is a path prefix pattern, it must be qualified by every path-prefix

pattern in the deployment descriptor matched by and different from the pattern

being qualified. The pattern must also be qualified by every exact pattern

appearing in the deployment descriptor that is matched by the pattern being

qualified.

• If the pattern is an extension pattern, it must be qualified by every path-prefix

pattern appearing in the deployment descriptor and every exact pattern in the

deployment descriptor that is matched by the pattern being qualified.

• If the pattern is the default pattern, "/", it must be qualified by every other pat-

tern except the default pattern appearing in the deployment descriptor.

• If the pattern is an exact pattern, its qualified form must not contain any qual-

ifying patterns.

URL patterns are qualified by appending to their String representation, a

colon separated representation of the list of patterns that qualify the pattern.

Duplicates must not be included in the list of qualifying patterns, and any

qualifying pattern matched by another qualifying pattern may6 be dropped from

the list.

QualifyingPatternList ::=

empty string | colon QualifyingPattern |

QualifyingPatternList colon QualifyingPattern

QualifiedPattern ::= Pattern QualifyingPatternList

6. Qualifying patterns implied by another qualifying pattern may be dropped because the use

of the reduced list to qualify a pattern will yield a URLPatternSpec “equal” to the

URLPatternSpec produced by qualifying the pattern with the full list (for example, /a/*:/

a/b:/a/b/*:/a/b/c/* is equal to /a/*:/a/b/*).

JavaTM Authorization Contract for Containers WHAT A JAVA EE PLATFORM’S DEPLOYMENT

Maintenance Release 1.3

28

All colon characters occurring within Pattern and QualifyingPattern elements

must be transformed to escaped encoding7 prior to inclusion of the corresponding

element in the QualifiedPattern.

Any pattern, qualified by a pattern that matches it, is overridden and made

irrelevant (in the translation) by the qualifying pattern. Specifically, all extension

patterns and the default pattern are made irrelevant by the presence of the path

prefix pattern "/*" in a deployment descriptor. Patterns qualified by the "/*"

pattern violate the URLPatternSpec constraints of WebResourcePermission and

WebUserDataPermission names and must be rejected by the corresponding

permission constructors.

Combining HTTP Methods

The section defines the rules for combining HTTP method names occurring in

web-resource-collection elements that apply to a common url-

pattern. The rules are commutative and associative and are as follows:

• Lists of http-method elements combine to yield a list of http-method

elements containing the union (without duplicates) of the http-method

elements that occur in the individual lists.

• Lists of http-method-omission elements combine to yield a list contain-

ing only the http-method-omission elements that occur in all of the in-

dividual lists (i.e., the intersection).

• A list of http-method-omission elements combines with a list of http-

method elements to yield the list of http-method-omission elements

minus any elements whose method name occurs in the http-method list.

• An empty list (of http-method and http-method-omission elements)

represents the set of all possible HTTP methods, including when it results

from combination according to the rules described in this section. An empty

list combines with any other list to yield the empty list.

When these combining rules are applied to a list of collections, the result is

always either an empty list, a non-empty list of http-method elements, or a

non-empty list of http-method-omission elements. When the result is an

empty list, the corresponding actions value is the null (or the empty string) value.

When the result is a non-empty list of http-method elements the corresponding

actions value is a comma separated list of the HTTP method names occurring in

the http-method elements of the list. When the result is a non-empty list of

7. See Section B.22, “Colons Within path-segment of Request URI for details.

Chapter 3 Policy Configuration Subcontract JavaTM Authorization Contract for Containers 29

http-method-omission elements the corresponding actions value is an

HTTP method exception list (as defined in “HTTP Method Exception List”)

containing the HTTP method names occurring in the http-method-omission

elements of the list. The following table contains the three alternative combination

results and their corresponding actions values.

HTTP Method Exception List

An HTTP method exception list is used to represent, by set difference, a non-

enumerable subset of the set of all possible HTTP methods. An exception list

represents the subset of the complete set of HTTP methods formed by subtracting

the methods named in the exception list from the complete set.

An exception list is distinguished by its first character, which must be the

exclaimation point (i.e., “!”) character. A comma separated list of one or more

HTTP method names must follow the exclaimation point. The syntax of an HTTP

method list is formally defined as follows:

ExtensionMethod ::= any token as defined by IETF RFC 2616

(i.e., 1*[any CHAR except CTLS or separators as defined in RFC 2616])

HTTPMethod ::= “GET” | “POST” | “PUT” | “DELETE” | “HEAD” |

“OPTIONS” | “TRACE” | ExtensionMethod

HTTPMethodList ::= HTTPMethod | HTTPMethodList comma HTTPMethod

HTTPMethodExceptionList ::= exclaimationPoint HTTPMethodList

Mapping Transport Guarantee to Connection Type

A transport-guarantee (in a user-data-constraint) of NONE, or a

security-constraint without a user-data-constraint, indicates that

the associated URL patterns and HTTP methods may be accessed over any

(including an unprotected) transport. A transport-guarantee of

INTEGRAL indicates that acceptable connections are those deemed by the

container to be integrity protected. A transport-guarantee of

TABLE 3-1 HTTP Method Combination to Actions Correspondence

Combination Result Actions Value

empty list null or empty string

list of http-method elements HttpMethodList (e.g., “GET,POST”)

list of http-method-omission elements HttpMethodExceptionList (e.g.,”!PUT,DELETE”)

