

o Recap: Step Definition

o Discussion: Job Definition

o Discussion: Checkpoint Model
o Discussion: CDI

o List for Next Meeting

ReeER: Sigp Deiniien (So &)

o Annotation-based
o @Step at class level

o Callbacks at method level
o @CreateStep (factory?)
o @BeginStep/@EndStep
o @SetProperties
o @RunStep
o @GetReturnCode

RECER: SiEp (SeXfaly)m.

o Things you can specify at step level.
o Name @Step(name=...)
o Parallelization @Step(...,parallel=true)
o Properties @Step(...,properties={ ... })
o Not yet addressed:
o Relationship of step to readers/writers
o Relationship of step to checkpoint policy
o Separate discussion required

Discussione Definition

o Annotations or DSL (JCL?) or Both
o Probably XML
o Nothing wrong with both — spec overkill?
o If we picked one, does it prevent the other?
o Pick one and allow implementer freedom?

o JCL — internal or external to application?

o JCL — internal or external (or both??)

job.xml

submit

Stepl Step2 Step3

launch

“submit” — sends a job.xml to
the container to run

“launch” — tells container to
run pre-configured job

Discussion: Checoelf

o Container-centric or Reader Centric

o Container-centric

Loop: container<>step
Container checkpoints according to policy

Pros: flexible support of multiple readers/writers
Cons: non-obvious loop (unnatural)

o Reader-centric

Loop: step<>reader
Reader checkpoints according to policy

Pros: obvious loop (natural)
Cons: rigid support for multiple readers/writers

®iSclISSIoNEED)

o Proposal: CDI should be available for
developers but not an inherent part of the
Spec.

o Developers can access CDI to instantiate
o Jobs, Steps, Readers/Writers

LISt fier Nt Mieeiing

o Job Initiation (submit command, launchers, etc)
o Step Concurrency

o Readers/Writers

o Metrics

o What else?

