JDBC Maintenance Release 4.3

Description:
Maintenance review of the JDBC 4.0 Specification

Maintenance Lead:
Lance Andersen, Oracle Corporation

Feedback:
Comments should be sent to jsr221-
comments@jcp.org

Rationale for Changes:

The goal is to address several specification issues as well as several minor
enhancements requested by the JDBC EG and user community.

Proposed Changes:

1. Addition of Sharding Support

Sharding is a scaling technique in which data is horizontally
partitioned across independent databases.

The following example demonstrates the use

of ShardingKeyBuilder to create a superShardingKey for an
eastern region with a ShardingKey specified for the Pittsburgh
branch office:

DataSource ds = new MyDataSource();
ShardingKey superShardingKey =
ds.createShardingKeyBuilder()
.subkey("EASTERN_REGION",
JDBCType.VARCHAR)
Jbuild();



To determine if a JDBC Driver supports sharding, an application

ShardingKey shardingKey =
ds.createShardingKeyBuilder()
.subkey("PITTSBURGH_BRANCH",
JDBCType.VARCHAR)
build();
Connection con = ds.createConnectionBuilder()

.superShardingKey(superShardingKey)
.shardingKey(shardingKey)
build();

may call DatabaseMetaData.supportsSharding.

2. Addition of the java.sql.ConnectionBuilder Interface

A builder created from a DataSource object, used to establish a

connection to the database that the data source object
represents.

java.sqgl.ConnectionBuilder contains the following methods:

Connection build() throws SQLException
ConnectionBuilder password(String password)
ConnectionBuilder shardingKey(ShardingKey
shardingKey)

ConnectionbBuilder superShardingKey(ShardingKey
superShardingKey)

ConnectionBuilder user(String username)

3. Addition of the java.sql.ShardingKey Interface

This interface is used to indicate that this object represents a
Sharding Key. A ShardingKey instance is only guaranteed to



be compatible with the data source instance that it was derived
from. A ShardingKey is created using ShardingKeyBuilder.

4. Addition of the java.sql.ShardingKeyBuilder Interface

A builder created from a DataSource or XADataSource obiject,
used to create a ShardingKey with sub-keys of supported data
types. Implementations must support JDBCType.VARCHAR

and may also support additional data types.

java.sqgl.ShardingKeyBuilder contains the following methods:

e ShardingKey build() throws SQLEXxception
» ShardingKeyBuilder subkey(Object subkey, SQLType
subkeyType)

5. Addition of the javax.sql.XAConnectionBuilder Interface

A builder created from a XADataSource object, used to
establish a connection to the database that the data source
object represents.

javax.sql.XAConnectionBuilder contains the following methods:

e XAConnection build() throws SQLException

e XAConnectionBuilder password(String password)

e XAConnectionBuilder shardingKey(ShardingKey
shardingKey)

* XAConnectionbBuilder superShardingKey(ShardingKey
superShardingKey)

e XAConnectionBuilder user(String username)

6. java.sql.Connection changes

The following methods have been added in
java.sqgl.Connection:



default void beginRequest throws SQLEXxception
default void endRequest throws SQLException

default void setShardingKey(ShardingKey shardingKey)
throws SQLEXxception

default void setShardingKey(ShardingKey shardingKey,
ShardingKey superShardingKey) throws SQLEXxception
default void setShardingKeylfValid(ShardingKey
shardingKey, int timeout) throws SQLEXxception

default void setShardingKeylfValid(ShardingKey
shardingKey, ShardingKey superShardingKey, int
timeout) throws SQLException

7. java.sql.DriverManager changes

The following methods have been added to
java.sql.DriverManager:

public static Stream<Driver> drivers()

The following methods have been clarified in
java.sql.DriverManager:

DriverManager overview
o Clarifies how DriverManager will attempt to load
available JDBC drivers during initialization
public static void deregisterDriver(Driver driver)
o Clarifies the behavior when a security manager is
present.
public static PrintStream getLogStream()
o Specify the Java SE release when the method was
deprecated.
public static void setLogStream(PrintStream out)
o Specify the Java SE release when the method was
deprecated.
o Clarifies the behavior when a SecurityManager is
present.



* public static void setLogWriter(PrintWriter out)
o Clarifies the behavior when a SecurityManager is
present.

8. java.sql.DatabaseMetaData changes

The following methods have been added to to
java.sqgl.DatabaseMetaData

» default boolean supportsSharding() throws SQLException

The following methods have been clarified in
java.sqgl.DatabaseMetaData

* ResultSet getTables(String catalog, String
schemaPattern, String tableNamePattern, String[] types)
o The returned REMARKS column may be null

9. java.sql.Date changes
The following methods have been clarified in java.sqgl.Date

* public Date(in year, int month, int day)
o Specify the Java SE release when the method was
deprecated
* public int getHours()
o Specify the Java SE release when the method was
deprecated
* public int getMinutes()
o Specify the Java SE release when the method was
deprecated
* public int getSeconds()
o Specify the Java SE release when the method was
deprecated
* public void setHours(int i)
o Specify the Java SE release when the method was
deprecated
* public void setMinutes(int i)



o Specify the Java SE release when the method was
deprecated
* public void setSeconds(int i)
o Specify the Java SE release when the method was
deprecated
* public java.time.instant tolnstant()
o Remove the errant @return information
* public java.time.LocalDate toLocalDate()
o Clarify that the LocalDate instance is created using
the Year, Month, Day from the Date instance

10. java.sql.Time changes
The following methods have been clarified in java.sql.Time:

e public Time (int hour, int minute, int second, int nano)
o Specify the Java SE release when the method was
deprecated
* public int getDate()
o Specify the Java SE release when the method was
deprecated
o Remove the errant @return information
* public int getDay()
o Specify the Java SE release when the method was
deprecated
o Remove the errant @return information
* public int getMonth()
o Specify the Java SE release when the method was
deprecated
o Remove the errant @return information
* public int getYear()
o Specify the Java SE release when the method was
deprecated
o Remove the errant @return information
* public void setDate(int i)
o Specify the Java SE release when the method was
deprecated
o Remove the errant @param information



* public void setMonth(int i)
o Specify the Java SE release when the method was
deprecated
o Remove the errant @param information
* public void setYear(int i)
o Specify the Java SE release when the method was
deprecated
o Remove the errant @param information
* public Instant tolnstant()
o Remove the errant @return inform
* public Instant toLocalTime()
o Clarify that the nanosecond LocalTime field will be
set to zero
* public Instant valueOf(LocalTime time)
o Clarify that the nanosecond LocalTime field will not
be part of the newly created Time Object

11. java.sql.Timestamp changes

The following methods have been clarified in
java.sgl.Timestamp:

* public Timestamp(int year, int month, int date, int hour, int
minute, int second, int nano)
o Specify the Java SE release when the method was
deprecated
* public int hashCode()
o Clarified the behavior of how the hashCode is
calculated
e public toString()
o Clarify the nanosecond precision

12. java.sql.Statement changes
The following methods have been added to java.sql.Statement:

» default String enquoteldentifier(String identifier, Boolean



alwaysQuote) throws SQLEXxception

e default String enquoteLiteral(String val) throws
SQLException

» default String enquoteNCharLiteral(String val) throws
SQLException

» default boolean isSimpleldentifier(String identifier) throws
SQLException

13. java.sgl.CallableStatement changes

The following methods have been clarified in
java.sqgl.CallableStatement:

» BigDecimal getBigDecimal(int parameterindex, int scale)
throws SQLEXxception
o Specify the Java SE release when the method was
deprecated

14. java.sql.PreparedStatement changes

The following methods have been clarified in
java.sql.PreparedStatement

e void setUnicodeStream(int parameterindex, inputStream
X, int length) throws SQLException
o Specify the Java SE release when the method was
deprecated

15. java.sql.ResultSet changes

The following methods have been clarified in
java.sqgl.ResultSet:

» BigDecimal getBigDecimal(int parameterindex, int scale)
throws SQLEXxception



o Specify the Java SE release when the method was
deprecated
» BigDecimal getBigDecimal(String columnLabel, int scale)
throws SQLEXxception
o Specify the Java SE release when the method was
deprecated
* InputStream getUnicodeStream(int columnindex) throws
SQLException
o Specify the Java SE release when the method was
deprecated
* InputStream getUnicodeStream(String columnLabel)
throws SQLEXxception
o Specify the Java SE release when the method was
deprecated

16. javax.sgql.CommonDataSource changes

The following methods have been added to
javax.sgl.CommonDataSource:

» default ShardingKeyBuilder
createShardingKeyBuilder() throws SQLEXxception

17. javax.sql.ConnectionPoolDatasource changes

The following methods have been added to
javax.sqgl.ConnectionPoolDataSource:

* default PooledConnectionBuilder
createPooledConnectionBuilder () throws SQLException
18. javax.sql.PooledConnection changes
Clarified that if the connection pool manager wraps or provides

a proxy to the logical handle returned from a call to
PooledConnection.dgetConnection, the pool manager must do



one of the following when the application calls
Connection.close:

 call endRequest on the logical Connection handle
 call close on the logical Connection handle

19. javax.sql.XADataSource changes

The following methods have been added to
javax.sql.XADataSource:

* default XAConnectionBuilder create XAConnectionBuilder
() throws SQLException



