
JavaTM API for XML Web Services 2.1 Change Log
October 20, 2006

Description
Maintenance revision of the Java API for XML Web Services, version 2.1. The main purpose of this
change is to incorporate the WS-Addressing[32,33,34] functionality into JAX-WS, although some
other minor additions will be proposed.

Maintenance Leads
Doug Kohlert, Sun Microsystems, Inc.

Arun Gupta, Sun Microsystems, Inc.

Feedback
Comments should be sent to jsr224-spec-comments@sun.com

Proposed changes
1 Introduction

1.1 Add the following at the end of the JAXB paragraphs
JAX-WS 2.1 requires JAXB 2.1 which is being developed in parallel with JAX-WS 2.1.

1.5 Add the following prefix definitions
Add the following prefixes to Table 1.1

Prefix Namespace Notes
wsa http://www.w3.org/2005/08/addressing The namespace for the WS-

 Addressing 1.0 schema [33]

wsaw http://www.w3.org/2006/05/addressing/wsdl The namespace for the WS-

 Addressing 1.0 – WSDL

 Binding schema[32]

2 WSDL 1.1 to Java Mapping
 Add the following conformance requirement to Chapter 2

Conformance (WSDL Addressing Support): An implementation MUST support the mapping of
WS-Addressing 1.0 – WSDL Binding[32] to Java.

2.2 Add XmlSeeAlso requirements

A WSDL may define additional types via type substitution that are not referenced by a service
directly but may still need to be marshalled by JAX-WS. The

mailto:jsr224-spec-comments@sun.com

javax.xml.bind.XmlSeeAlso annotation from JAXB is used on the generated SEI to
specify any additional types from the WSDL.

Conformance (javax.xml.bind.XmlSeeAlso required): An SEI generated from a WSDL that
defines types not directly referenced by the Port MUST contain the
javax.xml.bind.XmlSeeAlso annotation with all of the additional types referenced
either directly or indirectly.

 Figure 2.1 shows how an SEI can be annotated with javax.xml.bind.XmlSeeAlso. This figure
shows some of the types that may have been created while importing a WSDL and the different
approaches to annotating the SEI.

package example;
public class A { ... }

package example1;
public class B extends A { ... }

package example2;
public class C extends A { ... }

@WebService
public interface MyService {
 public A echo(A a);
}
// Directly annotated SEI with classes B and C
@WebService
@XmlSeeAlso({B.class, C.class})
public interface MyService {
 public A echo(A a);
}

// Indirectly annotated SEI using generated JAXB
 // ObjectFactories

@XmlSeeAlso({example1.ObjectFactory.class,
example2.ObjectFactory.class})

public interface MyService {

 public A echo(A a);
}
Figure 2.1 XmlSeeAlso annotation uses

2.3 Add mapping of wsa:Action and wsa:FaultAction
Methods generated from wsdl:input and wsdl:output messages that contain a
wsaw:Action attributes MUST be annotated with javax.xml.ws.Action. See section
7 for more information on these annotations.

Conformance (javax.xml.ws.Action): A mapped Java method MUST be annotated with a
javax.xml.ws.Action annotation if the wsdl:input or wsdl:output elements
contain a wsaw:Action attribute. If the wsdl:input element contains a wsaw:Action,
the value of this attribute MUST be set to the javax.xml.ws.Action.input element. If
the wsdl:output element contains a wsaw:Action, the value of this attribute MUST be
set to the javax.xml.ws.Action.output element.

Methods generated from wsdl:fault messages that contain a wsaw:Action attributes
MUST be annotated with javax.xml.ws.FaultAction. See section 7 for more
information on this annotation.

Conformance (javax.xml.ws.FaultAction): A mapped Java method MUST be annotated with a
javax.xml.ws.FaultAction annotation if the wsdl:fault elements contain a
wsaw:Action attribute. The javax.xml.ws.FaultAction.value is taken directly
from the value of the wsaw:Action. The javax.xml.ws.FaultAction.className
MUST be the exception class name associated with this wsdl:fault.

Figure 2.2 shows the mapping of a wsdl:operation containing input, output, and
fault elements with wsaw:Action attributes.
<operation name="addNumbers">
 <input message="tns:add" wsaw:Action="inAction"/>
 <output message="tns:addResponse" wsaw:Action="outAction"/>
 <fault name="addFault" message="tns:addFault"
wsaw:Action="faultAction"/>
</operation>
// the mapped Java method will be
@Action(input=”inAction”,
 output=”outAction”,
 fault= {
 @FaultAction(className=AddFaultException.class,
 value=”faultAction”)
})
public int addNumbers(int number1, int number2) throws
AddFaultException;
Figure 2.2 Mapping of wsaw:Action

mailto:fault%3D@FaultAction
mailto:fault%3D@FaultAction

2.3.1 Add the following to section 2.3.1
When generating an SEI from WSDL and XML schema, occasionally ambiguities occur on
what XML infoset should be used to represent a method's return value or parameters. In order
to remove these ambiguities, JAXB annotations may need to be generated on methods and
method parameters to assure that the return value and the parameters are marshalled with the
proper XML infoset. A JAXB annotation on the method is used to specify the binding of a
methods return type while an annotation on the parameter specifies the binding of that
parameter. If the default XML infoset for the return type or parameters correctly represents the
XML infoset, no JAXB annotations are needed.

Conformance (use of JAXB annotations): An SEI method MUST contain the appropriate JAXB
annotations to assure that the proper XML infoset is used when marshalling/unmarshalling the
return type. Parameters of an SEI method MUST contain the appropriate JAXB annotations to
assure that the proper XML infoset is used when marshalling/unmarshalling the parameters of
the method. The set of JAXB annotations that MUST be supported are:
javax.xml.bind.annotation.XmlAttachementRef,
javax.xml.bind.annotation.XmlList, javax.xml.bind.XmlMimeType and
javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter.

2.3.1.2 add “if present” to items (iii) and (iv)
Change the following:

(iii) The output message part refers to a global element declaration

(iv) The elements referred to by the input and output message parts (henceforth referred to
as wrapper elements) are both complex types defined using the xsd:sequence
compsitor.

To:

(iii) The output message (if present) part refers to a global element declaration

(iv) The elements referred to by the input and output message (if present) parts (henceforth
referred to as wrapper elements) are both complex types defined using the
xsd:sequence compsitor.

2.4 Change the first sentence of this section
Change:

“Mapping of XML Schema types to Java is described by the JAXB 2.0 specification[10].”

to:

“Mapping of XML Schema types to Java is described by the JAXB 2.1 specification[35].”

2.4.1 Add section 2.4.1 W3CEndpointReference
JAXB 2.1 by default does not map wsa:EndpointReference to the
javax.xml.ws.wsaddressing.W3CEndpointReference class. However, for JAX-

WS developers to fully utilize the use of a wsa:EndpointReference, JAX-WS
implementations MUST map the wsa:EndpointReference to
W3CEndpointReference. JAXB 2.1 provides a standard customization that can be used to
force this mapping.

Conformance (javax.xml.ws.wsaddressing.W3CEndpointReference): Any schema element of
the type wsa:EndpointReference MUST be mapped to
javax.xml.ws.wsaddressing.W3CEndpointReference.

2.7 Add description of new getPortName(WebServiceFeature...) method
Change the following sentence from:

“For each port in the service, the generated client side service class contains

the following methods, one for each port defined by the WSDL service and whose

binding is supported by the JAX-WS implementation:”

To:

“For each port in the service, the generated client side service class contains

the following methods, two for each port defined by the WSDL service and whose

binding is supported by the JAX-WS implementation:”

getPortName(WebServiceFeature... features) One required method that takes a variable-
length array of javax.xml.ws.WebServiceFeature and returns a proxy that
implements the mapped service endpoint interface. The method generated delegates to the
Service.getPort(QName portName, Class<T> SEI,
WebServiceFeature... features) method passing it the port name, the SEI and the
features. The value of the port name MUST be equal to the value specified in the mandatory
WebEndpoint annotation on the method itself.

2.7 Change the following sentence
Change
“An application MAY customize the name of the generated method for a port using the
jaxws:method binding declaration defined in section 8.7.8.”
 to
“An application MAY customize the name of the generated methods for a port using the
jaxws:method binding declaration defined in section 8.7.8.”

2.7.1 Fix the getPortName() samples so they take a QName for
portName
The samples in the 2.0 specification was incorrectly passing
just the local name of the portName, not the entire QName. This
change only fixes the samples and does not change the APIs.
@WebEndpoint(name="StockQuoteHTTPPort")

 public StockQuoteProvider getStockQuoteHTTPPort() {
 return (StockQuoteProvider)super.getPort(

 new Qname(“http://example.com/stocks”,"StockQuoteHTTPPort"),
 stockQuoteProvider.class);
 }

@WebEndpoint(name="StockQuoteSMTPPort")
public StockQuoteProvider getStockQuoteSMTPPort() {
 return (StockQuoteProvider)super.getPort(
 new Qname(“http://example.com/stocks”, "StockQuoteSMTPPort"),
 StockQuoteProvider.class);
}

2.7.1 Add the getPortName(WebServiceFeature...) methods to the
example
@WebEndpoint(name="StockQuoteHTTPPort")

 public StockQuoteProvider getStockQuoteHTTPPort(WebServiceFeature...
 features) {
 return (StockQuoteProvider)super.getPort(
 new Qname(“http://example.com/stocks”,"StockQuoteHTTPPort"),
 stockQuoteProvider.class,
 features);
 }

@WebEndpoint(name="StockQuoteSMTPPort")
public StockQuoteProvider getStockQuoteSMTPPort(WebServiceFeature...

features) {
 return (StockQuoteProvider)super.getPort(
 new Qname(“http://example.com/stocks”, "StockQuoteSMTPPort"),
 StockQuoteProvider.class,
 features);
}

3 Java to WSDL 1.1 Mapping
 Add the following conformance requirement to Chapter 3

Conformance (WSDL Addressing Support): An implementation MUST support the mapping of
Java to WS-Addressing 1.0 – WSDL Binding[32].

3.3 Add mapping of javax.xml.ws.soap.Addressing annotation
A service endpoint implementation class annotated with the
javax.xml.ws.soap.Addressing annotation and with the enabled element set to
true, MUST result in the wsaw:UsingAddressing extensibility element on the
wsdl:binding.

Conformance (javax.xml.ws.soap.Addressing): A service endpoint implementation class that is
annotated with the javax.xml.ws.soap.Addressingannotation with the enabled
element set to true, MUST result in the addition of a wsaw:UsingAddressing
extensibility element to the wsdl:binding element and it MUST NOT have the
wsdl:required=”true” attribute. If the required element of the
Addressingannotation has a value of true, then the wsaw:UsingAddressing
extensibility element MUST contain the wsdl:required=”true” attribute. If the
endpoint implementation class is also annotated with a BindingType.value that is not

compatible with this feature an error MUST be given. The JAX-WS runtime MUST also use
Addressing headers. If the enabled element is set to false, then
wsaw:UsingAddressing element MUST NOT be generated and the JAX-WS runtime
MUST NOT use Addressing headers.

Figure 3.1 shows the mapping the Addressing annotation.

@Addressing
public class AddNumbersImpl {
 ...
}

<definitions
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 ...>
...
<wsdl:binding ...>
 <wsaw:UsingAddressing wsdl:required=”false”/>
...
</wsdl:definitions>
Figure 3.1 Mapping of AddressingFeature

3.4 Add the following just prior to section 3.4.1
Multiple SEIs in the same package may result in name clashes as the result of sections 3.6.2.1
and 3.7 of the specification. Customizations may be used to resolve these clashes. See sections
7.2, 7.3 and 7.4 for more information on these customizations.

3.5 Add mapping of javax.xml.ws.Action and javax.xml.ws.FaultAction
Conformance (javax.xml.ws.Action): A Java method annotated with the
javax.xml.ws.Action.input annotation element MUST result in the addition of a
wsaw:Action extensibility element to the wsdl:input element with the
wsaw:Action.value equal to javax.xml.ws.Action.input. A Java method
annotated with the javax.xml.ws.Action.output annotation element MUST result in
the addition of a wsaw:Action extensibility element on the wsdl:output element with
the wsaw:Action.value equal to javax.xml.ws.Action.output.

Conformance (javax.xml.ws.FaultAction) A Java method annotated with the
javax.xml.ws.FaultAction annotation element MUST result in the addition of a
wsaw:Action extensibility element on the wsdl:fault element that corresponds to the
Exception specified by javax.xml.ws.FaultAction.className with the
wsaw:Action.value equal to javax.xml.ws.FaultAction.value.

http://schemas.xmlsoap.org/wsdl/

Figure 3.2 shows the mapping of javax.xml.ws.Action and
javax.xm.ws.FaultAction to a wsdl:operation.
@Action(input="inAction",
 output="outAction",
 fault={
 @FaultAction(className=AddNumbersException.class,
 value="faultAction")
})
public int addNumbersFault(int number1, int number2)

 throws AddNumbersException

<operation name="addNumbersFault">
<input wsaw:Action="inAction" message="tns:addNumbersFault"/>
<output wsaw:Action="outAction"
 message="tns:addNumbersFaultResponse"/>
<fault name="AddNumbersException"
 message="tns:AddNumbersException"
 wsaw:Action="fault Action "/>
</operation>
Figure 3.2 Mapping of Action and FaultAction to wsdl:operation

3.6 Add the following to section 3.6 Method Parameters and Return Type
Since JAX-WS uses JAXB for it data binding, JAXB annotations on methods and method
parameters MUST be honored. A JAXB annotation on the method is used to specify the
binding of a methods return type while an annotation on the parameter specifies the binding of
that parameter.

Conformance (use of JAXB annotations): An implementation MUST honor any JAXB
annotation that exists on an SEI method or parameter to assure that the proper XML infoset is
used when marshalling/unmarshalling the the return value or parameters of the method. The set
of JAXB annotations that MUST be supported are:
javax.xml.bind.annotation.XmlAttachementRef,
javax.xml.bind.annotation.XmlList, javax.xml.bind.XmlMimeType and
javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter.

3.6.2 Change the first sentence of this section
Change the sentence:

“JAXB defines a mapping from Java classes to XML Schema constructs.”

to:

“JAXB 2.1 defines a mapping from Java classes to XML Schema constructs.”

http://fault1/

3.7 Add the following to section 3.7
Service specific exceptions are defined as all checked exceptions except
java.rmi.RemoteException and its subclasses.

Conformance (java.lang.RuntimeExceptions and java.rmi.RemoteExceptions)
java.lang.RuntimeException and java.rmi.RemoteException and their
subclasses MUST NOT be treated as service specific exceptions and MUST NOT be mapped to
WSDL.

4 Client APIs
4.2 Add getting of an EndpointReference
A web service client can get an javax.xml.ws.EndpointReference from a
BindingProvider instance that will reference the target endpoint.

Conformance (Required BindingProvider getEndpointReference): An implementation MUST
be able to return an javax.xml.ws.EndpointReference for the target endpoint if a
SOAP binding is being used. If the BindingProvider instance has a binding that is either
SOAP 1.1/HTTP or SOAP 1.2/HTTP, then a W3CEndpointReference MUST be returned with
the wsaw:ServiceName element with the wsaw:EndpointName attribute in the
wsa:Metadata. If there is an associated WSDL, then the WSDL SHOULD be in-lined in the
wsa:Metadata. The wsaw:InterfaceName MAY be present in the wsa:Metadata.
If the binding is XML/HTTP an java.lang.UnsupportedOperationException
MUST be thrown.

4.2.3 Add additional getPort methods

Add the following getPort methods to the methods of a Service instance.

T getPort(Class<T> sei, WebServiceFeature... features) Returns a proxy for the specified
SEI, the Service instance is responsible for selecting the port (protocol binding and and
endpoint address). The specified features MUST be enabled/disabled and configured as
specified.

T getPort(QName port, Class<T> sei, WebServiceFeature... features) Returns a proxy for
the endpoint specified by port. Note that the namespace component of port is the target
namespace of the WSDL definition document. The specified features MUST be
enabled/disabled and configured as specified.

T getPort(EndpointReference epr Class<T> sei, WebServiceFeature... features) Returns a
proxy for the endpoint specified by epr. The address stored in the epr MUST be used during
invocations on the endpoint. The endpointReference MUST NOT be used as the value of
any addressing header such as wsa:ReplyTo. The specified features MUST be
enabled/disabled and configured as specified. The epr's wsaw:ServiceName MUST match
the Service instance's ServiceName, otherwise a WebServiceExeption MUST be
thrown. The epr's wsaw:EndpointName MUST match the PortName for the sei,

otherwise a WebServiceException MUST be thrown. If the Service instance has an
associated WSDL, its WSDL MUST be used to determine any binding information, any WSDL
in the epr will be ignored. If the Service instance does not have a WSDL, then any WSDL
inlined in the epr will be used to determine binding information.

4.3 Add the following just before section 4.3.1
A JAX-WS implementation MUST honor all WebServiceFeatures (section 6.5) for
Dispatch based applications.

4.5 Add section “javax.xml.ws.EndpointReference”
An javax.xml.ws.EndpointReference is an abstraction that represents an invocable
web service endpoint. Client applications can use an EndpointReference to get a port for
an SEI although doing so prevents them from getting/setting the Executor or
HandlerResolver which would normally be done on a Service instance. The
EndpointReference class delegates to the javax.xml.ws.spi.Provider to
perform the getPort operation. The following method can be used to get a proxy for a Port.

getPort(Class<T> serviceEndpointInterface,
 WebServiceFeature... features) Gets a proxy for the
serviceEndpointInterface that can be used to invoke operations on the endpoint
referred to by the EndpointReference instance. The specified features MUST be
enabled/disabled and configured as specified. The returned proxy MUST use the
EndpointReference instance to determine the endpoint address and any reference
parameters to be sent on endpoint invocations. The EndpointReference instance MUST
NOT be used directly as the value of an WS-Addressing header such as wsa:ReplyTo.

5 Service APIs
5.1 Add the following just before section 5.1.1
A JAX-WS implementation MUST honor all WebServiceFeatures (section 6.5) for
Provider based applications.

5.2.8 Add new section javax.xml.ws.EndpointReference
The following methods can be used on a published Endpoint to retrieve an
javax.xml.ws.EndpointReference for the Endpoint instance.

getEndpointReference(List<Element> referenceParameters) Creates and returns and
javax.xml.ws.EndpointReference for a published Endpoint. If the binding is SOAP
1.1/HTTP or SOAP 1.2/HTTP, then a
javax.xml.ws.wsaddressing.W3CEndpointReference MUST be returned.

If the Endpoint instance has an associated WSDL, then a returned W3CEndpointReference
MUST in-line the WSDL in the wsa:Metadata and the wsa:Metadata MUST also
contain the wsaw:ServiceName element with the wsaw:EndpointName attribute. A
returned W3CEndpointReference MUST also contain the specified
referenceParameters. An implementation MUST throw a
javax.xml.ws.WebServiceException if the Endpoint instance has not been
published. An implementation MUST throw
java.lang.UnsupportedOperationException if the Endpoint instance uses the
XML/HTTP binding.

getEndpointReference(Class<T> clazz, List<Element> referenceParameters) Creates and returns and
javax.xml.ws.EndpointReference of type clazz for a published Endpoint
instance. If clazz is of type
javax.xml.ws.wsaddressing.W3CEndpointReference and if the Endpoint
instance has an associated WSDL, then the WSDL MUST be in-lined in the wsa:Metadata
and the wsa:Metadata MUST also contain the wsaw:ServiceName element with the
wsaw:EndpointName attribute. A returned W3CEndpointReference MUST also
contain the specified referenceParameters. An implementation MUST throw a
javax.xml.ws.WebServiceException if the Endpoint instance has not been
published. If the Class clazz is not a subclass of EndpointReference or the Endpoint
implementation does not support EndpointReferences of type clazz a
javax.xml.ws.WebServiceException MUST be thrown. An implementation MUST
throw java.lang.UnsupportedOperationException if the Endpoint instance
uses the XML/HTTP binding.

5.4 add section “W3CEndpointReferenceBuilder”
Occasionally it is necessary for one application component to create an
EndpointReference for another web service endpoint. The
W3CEndpointReferenceBuilder class provides a standard API for creating
W3CEndpointReferences for web service endpoints.

6 Core APIs
6.2.2 Amend the description of the createEndpoint method
Change:
createEndpoint(String bindingId, Object implementor) Creates and returns an Endpoint
for the specified binding and implementor.
To:
createEndpoint(String bindingId, Object implementor) Creates and returns an Endpoint
for the specified binding and implementor. If the bindingId is null and no binding
information is specified via the javax.xml.ws.BindingType annotation then a default
SOAP1.1/HTTP binding MUST be used.

6.2.4 Add a section “Creating EndpointReferences”
The Provider class provides the following methods to create EndpointReference
instances.

readEndpointReference(javax.xml.transform.Source source) Unmarshalls and returns a

javax.xml.ws.EndpointReference from the infoset contained in source.

createW3CEndpointReference Creates a W3CEndpointReference using the specified
String address, QName serviceName, QName portName, List<Element> metadata, String
wsdlDocumentLocation, and List<Element> referenceParameters parameters.

6.2.5 Add a section “Getting Port Objects”
The following method can be used to get a proxy for a Port.

getPort(EndpointReference epr,
 Class<T> sei,
 WebServiceFeature... features) Gets a proxy for the sei that can be used to invoke
operations on the endpoint referred to by the epr. The specified features MUST be
enabled/disabled and configured as specified. The returned proxy MUST use the epr to
determine the endpoint address and any reference parameters that MUST be sent on endpoint
invocations. The epr MUST NOT be used directly as the value of an WS-Addressing header
such as wsa:ReplyTo.

6.5 Add Section 6.5 javax.xml.ws.WebServiceFeature
JAX-WS 2.1 introduces the notion of features. A feature is associated with a particular
functionality or behavior. Some features may only have meaning when used with certain
bindings while other features may be generally useful. JAX-WS 2.1 introduces three standard
features, AddressingFeature, MTOMFeature and RespectBindingFeature as well
as the base WebServiceFeature class. A JAX-WS 2.1 implementation may define its own
features but they will be non-portable across all JAX-WS 2.1 implementations.

Each feature is derived from the javax.xml.ws.WebServiceFeature class. This
allows the web service developer to pass different types of WebServiceFeatures to the
various JAX-WS APIs that utilize them. Also, each feature should be documented using
JavaDocs on the derived classes. Each WebServiceFeature MUST have a public
static final String ID field that is used to uniquely identify the feature.

Conformance (javax.xml.ws.WebServiceFeatures): Each derived type of
javax.xml.ws.WebServiceFeature MUST contain a public static final
String ID field that uniquely identifies the feature against all features of all
implementations.

Since vendors can specify their own features, care MUST be taken when creating a feature ID
so as to not conflict with another vendor's ID.

The WebServiceFeature class also has an enabled property that is used to store whether
a particular feature should be enabled or disabled. Each derived type should provide either a
constructor argument and/or a method that will allow the web service developer to set the
enabled property. The meaning of enabled or disabled is determined by each individual
WebServiceFeature. It is important that web services developers be able to enable/disable
specific features when writing their web applications. For example, a developer may choose to

implement WS-Addressing himself while using the Dispatch and Provider APIs and thus
he MUST be able to tell JAX-WS to disable addressing.

Conformance (enabled property): Each derived type of
javax.xml.ws.WebServiceFeature MUST provide a constructor argument and/or
method to allow the web service developer to set the value of the enabled property. The
public default constructor MUST by default set the enabled property to true. An
implementation MUST honor the value of the enabled property of any supported
WebServiceFeature.

6.5.1 Add Section 6.5.1 javax.xml.ws.soap.AddressingFeature
The AddressingFeature is used to control the use of WS-Addressing[33] by JAX-WS.
This feature MUST be supported with the SOAP 1.1/HTTP or SOAP 1.2/HTTP bindings.
Using this feature with any other binding is undefined. This feature corresponds to the
Addressing annotation described in section 7.14.1.

Enabling this feature on the server will result in the wsaw:UsingAddressing element
being added to the wsdl:Binding in the generated WSDL if the WSDL does not already
exist for the endpoint and in the runtime being capable of consuming and responding to WS-
Addressing headers.

Enabling this feature on the client will cause the JAX-WS runtime to include WS-Addressing
headers in SOAP messages as specified by WS-Addressing[33].

Disabling this feature will prevent a JAX-WS runtime from processing or adding WS-
Addressing headers from/to SOAP messages even if the associated WSDL had the
wsaw:UsingAddressing element with the required=”true” attribute. This may be
necessary if a client or endpoint needs to implement Addressing themselves. For example, a
client that desires to use non-anonymous ReplyTo can do so by disabling the
AddressingFeature and by using Dispatch<Source> with Message mode.

The AddressingFeature has one property required, that can be configured to control
whether the generated wsaw:UsingAddressing element will contain the
required=”true” attribute.

The AddressingFeature can be automatically enabled if the wsaw:UsingAddressing
extensibility element is in the wsdl:binding. Developers may choose to prevent this from
happening by explicitly disabling the AddressingFeature.

6.5.1.1 Add section 6.5.1.1 javax.xml.ws.EndpointReference
The abstract EndpointReference class is used by the JAX-WS APIs to reference a
particular endpoint in accordance with the W3C Web Services Addressing 1.0 [33]. Each
concrete instance of an EndpointReference MUST contain a wsa:Address.

Applications may also use the javax.xml.ws.EndpointReference class in method
signatures. JAXB 2.1 will will bind the EndpointReference base class to xs:anyType.

Applications should instead use concrete implementations of EndpointReference such as
javax.xml.ws.W3CEndpointReference which will provide better binding. JAX-WS
implementations are required to support the W3CEndpointReference class but they may
also provide other EndpointReference subclasses that represent different versions of
Addressing.

6.5.1.2 Add Section 6.5.1.2 javax.xml.ws.W3CEndpointReference
The W3CEndpointReference class is a concrete implementation of the
javax.xml.ws.EndpointReference class and is used to reference endpoints that are
compliant with the W3C Web Services Addressing 1.0 [33] and WS-Addressing – WSDL
Binding[32]. When creating a W3CEndpointReference, it SHOULD contain the
wsaw:ServiceName element with the wsaw:EndpointName attribute in the
wsa:Metadata. If an associated WSDL is available, then the W3CEndpointReference
SHOULD contain the WSDL inlined in the wsa:Metadata. The wsaw:InterfaceName
MAY be present. Applications may use this class to pass EndpointReference instances as
method parameters or return types. JAXB 2.1 will bind the W3CEndpointReference class
to the W3C EndpointReference XML Schema in the WSDL.

6.5.2 Add Section javax.xml.ws.soap.MTOMFeature
The MTOMFeature is used to specify if MTOM should be used with a web service. This
feature should be used instead of the
javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_MTOM_BINDING,
javax.xml.ws.soap.SOAPBinding.SOAP12HTTP_MTOM_BINDING and the
javax.xml.ws.soap.SOAPBinding.setMTOMEnabled(). This feature MUST be
supported with the SOAP 1.1/HTTP or SOAP 1.2/HTTP bindings. Using this feature with any
other bindings is undefined. This feature corresponds to the MTOM annotation described in
section 7.14.2.

Enabling this feature on either the server or client will result the JAX-WS runtime using
MTOM and binary data being sent as an attachment.

The MTOMFeature has one property threshold, that can be configured to serve as a hint for
which binary data SHOULD be sent as an attachment. The threshold is the size in bytes that
binary data SHOULD be in order to be sent as an attachment. The threshold MUST not be
negative. The default value is 0.

Conformance (javax.xml.ws.soap.MTOMFeature): An implementation MUST support the
javax.xml.ws.soap.MTOMFeature and its threshold property.

6.5.3 Add Section javax.xml.ws.RespectBindingFeature
The RespectBindingFeature is used to control whether a JAX-WS implementation
MUST respect/honor the contents of the wsdl:binding associated with an endpoint. It has a
corresponding RespectBinding annotation described in section 7.14.3.

Conformance (javax.xml.ws.RespectBindingFeature): When the
javax.xml.ws.RespectBindingFeature is enabled, a JAX-WS implementation

MUST inspect the wsdl:binding at runtime to determine result and parameter bindings as
well as any wsdl:extensions that have the required=”true” attribute. All required
wsdl:extensions MUST be supported and honored by a JAX-WS implementation unless a
specific wsdl:extension has be explicitly disabled via a WebServiceFeature. For
example, if a wsdl:binding has a wsaw:UsingAddressing element with the
required=”true” attribute, WS-Addressing MUST be enabled and used unless the web
service developer explicitly disables the WSAddressingFeature.

In order to not break backward compatibility with JAX-WS 2.0, the behavior with regards to
respecting the wsdl:binding when this feature is disabled is undefined.

7 Annotations
Add the following conformance requirement to section 7.
Conformance (Unsupported WebServiceFeatureAnnotations): If an unrecongnized or
unsupported annotation annotated with the WebServiceFeatureAnnotation meta-annotation:

• In a client setting, an implementation MUST NOT invoke any remote operations, if any.
Instead, it MUST throw a WebServiceException, setting the cause to an exception
approximating the cause of the error (e.g. an IllegalArgumentException or a
ClassNotFoundException).

• In a server setting, annotation, an implementation MUST NOT dispatch to an endpoint
implementation object. Rather it MUST generate a fault appropriate to the binding in
use.

7.12 Add javax.xml.ws.Action
The Action annotation is applied to the methods of a SEI. It is used to generate the
wsa:Action on wsdl:input and wsdl:output of each wsdl:operation mapped
from the annotated methods.

 Table 7:11

Property Description Default
input Action for the wsdl:input

operation
“”

output Action for the wsdl:output
operation

“”

7.13 Add javax.xml.ws.FaultAction
The FaultAction annotation is used within the Action annotation to generate the
wsa:Action element on the wsdl:fault element of each wsdl:operation mapped
from the annotated methods.

 Table 7:12

Property Description Default
value Action for the wsdl:fault

operation
“”

className Name of the exception class No defaults, required
property

7.14 Add section javax.xml.ws.spi.WebServiceFeatureAnnotation
The WebServiceFeatureAnnotation is a meta-annotation used by a JAX-WS
implementation to identify other annotations as WebServiceFeatures. JAX-WS provides
the following annotations as WebServiceFeatures:
javax.xml.ws.soap.Addressing, javax.xml.ws.soap.MTOM, and
javax.xml.ws.RespectBinding. If a JAX-WS implementation encounters an
annotation annotated with the WebServiceFeatureAnnotation that it does not support or
recognize an ERROR MUST be given.

Table 7:13

Property Description Default
id Unique identifier for the

WebServiceFeature
represented by the annotated
annotation.

No defaults required property

bean The class name of a derived
WebServiceFeature
class associated with the
annotated annotation.

No defaults required property

The following shows how the Addressing annotation uses the
WebServiceFeatureAnntotation meta-annotation.

@WebServiceFeatureAnnotation(id=AddressingFeature.ID,
bean=AddressingFeature.class)

public @interface Addressing {
 /**
 * Specifies if this feature is enabled or disabled.
 */
 boolean enabled() default true;

 /**
 * Property to determine the value of the
 * <code>wsdl:required</code> attribute on
 * <code>wsaw:UsingAddressing</code> element in the WSDL.
 */
 boolean required() default false;
}

7.14.1 Added section javax.xml.ws.soap.Addressing
The Addressing annotation is applied to an endpoint implementation class. It is used to

control the use of WS-Addressing[33][34][35]. It corresponds with the
AddressingFeature described in section 6.5.1.

Table 7:14

Property Description Default
enabled Specifies if WS-Addressing

is enabled or not
true

required Specifies the value of the
wsdl:required attribute on the
wsaw:UsingAdddressing
extensibility element in the
wsdl:binding.

false

7.14.2 Add section javax.xml.ws.soap.MTOM
The MTOM annotation is applied to an endpoint implementation class. It is used to control the
use of MTOM. It corresponds to the MTOMFeature described in section 6.5.2.

Table 7:15

Property Description Default
enabled Specifies if MTOM is

enabled or not.
true

threshold Specifies the size in bytes
that binary data SHOULD be
before being sent as an
attachment.

0

7.14.3 Add section javax.xml.ws.RespectBinding
The RespectBinding annotation is applied to an endpoint implementation class. It is used to
control whether a JAX-WS implementation MUST respect/honor the contents of the
wsdl:binding associated with an endpoint. It has a corresponding
RespectBindingFeature described in section 6.5.3.

Table 7:16

Property Description Default
enabled Specifies whether the

wsdl:binding must be
respected or not.

true

9 Handler Framework
9.4.1.1 Standard Message Context Properties
Add the javax.xml.ws.reference.parameters property to Table 9.2.

Name Type Mandatory Description

javax.xml.ws.reference

.parameters List<Element> Y A list of WS Addressing
 reference parameters.
 The list MUST include all SOAP

 headers marked with the

 wsa:IsReferenceParameter="true"
 attribute.

10 SOAP Binding
10.4.1.2 Add Addressing section
If the javax.xml.ws.soap.AddressingFeature is enabled, implementations are required to follow
WS-Addressing[32,33,34] protocols.

Conformance (SOAP Addressing Support): An implementation MUST support WS-Addressing
1.0 – SOAP Binding[34].

Bibliography – add the following references
[32] Martin Gudgin, Marc Hadley, Tony Rogers, Ümit Yalçinalp . Web Services Addressing
1.0 - WSDL Binding. W3C Candidate Recommendation 29 May 2006. See
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/.
[33] Martin Gudgin, Marc Hadley, Tony Rogers. Web Services Addressing 1.0 - Core. W3C
Recommendation 9 May 2006. See http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/.
[34] Martin Gudgin, Marc Hadley, Tony Rogers. Web Services Addressing 1.0 - SOAP
Binding. W3C Recommendation 9 May 2006. See http://www.w3.org/TR/2006/REC-ws-addr-
soap-20060509/.
[35] Kohsuke Kawaguchi. The Java Architecture of XML Binding (JAXB) 2.1. JSR, JCP
August 2003. See http://jcp.org/en/jsr/detail?id=222.

Accepted Changes
(Changes accepted by the EC will be moved to this section.)

Deferred Changes
(Changes deferred by the EC will be moved to this section.)

http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/

	JavaTM API for XML Web Services 2.1 Change Log
	Description
	Maintenance Leads
	Feedback
	Proposed changes
	Accepted Changes
	Deferred Changes

