
JDBC Maintenance Release 4.3

Description:
Maintenance review of the JDBC 4.0 Specification

Maintenance Lead:
Lance Andersen, Oracle Corporation

Feedback:
Comments should be sent to jsr221-
comments@jcp.org

Rationale for Changes:
The goal is to address several specification issues as well as several minor
enhancements requested by the JDBC EG and user community.

Proposed Changes:

1. Addition of Sharding Support

Sharding is a scaling technique in which data is horizontally
partitioned across independent databases.

The following example demonstrates the use
of ShardingKeyBuilder to create a superShardingKey for an
eastern region with a ShardingKey specified for the Pittsburgh
branch office:

 DataSource ds = new MyDataSource();
 ShardingKey superShardingKey =
ds.createShardingKeyBuilder()
 .subkey("EASTERN_REGION",
JDBCType.VARCHAR)
 .build();

 ShardingKey shardingKey =
ds.createShardingKeyBuilder()
 .subkey("PITTSBURGH_BRANCH",
JDBCType.VARCHAR)
 .build();
 Connection con = ds.createConnectionBuilder()

.superShardingKey(superShardingKey)
 .shardingKey(shardingKey)
 .build();

To determine if a JDBC Driver supports sharding, an application
may call DatabaseMetaData.supportsSharding.

2. Addition of the java.sql.ConnectionBuilder Interface

A builder created from a DataSource object, used to establish a
connection to the database that the data source object
represents.

java.sql.ConnectionBuilder contains the following methods:

• Connection build() throws SQLException
• ConnectionBuilder password(String password)
• ConnectionBuilder shardingKey(ShardingKey

shardingKey)
• ConnectionbBuilder superShardingKey(ShardingKey

superShardingKey)
• ConnectionBuilder user(String username)

3. Addition of the java.sql.ShardingKey Interface

This interface is used to indicate that this object represents a
Sharding Key. A ShardingKey instance is only guaranteed to

be compatible with the data source instance that it was derived
from. A ShardingKey is created using ShardingKeyBuilder.

4. Addition of the java.sql.ShardingKeyBuilder Interface

A builder created from a DataSource or XADataSource object,
used to create a ShardingKey with sub-keys of supported data
types. Implementations must support JDBCType.VARCHAR
and may also support additional data types.

java.sql.ShardingKeyBuilder contains the following methods:

• ShardingKey build() throws SQLException
• ShardingKeyBuilder subkey(Object subkey, SQLType

subkeyType)

5. Addition of the javax.sql.XAConnectionBuilder Interface

A builder created from a XADataSource object, used to
establish a connection to the database that the data source
object represents.

javax.sql.XAConnectionBuilder contains the following methods:

• XAConnection build() throws SQLException
• XAConnectionBuilder password(String password)
• XAConnectionBuilder shardingKey(ShardingKey

shardingKey)
• XAConnectionbBuilder superShardingKey(ShardingKey

superShardingKey)
• XAConnectionBuilder user(String username)

6. java.sql.Connection changes

The following methods have been added in
java.sql.Connection:

• default void beginRequest throws SQLException
• default void endRequest throws SQLException
• default void setShardingKey(ShardingKey shardingKey)

throws SQLException
• default void setShardingKey(ShardingKey shardingKey,

ShardingKey superShardingKey) throws SQLException
• default void setShardingKeyIfValid(ShardingKey

shardingKey, int timeout) throws SQLException
• default void setShardingKeyIfValid(ShardingKey

shardingKey, ShardingKey superShardingKey, int
timeout) throws SQLException

7. java.sql.DriverManager changes

The following methods have been added to
java.sql.DriverManager:

• public static Stream<Driver> drivers()

The following methods have been clarified in
java.sql.DriverManager:

• DriverManager overview
o Clarifies how DriverManager will attempt to load

available JDBC drivers during initialization
• public static void deregisterDriver(Driver driver)

o Clarifies the behavior when a security manager is
present.

• public static PrintStream getLogStream()
o Specify the Java SE release when the method was

deprecated.
• public static void setLogStream(PrintStream out)

o Specify the Java SE release when the method was
deprecated.

o Clarifies the behavior when a SecurityManager is
present.

• public static void setLogWriter(PrintWriter out)
o Clarifies the behavior when a SecurityManager is

present.

8. java.sql.DatabaseMetaData changes

The following methods have been added to to
java.sql.DatabaseMetaData

• default boolean supportsSharding() throws SQLException

The following methods have been clarified in
java.sql.DatabaseMetaData

• ResultSet getTables(String catalog, String
schemaPattern, String tableNamePattern, String[] types)

o The returned REMARKS column may be null

9. java.sql.Date changes

The following methods have been clarified in java.sql.Date

• public Date(in year, int month, int day)
o Specify the Java SE release when the method was

deprecated
• public int getHours()

o Specify the Java SE release when the method was
deprecated

• public int getMinutes()
o Specify the Java SE release when the method was

deprecated
• public int getSeconds()

o Specify the Java SE release when the method was
deprecated

• public void setHours(int i)
o Specify the Java SE release when the method was

deprecated
• public void setMinutes(int i)

o Specify the Java SE release when the method was
deprecated

• public void setSeconds(int i)
o Specify the Java SE release when the method was

deprecated
• public java.time.instant toInstant()

o Remove the errant @return information
• public java.time.LocalDate toLocalDate()

o Clarify that the LocalDate instance is created using
the Year, Month, Day from the Date instance

10. java.sql.Time changes

The following methods have been clarified in java.sql.Time:

• public Time (int hour, int minute, int second, int nano)

o Specify the Java SE release when the method was
deprecated

• public int getDate()
o Specify the Java SE release when the method was

deprecated
o Remove the errant @return information

• public int getDay()
o Specify the Java SE release when the method was

deprecated
o Remove the errant @return information

• public int getMonth()
o Specify the Java SE release when the method was

deprecated
o Remove the errant @return information

• public int getYear()
o Specify the Java SE release when the method was

deprecated
o Remove the errant @return information

• public void setDate(int i)
o Specify the Java SE release when the method was

deprecated
o Remove the errant @param information

• public void setMonth(int i)
o Specify the Java SE release when the method was

deprecated
o Remove the errant @param information

• public void setYear(int i)
o Specify the Java SE release when the method was

deprecated
o Remove the errant @param information

• public Instant toInstant()
o Remove the errant @return inform

• public Instant toLocalTime()
o Clarify that the nanosecond LocalTime field will be

set to zero
• public Instant valueOf(LocalTime time)

o Clarify that the nanosecond LocalTime field will not
be part of the newly created Time Object

11. java.sql.Timestamp changes

The following methods have been clarified in
java.sql.Timestamp:

• public Timestamp(int year, int month, int date, int hour, int

minute, int second, int nano)
o Specify the Java SE release when the method was

deprecated
• public int hashCode()

o Clarified the behavior of how the hashCode is
calculated

• public toString()
o Clarify the nanosecond precision

12. java.sql.Statement changes

The following methods have been added to java.sql.Statement:

• default String enquoteIdentifier(String identifier, Boolean

alwaysQuote) throws SQLException
• default String enquoteLiteral(String val) throws

SQLException
• default String enquoteNCharLiteral(String val) throws

SQLException
• default boolean isSimpleIdentifier(String identifier) throws

SQLException

13. java.sql.CallableStatement changes

The following methods have been clarified in
java.sql.CallableStatement:

• BigDecimal getBigDecimal(int parameterIndex, int scale)

throws SQLException
o Specify the Java SE release when the method was

deprecated

14. java.sql.PreparedStatement changes

The following methods have been clarified in
java.sql.PreparedStatement

• void setUnicodeStream(int parameterIndex, inputStream

x, int length) throws SQLException
o Specify the Java SE release when the method was

deprecated

15. java.sql.ResultSet changes

The following methods have been clarified in
java.sql.ResultSet:

• BigDecimal getBigDecimal(int parameterIndex, int scale)
throws SQLException

o Specify the Java SE release when the method was
deprecated

• BigDecimal getBigDecimal(String columnLabel, int scale)
throws SQLException

o Specify the Java SE release when the method was
deprecated

• InputStream getUnicodeStream(int columnIndex) throws
SQLException

o Specify the Java SE release when the method was
deprecated

• InputStream getUnicodeStream(String columnLabel)
throws SQLException

o Specify the Java SE release when the method was
deprecated

16. javax.sql.CommonDataSource changes

The following methods have been added to
javax.sql.CommonDataSource:

• default ShardingKeyBuilder

createShardingKeyBuilder() throws SQLException

17. javax.sql.ConnectionPoolDatasource changes

The following methods have been added to
javax.sql.ConnectionPoolDataSource:

• default PooledConnectionBuilder

createPooledConnectionBuilder () throws SQLException

18. javax.sql.PooledConnection changes

Clarified that if the connection pool manager wraps or provides
a proxy to the logical handle returned from a call to
PooledConnection.dgetConnection, the pool manager must do

one of the following when the application calls
Connection.close:

• call endRequest on the logical Connection handle
• call close on the logical Connection handle

19. javax.sql.XADataSource changes

The following methods have been added to
javax.sql.XADataSource:

• default XAConnectionBuilder createXAConnectionBuilder

() throws SQLException

