»
% Sun

microsystems

JavaServer™ Faces Specification

Version 20040513 Expert Draft

Craig McClanahan, Ed Burns, Roger Kitain, editors

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

February 2004, Revision 01

Submit comments about this document to j sr- 127- conment s@ cp. or g

SUN MICROSYSTEMS, INC. ISWILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION THAT YOU
ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE AGREEMENT ("AGREEMENT"). PLEASE READ THE TERMS AND
CONDITIONS OF THIS LICENSE CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND
CONDITIONS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BEBOUND BY ITS TERMS, SELECT THE "DECLINE"
BUTTON AT THE BOTTOM OF THIS PAGE AND THE DOWNLOADING PROCESSWILL NOT CONTINUE.

Specification: JSR-127, JavaServer(TM) Faces Specification ("Specification")
Version: 1.1

Status: Maintenance Release

Release: MAY 28, 2004

Copyright 2004 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to
sublicense), under the Sun's applicable intellectual property rights to view, download, use and reproduce the Specification only for the purpose
of internal evaluation, which shall be understood to include developing applications intended to run on an implementation of the Specification
provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset or
otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (iii) passes the TCK
(including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly conditioned
on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through" requirements in any license You
grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to implementations of
the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or
otherwise pass through to your licensees any licenses under Sun's applicable intellectual property rights; nor (b) authorize your licensees to
make any claims concerning their implementation's compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation” shall mean an implementation of the Specification that neither derives from
any of Sun's source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun's source
code or binary code materials; and "Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java”,
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun, Sun's licensors, Specification Lead or the Specification
Lead's licensors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2SE, J2EE, J2ME Java Compatible, the Java Compatible Logo,
and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

D et 4}

Adobe PostScript

THE SPECIFICATION ISPROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TOTHEEXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ORRELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/ORITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to
the Specification and future versions, implementations, and test suites thereof.

(Sun.CfcsSpec.license.11.14.2003)

Contents

Preface 1
What’s Changed Since the Last Release 1
Major changes/features in this release 1
General changes 1
Standard HTML RenderKit changes 2
Spec document changes 3
Other Java™ Platform Specifications 4
Related Documents and Specifications 4
Terminology 4
Providing Feedback 5

Acknowledgements 5

1. Overview 1-7
1.1 Solving Practical Problems of the Web 1-7
1.2 Specification Audience 1-8
1.2.1 Page Authors 1-8
1.2.2 Component Writers 1-9
1.2.3 Application Developers 1-10
1.2.4 Tool Providers 1-10
1.25 JSF Implementors 1-11

1.3 Introduction to JSF APIs 1-11
13.1 packagej avax.faces 1-12
1.3.2 packagej avax. faces. application 1-12
1.3.3 packagej avax. f aces. conponent 1-12
1.3.4 packagej avax. faces. conponent. htm 1-12
1.3.5 packagej avax. faces.context 1-12
1.3.6 packagej avax. faces.convert 1-13
1.3.7 packagej avax.faces.el 1-13
1.3.8 packagej avax.faces.lifecycle 1-13
1.3.9 packagej avax. faces. event 1-13
1.3.10 packagej avax. faces.render 1-13
1.3.11 packagej avax.faces.validator 1-14

1.3.12 package]j avax. faces. webapp 1-14

2. Request Processing Lifecycle 2-1
2.1 Request Processing Lifecycle Scenarios 2-2
2.1.1 Non-Faces Request Generates Faces Response 2-2
2.1.2 Faces Request Generates Faces Response 2-2
2.1.3 Faces Request Generates Non-Faces Response 2-3
2.2 Standard Request Processing Lifecycle Phases 2-4
2.2.1 Restore View 2-4
2.2.2 Apply Request Values 2-5
2.2.3 Process Validations 2-6
2.2.4 Update Model Values 2-7
2.2.5 Invoke Application 2-7
2.2.6 Render Response 2-8
2.3 Common Event Processing 2-9
2.4 Common Application Activities 2-10

2.4.1 Acquire Faces Object References 2-10

v JavaServer Faces Specification ¢ January 2004

24.1.1 Acquire and Configure Lifecycle Reference 2-10
24.1.2 Acquire and Configure FacesContext Reference 2-11
2.4.2 Create And Configure A New View 2-11
24.2.1 Create A New View 2-12
24.2.2 Configure the Desired RenderKit 2-12
2.4.2.3 Configure The View’s Components 2-13
2424 Store the new View in the FacesContext 2-13
2.5 Concepts that impact several lifecycle phases 2-14
251 Value Handling 2-14
2511 Apply Request Values Phase 2-14
25.1.2 Process Validators Phase 2-14
25.1.3 Executing Validation 2-14
25.14 Update Model Values Phase 2-15
2.5.2 Localization and Internationalization (LION/118N) 2-15
2521 Determining the active Local e 2-15
2522 Determining the Character Encoding 2-16
25.2.3 Localized Text 2-17
2524 Localized Application Messages 2-17
253 State Management 2-19

2531 State Management Considerations for the Custom
Component Author 2-19

2.5.3.2 State Management Considerations for the JSF
Implementor 2-20

3. User Interface Component Model 3-1
3.1 UlComponent and UIComponentBase 3-2
3.1.1 Component Identifiers 3-2
3.1.2 Component Type 3-3
3.1.3 Component Family 3-3
3.1.4 Value Binding Expressions 3-3

Contents

3.1.5 Component Bindings 3-4
3.1.6 Client Identifiers 3-4
3.1.7 Component Tree Manipulation 3-5
3.1.8 Component Tree Navigation 3-6
3.1.9 Facet Management 3-6
3.1.10 Generic Attributes 3-7
3.1.11 Render-Independent Properties 3-8
3.1.12 Component Specialization Methods 3-9
3.1.13 Lifecycle Management Methods 3-10
3.1.14 Utility Methods 3-11
3.2 Component Behavioral Interfaces 3-12

3.21 ActionSource 3-12

3211 Properties 3-13

3.2.1.2 Methods 3-13

3.2.13 Events 3-13
3.2.2 NamingContainer 3-14
3.2.3 StateHolder 3-15

3.2.31 Properties 3-15

3.2.3.2 Methods 3-15

3.2.33 Events 3-16
3.24 ValueHolder 3-16

3241 Properties 3-17

3.24.2 Methods 3-17

3.243 Events 3-17
3.25 EditableValueHolder 3-18

3.25.1 Properties 3-18

3.25.2 Methods 3-19

3.25.3 Events 3-19

vii JavaServer Faces Specification « January 2004

3.3 Conversion Model 3-20

3.3.1
3.3.2
3.3.3

Overview 3-20
Converter 3-20

Standard Converter Implementations 3-22

3.4 Event and Listener Model 3-24

34.1
3.4.2
343
3.4.4
345
3.4.6
3.4.7

Overview 3-24

Event Classes 3-26
Listener Classes 3-27
Phase Identifiers 3-28
Listener Registration 3-28
Event Queueing 3-29
Event Broadcasting 3-29

3.5 Validation Model 3-30

351
3.5.2
3.5.3
3.5.4
3.55

Overview 3-30

Validator Classes 3-30
Validation Registration 3-30
Validation Processing 3-31

Standard Validator Implementations 3-31

4. Standard User Interface Components 4-1

4.1 Standard User Interface Components 4-1

41.1

41.2

UlColumn 4-5

411.1 Component Type 4-5
41.1.2 Properties 4-5
41.1.3 Methods 4-5
41.1.4 Events 4-5
UlCommand 4-6

4121 Component Type 4-6
41.2.2 Properties 4-6

Contents

viii

ix

413

414

4.1.5

4.1.6

4.1.7

4.1.8

4.1.2.3 Methods 4-6
41.2.4 Events 4-6
UlData 4-7

413.1 Component Type
41.3.2 Properties 4-7
4.1.3.3 Methods 4-8
41.3.4 Events 4-9
UlIForm 4-10

4141 Component Type
4.1.4.2 Properties 4-10
4143 Methods. 4-10
4144 Events 4-11

UlGraphic 4-12

4151
4152
4153
4154
Ulinput
4.16.1
4162
4163
4.1.6.4

Component Type
Properties 4-12
Methods 4-12
Events 4-12
4-13
Component Type
Properties 4-13
Methods 4-13
Events 4-14

UlMessage 4-15

4171
41.7.2
41.7.3
4174

Component Type
Properties 4-15
Methods. 4-15
Events 4-16

UlMessages 4-17

JavaServer Faces Specification « January 2004

4-7

4-10

4-12

4-13

4-15

4.1.9

4.1.10

4111

4.1.12

4.1.13

4181
4.1.8.2
4.1.8.3
4184

Component Type
Properties 4-17
Methods. 4-17
Events 4-17

UlOutput 4-18

4.19.1
4.19.2
4.1.9.3
4194
UlPanel
4.1.10.1
4.1.10.2
4.1.10.3
4.1.104

Component Type
Properties 4-18
Methods 4-18
Events 4-18
4-19

Component Type
Properties 4-19
Methods 4-19
Events 4-19

UlParameter 4-20

41111
41.11.2
4.1.11.3
41114

Component Type
Properties 4-20
Methods 4-20
Events 4-20

UlSelectBoolean 4-21

41.12.1
4.1.12.2
4.1.12.3
41.12.4

Component Type
Properties 4-21
Methods 4-21
Events 4-21

UlSelectltem 4-22

41.13.1
4.1.13.2
4.1.13.3

Component Type
Properties 4-22
Methods 4-23

4-17

4-18

4-19

4-20

4-21

4-22

Contents

4.1.14

4.1.15

4.1.16

4.1.17

4.2 Standard UlComponent Model Beans 4-30

421

422

41.13.4 Events 4-23
UlSelectitems 4-24
4.1.141 Component Type
4.1.14.2 Properties 4-24
41143 Methods 4-24
41.144 Events 4-24
UlSelectMany 4-25
4.1.15.1 Component Type
4.1.15.2 Properties 4-25
41153 Methods 4-25
41.154 Events 4-26
UlSelectOne 4-27
4.1.16.1 Component Type
4.1.16.2 Properties 4-27
4.1.16.3 Methods 4-27
41.16.4 Events 4-27
UlViewRoot 4-28
4.1.17.1 Component Type
4.1.17.2 Properties 4-28
4.1.17.3 Methods 4-28
41.17.4 Events 4-29

DataModel 4-30

4211 Properties 4-30
4212 Methods 4-31
4213 Events 4-31

4.2.14 Concrete Implementations

Selectltem 4-32

xi JavaServer Faces Specification « January 2004

4-24

4-25

4-27

4-28

4-31

4221 Properties 4-32
4222 Methods 4-32
4223 Events 4-32
4.2.3 SelectltemGroup 4-33
4.23.1 Properties 4-33
4.2.3.2 Methods 4-33
4.2.3.3 Events 4-33

5. Value Binding and Method Binding Expression Evaluation 5-1
5.1 Value Binding Expressions 5-1
51.1 Overview 5-1
5.1.2 Value Binding Expression Syntax 5-2
5.1.3 Get Value Semantics 5-3
5.1.4 Set Value Semantics 5-4
5.2 Method Binding Expressions 5-4
5.2.1 Method Binding Expression Syntax 5-6
5.2.2 Method Binding Expression Semantics 5-6
5.3 Expression Evaluation APIs 5-7
5.3.1 VariableResolver 5-7
5311 Overview 5-7
5.3.1.2 Default VariableResolver Implementation 5-8
5.3.1.3 The Managed Bean Facility 5-9
5.3.14 Managed Bean Configuration Example 5-13
5.3.2 PropertyResolver 5-15
5.3.3 ValueBinding 5-16
5.3.4 MethodBinding 5-17

5.3.5 Expression Evaluation Exceptions 5-18

6. Per-Request State Information 6-1

Contents Xii

6.1

6.2
6.3
6.4
6.5

FacesContext 6-1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8

Application 6-1

ExternalContext 6-2

ViewRoot 6-5

Message Queue 6-6

RenderKit 6-6

ResponseStream and ResponseWriter 6-7
Flow Control Methods 6-7

Access To The Current FacesContext Instance

FacesMessage 6-9

ResponseStream 6-10

ResponseWriter 6-10

FacesContextFactory 6-12

7. Application Integration 7-1

7.1

7.2
7.3

Application 7-1

71.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11

ActionListener Property 7-2
DefaultRenderKitld Property 7-2
NavigationHandler Property 7-3
PropertyResolver Property 7-3
StateManager Property 7-3
VariableResolver Property 7-4
ViewHandler Property 7-4

Acquiring ValueBinding Instances 7-4
Acquiring MethodBinding Instances 7-5
Object Factories 7-5

Internationalization Support 7-7

ApplicationFactory 7-7

Application Actions 7-8

xiii ~ JavaServer Faces Specification ¢ January 2004

7.4

7.5

7.6

NavigationHandler 7-9

741 Overview 7-9

7.4.2 Default NavigationHandler Implementation 7-9
7.4.3 Example NavigationHandler Configuration 7-12
ViewHandler 7-15

751 Overview 7-15

7.5.2 Default ViewHandler Implementation 7-17
StateManager 7-19

7.6.1 Overview 7-20

7.6.2 State Saving Alternatives and Implications 7-20
7.6.3 State Saving Methods. 7-21

7.6.4 State Restoring Methods 7-22

Rendering Model 8-1

8.1
8.2
8.3
8.4
8.5
8.6

RenderKit 8-1

Renderer 8-3

ResponseStateManager 8-4

RenderKitFactory 8-5

Standard HTML RenderKit Implementation 8-6
The Concrete HTML Component Classes 8-7

Integration with JSP 9-1

9.1
9.2

UlIComponent Custom Actions 9-2

Using UIComponent Custom Actions in JSP Pages 9-3

9.2.1 Declaring the Tag Libraries 9-3

9.2.2 Including Components in a Page 9-4

9.2.3 Creating Components and Overriding Attributes 9-5
9.2.4 Deleting Components on Redisplay 9-6

9.2.5 Representing Component Hierarchies 9-6

Contents

Xiv

9.2.6 Registering Converters, Event Listeners, and Validators 9-7
9.2.7 Using Facets 9-8

9.2.8 Interoperability with JSP Template Text and Other Tag Libraries
9-8

9.29 Composing Pages from Multiple Sources 9-9
9.3 UlComponent Custom Action Implementation Requirements 9-10
9.4 JSF Core Tag Library 9-13

9.4.1 <f:actionListener> 9-14

Syntax 9-14
Body Content 9-14
Attributes 9-14
Constraints 9-14
Description 9-14
9.42 <fattribute> 9-15
Syntax 9-15
Body Content 9-15
Attributes 9-15
Constraints 9-15
Description 9-15
9.43 <ficonvertDateTime> 9-16
Syntax 9-16
Body Content 9-16
Attributes 9-17
Constraints 9-17
Description 9-18
9.44 <f:convertNumber> 9-19
Syntax 9-19
Body Content 9-19
Attributes 9-20

xv JavaServer Faces Specification January 2004

9.45

9.4.6

9.4.7

9.4.8

9.4.9

Constraints 9-20
Description 9-21
<f:converter> 9-22
Syntax 9-22
Body Content 9-22
Attributes 9-22
Constraints 9-22
Description 9-22
<f:facet> 9-23
Syntax 9-23
Body Content 9-23
Attributes 9-23
Constraints 9-23

Description 9-23

<f:loadBundle> 9-24

Syntax 9-24
Body Content 9-24
Attributes 9-24
Constraints 9-24
Description 9-24
<f:param> 9-25
Syntax 9-25
Body Content 9-25
Attributes 9-25
Constraints 9-25
Description 9-26
<f:selectltem> 9-27

Syntax 9-27

Contents

XVi

Body Content 9-27
Attributes 9-28
Constraints 9-28
Description 9-28
9.4.10 <f:selectltems> 9-29
Syntax 9-29
Body Content 9-29
Attributes 9-29
Constraints 9-29
Description 9-30
9.4.11 <fisubview> 9-31
Syntax 9-31
Body Content 9-31
Attributes 9-31
Constraints 9-31
Description 9-32
9.4.12 <f:validateDoubleRange> 9-35
Syntax 9-35
Body Content 9-35
Attributes 9-35
Constraints 9-35
Description 9-35
9.4.13 <f.validateLength> 9-37
Syntax 9-37
Body Content 9-37
Attributes 9-37
Constraints 9-37

Description 9-37

xvii JavaServer Faces Specification « January 2004

9.4.14

9.4.15

9.4.16

9.4.17

9.4.18

<f:validateLongRange> 9-39
Syntax 9-39
Body Content 9-39
Attributes 9-39
Constraints 9-39
Description 9-39
<f:validator> 9-41
Syntax 9-41
Body Content 9-41
Attributes 9-41
Constraints 9-41
Description 9-41
<f:valueChangeListener> 9-42
Syntax 9-42
Body Content 9-42
Attributes 9-42
Constraints 9-42
Description 9-42
<f:verbatim> 9-43
Syntax 9-43
Body Content 9-43
Attributes 9-43
Constraints 9-43
Description 9-43
<fview> 09-44
Syntax 9-44
Body Content 9-44
Attributes 9-44

Contents

xviii

Xix

Constraints 9-44

Description 9-45

9.5 Standard HTML RenderKit Tag Library 9-46

10. Using JSF in Web Applications 10-1

10.1 Web Application Deployment Descriptor 10-1

10.1.1
10.1.2
10.1.3

Servlet Definition 10-2
Servlet Mapping 10-2

Application Configuration Parameters 10-3

10.2 Included Classes and Resources 10-3

10.2.1
10.2.2
10.2.3

10.2.4
10.2.5
10.2.6

Application-Specific Classes and Resources 10-4
Servlet and JSP API Classes (javax.servlet.*) 10-4

JSP Standard Tag Library (JSTL) API Classes
(javax.servlet.jsp.jstl.*) 10-4

JSP Standard Tag Library (JSTL) Implementation Classes
JavaServer Faces API Classes (javax.faces.*) 10-5
JavaServer Faces Implementation Classes 10-5
10.2.6.1 FactoryFinder 10-5

10.2.6.2 FacesServlet 10-7

10.2.6.3 UlComponentTag 10-8

10.2.6.4 UlComponentBodyTag 10-8

10.2.6.5 AttributeTag 10-8

10.2.6.6 ConverterTag 10-9

10.2.6.7 FacetTag 10-9

10.2.6.8 ValidatorTag 10-9

10.3 Application Configuration Resources 10-9

10.3.1
10.3.2
10.3.3

Overview 10-9
Application Startup Behavior 10-10

Application Configuration Resource Format 10-10

JavaServer Faces Specification January 2004

10-5

11.

10.3.4 Configuration Impact on JSF Runtime 10-50
10.3.5 Delegating Implementation Support 10-52
10.3.6 Example Application Configuration Resource 10-54

Lifecycle Management 11-1
11.1 Lifecycle 11-1

11.2 PhaseEvent 11-2
11.3 PhaseListener 11-3
11.4 LifecycleFactory 11-4

Contents

XX

xxi JavaServer Faces Specification ¢ January 2004

Preface

This is the JavaServer Faces 1.0 (JSF 1.0) specification, developed by the JSR-127
expert group under the Java Community Process (see <http://www:.jcp.org> for
more information about the JCP).

What’s Changed Since the Last Release

Major changes/features in this release

There have been a few changes since the initial release of JavaServer technology.
Here is a summary of the most important ones. Many thanks to Hans Bergsten and
Adam Winer of the JSR127 Expert Group for these changes. Thanks also to Ryan
Lubke of the TCK team for several changes.

General changes

= New 1.1 version of the DTD, backwards compatible with the 1.0 version. The only
difference is that components and renderers can declare what facets they support.
Please See Section 10.3.3 “Application Configuration Resource Format”.

= Introduce the concept of "no value" for SelectOne and SelectMany. class
com sun. faces. component . Ul | nput :
« modify i SEnpt y() method to consider values that are zero length array or
Li st instances to be empty.

= Refactor validation implementation in class
com sun. faces. conponent . Ul | nput to prevent spurious
Val ueChangeEvent instances from being fired from U Sel ect One and
Ul Sel ect Many classes. See the javadocs for Ul | nput . val i date() .

= Method com sun. f aces. conponent . Ul Vi ewRoot . get Render Ki t 1 d() now
returns nul | unless the setter has been explicitly called. See the javadocs for that
method.

= Doubl eRangeVal i dat or, Lengthvali dator, and LongRangeVali dat or
now require that any validation parameters passed to the validation error
message be converted by the j avax. f aces. Nunber converter.

= The JavaDocs description Resul t Set Dat aMbdel . get RowDat a() specifies that
the returned Map must use a case-insensitive Comparator.

=« Dat aMbdel Event . get Rowl ndex() now returns -1 to indicate that no row is
selected.

= Fix the JavaDoc description of the defaults for showDet ai | and showSunmary
for U Message to match the code.

» Fix JavaDoc description of Edi t abl eVal ueHol der get Submi tt edVal ue() to
correctly say when this method is called.

» Fix JavaDoc for Ul Conponent Tag. set Properti es() to correctly describe
which parameters are set.

= The implementation now allows nesting <h: dat aTabl e> tags. Previously this
didn’t work.

= Fix bug where multiple action events could be generated in the case of multiple
<h: commandLi nk> tags on page that is visited as a result of going “back” in the
browser history.

Standard HTML RenderKit changes

= Made the "for" attribute no longer required for the outputLabel tag. This is
necessary when tools want to allow the user to stick the label on the page before
associating the component with it.

= RenderKit changes for SelectManyMenu, SelectManyL.ist, SelectOneRadio,
SelectManyCheckboxlist

« Remove span around "select" tags in SelectManyMenu, SelectManyL.ist,
SelectOneMenu and SelectOnelList.

« Remove span around SelectOne radio buttons and SelectMany checkboxes.

Render "id", "style", "styleclass" as part of outer table.

= The SelectManyCheckbox and SelectOneRadio renderers now do not render a
“for” attribute on their nested <| abel > elements.

= The SelectOneRadio renderer description is more explicit about the use of the
<l abel > element.

2 JavaServer Faces Specification February 2004

The description of the “size” attribute in the SelectMany renderers is more correct
with respect to the actual attributes exposed.

The OutputLabel renderer is now able to handle the case where the compnent to
which this label points hasn’t been created yet, as long as the component and the
label are both in the same form.

The “enabledClass” and “disabledClass” attributes are now specified for all
select* renderers.

Spec document changes

2.5.2.4 LIMIT messages not used, remove LIMIT messages.
5.2 Table 5.1, modify action method signature to return String, not void.
53.1.3

« In the section describing how to set a list-entries property, added a step
describing what to do if the property is an array, yet the property getter had
returned null.

= Assign scopes to the implicit variables, so we can determine if a bean is able to
refer to an implicit variable, dependeng on its scope. For example, a session
scoped bean cannot refer to something in request scope.

« Add a rule dealing with the net scope of mixed expressions: The net scope of
mixed expressions is considered to be the scope of the narrowest expression in
the mixed expression, excluding expressions with the none scope.

5.3.1.13 clarify that errors described in this section occurr at runtime, not
deploytime.

9.4.3 Data type for "timeZone".

« The "timeZone" attribute for <f:convertDateTime> in 9.4.3 is described to only
accept a TimeZone instance, but must also accepts a String.

« The "locale" attribute for <f:convertDateTime> and <f:convertNumber> in 9.4.3
and 9.4.4 is described to only accept a Locale instance, but must also accepts a
String.

9.4.12 - 9.4.14 Correct validator and converter IDs
9.4.9 Incorrect data type for "itemValue"

« The attributes table for <f:selectitem> in 9.4.9 states that the "itemValue"
attribute takes a String but it should be Object to match the type of the
UlSelectitem property.

« The syntax section in 9.4.9 for <f:selectltem> is missing a couple of right square
brackets to mark the end for optional attributes.

9.4.10 contains a number of errors: The description of the getComponentType()
return value omits the "javax.faces" prefix. The list of acceptable data types for the
"value" attribute doesn't match the data type for UlSelectltems.

Preface 3

= 9.4.8 <f:param> syntax section missing "binding"
= 10.2.6.1 Correct classnames for LifecycleFactory and RenderKitFactory.

Other Java™ Platform Specifications

JSF is based on the following Java API specifications:

= JavaServer Pages™ Specification, version 1.2 (JSP™)
<http://java.sun.com/products/jsp/>

= Java™ Servlet Specification, version 2.3 (Servlet)
<http://java.sun.com/products/serviet/>

= Java™2 Platform, Standard Edition, version 1.3 <http://java.sun.com/j2se/>

= JavaBeans™ Specification, version 1.0.1
<http://java.sun.com/products/javabeans/docs/spec.html>

= JavaServer Pages™ Standard Tag Library, version 1.0 (JSTL)
<http://java.sun.com/products/jsp/jstl/>

Therefore, a JSF container must support all of the above specifications. This
requirement allows faces applications to be portable across a variety of JSF
implementations.

In addition, JSF is designed to work synergistically with other web-related Java

APIs, including:

= Portlet Specification, under development in JSR-168
<http://www.jcp.org/jsr/detail /168.jsp>

Related Documents and Specifications

The following documents and specifications of the World Wide Web Consortium will
be of interest to JSF implementors, as well as developers of applications and
components based on JavaServer Faces.

= Hypertext Markup Language (HTML), version 4.01
<http://www.w3.org/TR/html4/>

= Extensible HyperText Markup Language (XHTML), version 1.0
<http://www.w3.0org/TR/xhtm|1>

= Extensible Markup Language (XML), version 1.0 (Second Edition)
<http://www.w3.0org/TR/REC-xml|>

The class and method Javadoc documentation for the classes and interfaces in
javax. faces (and its subpackages) are incorporated by reference as requirements
of this Specification.

4 JavaServer Faces Specification « February 2004

Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in

= Key words for use in RFCs to Indicate Requirement Levels (RFC 2119)
<http://www.rfc-editor.org/rfc/rfc2119.txt>

Providing Feedback

We welcome any and all feedback about this specification. Please email your
comments to <jsrl27-comments@sun.com>.

Please note that, due to the volume of feedback that we receive, you will not
normally receive a reply from an engineer. However, each and every comment is
read, evaluated, and archived by the specification team.

Acknowledgements

The JavaServer Faces Specification (version 1.0) is the result of the diligent efforts of
the JSR-127 Expert Group, working under the auspices of the Java Community
Process. We would like to thank all of the members of the Expert Group: Peter
Abraham, Shawn Bayern, Hans Bergsten, Joseph Berkovitz, Mathias Bogaert, David
Bosshaert, Pete Carapetyan, Renaud Demeur, Karl Ewald, Mike Frisino, David
Geary, Antonio Hill, Kevin Jones, Amit Kishnani, Tom Lane, Eric Lazarus, Bart
Leeten, Takahide Matsutsaka, Kumara Swamy Reddy Mettu, Kris Meukens, Steve
Meyfroidt, Brendan Murray, Michael Nash, Daryl Olander, Steve Reiner, Brian
Robinson, Michael Stapp, James Strachan, Kai Toedter, Ana Von Klopp, Adam Winer,
Johanna Voolich Wright, John Zukowski, and Jason van Zyl.

Hans Bergsten and Adam Winer deserve special recognition for not only being
actively involved in every detail of the development of the specification, and the
corresponding APIs, but also for tirelessly contributing time to test, and patch bugs
in, the reference implementation. Joe Berkovitz, David Geary, Brendan Murray, and
Ana Von Klopp also made significant contributions.

Our thanks also go to Amy Fowler and Hans Muller, who were the original
specification leads when JSR-127 was originally submitted to the JCP, and developed
some of the key architectural ideas, and to Graham Hamilton, who had the idea to
have this JSR in the first place.

Preface 5

6 JavaServer Faces Specification « February 2004

CHAPTER 1

Overview

JavaServer Faces (JSF) is a user interface (Ul) framework for Java web applications. It
is designed to significantly ease the burden of writing and maintaining applications
that run on a Java application server and render their Uls back to a target client. JSF
provides ease-of-use in the following ways:

= Makes it easy to construct a Ul from a set of reusable Ul components

= Simplifies migration of application data to and from the Ul

= Helps manage Ul state across server requests

= Provides a simple model for wiring client-generated events to server-side
application code

= Allows custom Ul components to be easily built and re-used

Most importantly, JSF establishes standards which are designed to be leveraged by
tools to provide a developer experience which is accessible to a wide variety of
developer types, ranging from corporate developers to systems programmers. A
“corporate developer” is characterized as an individual who is proficient in writing
procedural code and business logic, but is not necessarily skilled in object-oriented
programming. A “systems programmer” understands object-oriented fundamentals,
including abstraction and designing for re-use. A corporate developer typically
relies on tools for development, while a system programmer may define his or her
tool as a text editor for writing code.

Therefore, JSF is designed to be tooled, but also exposes the framework and
programming model as APIs so that it can be used outside of tools, as is sometimes
required by systems programmers.

1.1

Solving Practical Problems of the Web

JSF’s core architecture is designed to be independent of specific protocols and
markup. However it is also aimed directly at solving many of the common problems
encountered when writing applications for HTML clients that communicate via

HTTP to a Java application server that supports servlets and JavaServer Pages (JSP)
based applications. These applications are typically form-based, and are comprised
of one or more HTML pages with which the user interacts to complete a task or set
of tasks. JSF tackles the following challenges associated with these applications:

= Managing Ul component state across requests

= Supporting encapsulation of the differences in markup across different browsers
and clients

= Supporting form processing (multi-page, more than one per page, and so on)

= Providing a strongly typed event model that allows the application to write
server-side handlers (independent of HTTP) for client generated events

= Validating request data and providing appropriate error reporting

= Enabling type conversion when migrating markup values (Strings) to and from
application data objects (which are often not Strings)

= Handling error and exceptions, and reporting errors in human-readable form
back to the application user

= Handling page-to-page navigation in response to Ul events and model
interactions.

1.2

121

Specification Audience

The JavaServer Faces Specification, and the technology that it defines, is addressed to
several audiences that will use this information in different ways. The following
sections describe these audiences, the roles that they play with respect to JSF, and
how they will use the information contained in this document. As is the case with
many technologies, the same person may play more than one of these roles in a
particular development scenario; however, it is still useful to understand the
individual viewpoints separately.

Page Authors

A page author is primarily responsible for creating the user interface of a web
application. He or she must be familiar with the markup and scripting languages
(such as HTML and JavaScript) that are understood by the target client devices, as
well as the rendering technology (such as JavaServer Pages) used to create dynamic
content. Page authors are often focused on graphical design and human factors
engineering, and are generally not familiar with programming languages such as
Java or Visual Basic (although many page authors will have a basic understanding of
client side scripting languages such as JavaScript).

1-8 JavaServer Faces Specification « February 2004

1.2.2

Page authors will generally assemble the content of the pages being created from
libraries of prebuilt user interface components that are provided by component
writers, tool providers, and JSF implementors. The components themselves will be
represented as configurable objects that utilize the dynamic markup capabilities of
the underlying rendering technology. When JavaServer Pages are in use, for
example, components will be represented as JSP custom actions, which will support
configuring the attributes of those components as custom action attributes in the JSP
page. In addition, the pages produced by a page author will be the used by the JSF
framework to create component tree hierarchies, called “views”, that represent the
components on those pages.

Page authors will generally utilize development tools, such as HTML editors, that
allow them to deal directly with the visual representation of the page being created.
However, it is still feasible for a page author that is familiar with the underlying
rendering technology to construct pages “by hand” using a text editor.

Component Writers

Component writers are responsible for creating libraries of reusable user interface
objects. Such components support the following functionality:

= Convert the internal representation of the component’s properties and attributes
into the appropriate markup language for pages being rendered (encoding).

= Convert the properties of an incoming request—parameters, headers, and
cookies—into the corresponding properties and attributes of the component
(decoding)

= Utilize request-time events to initiate visual changes in one or more components,
followed by redisplay of the current page.

= Support validation checks on the syntax and semantics of the representation of
this component on an incoming request, as well as conversion into the internal
form that is appropriate for this component.

= Saving and restoring component state across requests

As discussed in Chapter 8 “Rendering Model,” the encoding and decoding
functionality may optionally be delegated to one or more Render Kits, which are
responsible for customizing these operations to the precise requirements of the client
that is initiating a particular request (for example, adapting to the differences
between JavaScript handling in different browsers, or variations in the WML
markup supported by different wireless clients).

The component writer role is sometimes separate from other JSF roles, but is often
combined. For example, reusable components, component libraries, and render Kits
might be created by:

= A page author creating a custom “widget” for use on a particular page
= An application developer providing components that correspond to specific data
objects in the application’s business domain

Chapter 1 Overview 1-9

1.2.3

= A specialized team within a larger development group responsible for creating
standardized components for reuse across applications

= Third party library and framework providers creating component libraries that
are portable across JSF implementations

= Tool providers whose tools can leverage the specific capabilities of those libraries
in development of JSF-based applications

= JSF implementors who provide implementation-specific component libraries as
part of their JSF product suite

Within JSF, user interface components are represented as Java classes that follow the
design patterns outlined in the JavaBeans Specification. Therefore, new and existing
tools that facilitate JavaBean development can be leveraged to create new JSF
components. In addition, the fundamental component APIs are simple enough for
developers with basic Java programming skills to program by hand.

Application Developers

Application Developers are responsible for providing the server-side functionality of a
web application that is not directly related to the user interface. This encompasses
the following general areas of responsibility:

= Define mechanisms for persistent storage of the information required by JSF-
based web applications (such as creating schemas in a relational database
management system)

= Create a Java object representation of the persistent information, such as Entity
Enterprise JavaBeans (Entity EJBs), and call the corresponding beans as necessary
to perform persistence of the application’s data.

= Encapsulate the application’s functionality, or business logic, in Java objects that
are reusable in web and non-web applications, such as Session EJBs.

= Expose the data representation and functional logic objects for use via JSF, as
would be done for any servlet- or JSP-based application.

Only the latter responsibility is directly related to JavaServer Faces APIs. In
particular, the following steps are required to fulfill this responsibility:

= Expose the underlying data required by the user interface layer as objects that are
accessible from the web tier (such as via request or session attributes in the
Servlet API), via value reference expressions, as described in Chapter 4 “Standard
User Interface Components.”

= Provide application-level event handlers for the events that are enqueued by JSF
components during the request processing lifecycle, as described in Section 2.2.5
“Invoke Application”.

Application modules interact with JSF through standard APIs, and can therefore be
created using new and existing tools that facilitate general Java development. In
addition, application modules can be written (either by hand, or by being generated)
in conformance to an application framework created by a tool provider.

1-10 JavaServer Faces Specification February 2004

1.2.4

1.2.5

Tool Providers

Tool providers, as their name implies, are responsible for creating tools that assist in
the development of JSF-based applications, rather than creating such applications
directly. JSF APIs support the creation of a rich variety of development tools, which
can create applications that are portable across multiple JSF implementations.
Examples of possible tools include:

= GUI-oriented page development tools that assist page authors in creating the user
interface for a web application

= |DEs that facilitate the creation of components (either for a particular page, or for
a reusable component library)

= Page generators that work from a high level description of the desired user
interface to create the corresponding page and component objects

= |IDEs that support the development of general web applications, adapted to
provide specialized support (such as configuration management) for JSF

= Web application frameworks (such as MVC-based and workflow management
systems) that facilitate the use of JSF components for user interface design, in
conjunction with higher level navigation management and other services

= Application generators that convert high level descriptions of an entire
application into the set of pages, Ul components, and application modules needed
to provide the required application functionality

Tool providers will generally leverage the JSF APIs for introspection of the features
of component libraries and render kit frameworks, as well as the application
portability implied by the use of standard APIs in the code generated for an
application.

JSF Implementors

Finally, JSF implementors will provide runtime environments that implement all of
the requirements described in this specification. Typically, a JSF implementor will be
the provider of a Java 2 Platform, Enterprise Edition (J2EE) application server,
although it is also possible to provide a JSF implementation that is portable across
J2EE servers.

Advanced features of the JSF APIs allow JSF implementors, as well as application
developers, to customize and extend the basic functionality of JSF in a portable way.
These features provide a rich environment for server vendors to compete on features
and quality of service aspects of their implementations, while maximizing the
portability of JSF-based applications across different JSF implementations.

Chapter 1 Overview 1-11

1.3

1.3.1

1.3.2

1.3.3

1.3.4

Introduction to JSF APIs

This section briefly describes major functional subdivisions of the APIs defined by
JavaServer Faces. Each subdivision is described in its own chapter, later in this
specification.

package j avax. f aces

This package contains top level classes for the JavaServer(tm) Faces APIl. The most
important class in the package is Fact or yFi nder, which is the mechanism by
which users can override many of the key pieces of the implementation with their
own.

Please see Section 10.2.6.1 “FactoryFinder”.

package j avax. f aces. applicati on

This package contains APIs that are used to link an application’s business logic
objects to JavaServer Faces, as well as convenient pluggable mechanisms to manage
the execution of an application that is based on JavaServer Faces. The main class in
this package is Appl i cati on.

Please see Section 7.1 “Application”.

package j avax. f aces. conponent

This package contains fundamental APIs for user interface components.

Please see Chapter 3 “User Interface Component Model.

package j avax. f aces. conponent . ht m

This package contains concrete base classes for each valid combination of component
+ renderer.

1-12 JavaServer Faces Specification February 2004

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

package j avax. f aces. cont ext

This package contains classes and interfaces defining per-request state information.
The main class in this package is FacesCont ext , which is the access point for all
per-request information, as well as the gateway to several other helper classes.

Please see Section 6.1 “FacesContext”.

package j avax. f aces. convert

This package contains classes and interfaces defining converters. The main class in
this package is Converter.

Please see Section 3.3 “Conversion Model”.

package j avax. f aces. el

This package contains classes and interfaces for evaluating and processing reference
expressions.

Please see Chapter 5 “Value Binding and Method Binding Expression Evaluation.

package j avax. faces. | ifecycle

This package contains classes and interfaces defining lifecycle management for the
JavaServer Faces implementation. The main class in this package is Li f ecycl e.
Li f ecycl e is the gateway to executing the request processing lifecycle.

Please see Chapter 2 “Request Processing Lifecycle.

package j avax. f aces. event

This package contains interfaces describing events and event listeners, and concrete
event implementation classes. All component-level events extend from
FacesEvent and all component-level listeners extend from FacesLi st ener.

Please see Section 3.4 “Event and Listener Model™.

Chapter 1 Overview 1-13

1.3.10

1.3.11

1.3.12

package j avax. f aces. r ender

This package contains classes and interfaces defining the rendering model. The main
class in this package is Render Ki t . Render Ki t vends a set of Render er instances
which provide rendering capability for a specific client device type.

Please see Chapter 8 “Rendering Model.

package j avax. f aces. val i dat or

Interface defining the validator model, and concrete validator implementation
classes.

Please see Section 3.5 “Validation Model”

package j avax. f aces. webapp

Classes required for integration of JavaServer Faces into web applications, including
a standard servlet, base classes for JSP custom component tags, and concrete tag
implementations for core tags.

Please see Chapter 10 “Using JSF in Web Applications.

1-14 JavaServer Faces Specification February 2004

CHAPTER 2

Request Processing Lifecycle

Each request that involves a JSF component tree (also called a “view”) goes through
a well-defined request processing lifecycle made up of phases. There are three different
scenarios that must be considered, each with its own combination of phases and
activities:

= Non-Faces Request generates Faces Response
= Faces Request generates Faces Response
= Faces Request generates Non-Faces Response

Where the terms being used are defined as follows:

= Faces Response—A response that was created by the execution of the Render
Response phase of the request processing lifecycle.

= Non-Faces Response—A response that was not created by the execution of the
render response phase of the request processing lifecycle. Examples would be a
servlet-generated or JSP-rendered response that does not incorporate JSF
components, or a response that sets an HTTP status code other than the usual 200
(such as a redirect).

= Faces Request—A request that was sent from a previously generated Faces response.
Examples would be a hyperlink or form submit from a rendered user interface
component, where the request URI was crafted (by the component or renderer
that created it) to identify the view to use for processing the request.

= Non-Faces Request—A request that was sent to an application component (e.g. a
servlet or JSP page), rather than directed to a Faces view.

In addition, of course, your web application may receive non-Faces requests that
generate non-Faces responses. Because such requests do not involve JavaServer
Faces at all, their processing is outside the scope of this specification, and will not be
considered further.

READER NOTE: The dynamic behavior descriptions in this Chapter make forward
references to the sections that describe the individual classes and interfaces. You will
probably find it useful to follow the reference and skim the definition of each new

class or interface as you encounter them, then come back and finish the behavior
description. Later, you can study the characteristics of each JSF API in the
subsequent chapters.

2.1

2.1.1

2.1.2

Request Processing Lifecycle Scenarios

Each of the scenarios described above has a lifecycle that is composed of a particular
set of phases, executed in a particular order. The scenarios are described individually
in the following subsections.

Non-Faces Request Generates Faces Response

An application that is processing a non-Faces request may use JSF to render a Faces
response to that request. In order to accomplish this, the application must perform
the common activities that are described in the following sections:

= Acquire Faces object references, as described in Section 2.4.1 “Acquire Faces
Object References”, below.

= Create a new view, as described in Section 2.4.2 “Create And Configure A New
View”, below.

= Store the view into the FacesCont ext by calling the set Vi ewRoot () method
on the FacesCont ext .

=« Call the render () method on the Li f ecycl e instance that was acquired. This
signals the JSF implementation to begin processing at the Render Response phase of
the request processing lifecycle.

Faces Request Generates Faces Response

The most common lifecycle will be the case where a previous Faces response
includes user interface controls that will submit a subsequent request to this web
application, utilizing a request URI that is mapped to the JSF implementation’s
controller, as described in Section 10.1.2 “Servlet Mapping”. Because such a request
will be initially handled by the JSF implementation, the application need not take

2-2 JavaServer Faces Specification February 2004

2.1.3

any special steps—its event listeners, validators, and application actions will be
invoked at appropriate times as the standard request processing lifecycle, described
in the following diagram, is invoked.

TeEpanse REsponse
i [-
i...:'-'..".."..:‘.....,. ‘.-.'-'..r.'?.‘?.".-.-.....
Faces

P Reslors Apphy Fequest Process | | Process Process
¥ Vi ales Everiz W aliintions Evoriz
Rrder Pespordas + -
Pl ik P
Cinpiete Complsts H
= S I
'y i
M H - !
Frces i
e Process rwcke | | Process | | dale Mol
| FResporse Eyemts Appkcation Everts Wi i
Corwersion Ermes | ! i
Eendar Kezponss - il T § e O
e T =l H:sm'.s:i.l

The behavior of the individual phases of the request processing lifecycle are
described in individual subsections of Section 2.2 “Standard Request Processing
Lifecycle Phases”. Note that, at the conclusion of several phases of the request
processing lifecycle, common event processing logic (as described in Section 2.3
“Common Event Processing”) is performed to broadcast any FacesEvent s
generated by components in the component tree to interested event listeners.

Faces Request Generates Non-Faces Response

Normally, a JSF-based application will utilize the Render Response phase of the
request processing lifecycle to actually create the response that is sent back to the
client. In some circumstances, however, this behavior might not be desirable. For
example:

= A Faces Request needs to be redirected to a different web application resource
(viaacall to Ht t pSer vl et Response. sendRedi rect).

» A Faces Request causes the generation of a response using some other technology
(such as a servlet, or a JSP page not containing JSF components).

In any of these scenarios, the application will have used the standard mechanisms of
the servlet or portlet API to create the response headers and content. It is then
necessary to tell the JSF implementation that the response has already been created,

Chapter 2 Request Processing Lifecycle 2-3

so that the Render Response phase of the request processing lifecycle should be
skipped. This is accomplished by calling the r esponseConpl et e() method on the
FacesCont ext instance for the current request, prior to returning from event
handlers or application actions.

2.2

2.2.1

Standard Request Processing Lifecycle
Phases

The standard phases of the request processing lifecycle are described in the
following subsections.

Restore View

The JSF implementation must perform the following tasks during the Restore View
phase of the request processing lifecycle:

= Examine the FacesCont ext instance for the current request. If it already
contains a Ul Vi ewRoot :

« Setthe |l ocal e on this Ul Vi ewRoot to the value returned by the
get Request Local e() method on the Ext er nal Cont ext for this request.

« For each component in the component tree, determine if a Val ueBi ndi ng for
“binding” is present. If so, call the set Val ue() method on this
Val ueBi ndi ng, passing the component instance on which it was found.

« Take no further action during this phase.
= Derive the view identifier that corresponds to this request, as follows:

« If prefix mapping (such as “/faces/*”) is used for FacesSer vl et , the vi e d
is set from the extra path information of the request URI.

« If suffix mapping (such as “*.faces”) is used for FacesSer vl et , the vi ewl d is
set from the servlet path information of the request URI, after replacing the
suffix with the value of the context initialization parameter named by the
symbolic constant Vi ewHand| er . DEFAULT_SUFFI X_NAME (if no such context
initialization parameter is present, use the value of the symbolic constant
Vi ewHandl er . DEFAULT_SUFFI X as the replacement suffix).

« If no view identifier can be derived, throw an exception.

= Call Vi ewHandl er. restoreVi ew), passing the FacesCont ext instance for
the current request and the derived view identifier, and returning a Ul Vi ewRoot
for the restored view (if any).

2-4 JavaServer Faces Specification February 2004

2.2.2

« IfrestoreView() returns null, call Vi ewHandl er. createVi em() and
FacesCont ext . render Response() .

« If the incoming request contains no POST data or query parameters, call
render Response() on the FacesCont ext instance for this request.

= Store the restored or created Ul Vi ewRoot in the FacesCont ext.

= For each component in the component tree, determine if a Val ueBi ndi ng for
“binding” is present. If so, call the set Val ue() method on this Val ueBi ndi ng,
passing the component instance on which it was found.

At the end of this phase, the vi ewRoot property of the FacesCont ext instance for
the current request will reflect the saved configuration of the view generated by the
previous Faces Response (if any), or a new view returned by

Vi ewHandl er . creat eVi ew() for the derived view identifier.

Apply Request Values

The purpose of the Apply Request Values phase of the request processing lifecycle is to
give each component the opportunity to update its current state from the
information included in the current request (parameters, headers, cookies, and so
on).

During the Apply Request Values phase, the JSF implementation must call the
processDecodes() method of the Ul Vi ewRoot of the component tree. This will
normally cause the pr ocessDecodes() method of each component in the tree to be
called recursively, as described in the Javadocs for the

Ul Conponent . pr ocessDecodes() method. For U | nput components, data
conversion must occur as described in the Ul | nput Javadocs.

During the decoding of request values, some components perform special
processing, including:

= Components that implement Act i onSour ce (such as Ul Comrand), which
recognize that they were activated, will queue an Acti onEvent . The event will
be delivered at the end of Apply Request Values phase, or at the end of Invoke
Application phase, depending upon the state of the immediate property on the
activated component.

= Components that implement Edi t abl eVal ueHol der (such as Ul | nput), and
whose i rmedi at e property is set to t r ue, will cause the conversion and
validation processing (including the potential to fire Val ueChangeEvent events)
that normally happens during Process Validations phase to occur during Apply
Request Values phase instead.

As described in Section 2.3 “Common Event Processing”, the pr ocessDecodes()
method on the Ul Vi ewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.

Chapter 2 Request Processing Lifecycle 2-5

2.2.3

At the end of this phase, all Edi t abl eVal ueHol der components in the component
tree will have been updated with new submitted values included in this request (or
enough data to reproduce incorrect input will have been stored, if there were
conversion errors). In addition, conversion and validation will have been performed
on Edi t abl eVal ueHol der components whose i rmedi at e property is settotrue.
Conversions and validations that failed will have caused messages to be enqueued
via calls to the addMessage() method of the FacesCont ext instance for the
current request, and the val i d property on the corresponding component(s) will be
set to f al se.

If any of the decode() methods that were invoked, or an event listener that
processed a queued event, called r esponseConpl et e() on the FacesCont ext
instance for the current request, lifecycle processing of the current request must be
immediately terminated. If any of the decode() methods that were invoked, or an
event listener that processed a queued event, called r ender Response() on the
FacesCont ext instance for the current request, control must be transferred to the
Render Response phase of the request processing lifecycle. Otherwise, control must
proceed to the Process Validations phase.

Process Validations

As part of the creation of the view for this request, zero or more Val i dat or
instances may have been registered for each component. In addition, component
classes themselves may implement validation logic in their val i dat e() methods.

During the Process Validations phase of the request processing lifecycle, the JSF
implementation must call the processVal i dat or s() method of the Ul Vi ewRoot
of the tree. This will normally cause the processVal i dat or s() method of each
component in the tree to be called recursively, as described in the API reference for
the Ul Conponent . processVal i dat or s() method. Note that

Edi t abl eVal ueHol der components whose i medi at e property is settotrue
will have had their conversion and validation processing performed during Apply
Request Values phase.

During the processing of validations, events may have been queued by the
components and/or Val i dat or s whose val i dat e() method was invoked. As
described in Section 2.3 “Common Event Processing”, the processVal i dat or s()
method on the Ul Vi ewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.

At the end of this phase, all conversions and configured validations will have been
completed. Conversions and Validations that failed will have caused messages to be
enqgueued via calls to the addMessage() method of the FacesCont ext instance for
the current request, and the val i d property on the corresponding components will
have been set to f al se.

2-6 JavaServer Faces Specification « February 2004

2.2.4

If any of the val i dat e() methods that were invoked, or an event listener that
processed a queued event, called r esponseConpl et e() on the FacesCont ext
instance for the current request, lifecycle processing of the current request must be
immediately terminated. If any of the val i dat e() methods that were invoked, or
an event listener that processed a queued event, called r ender Response() on the
FacesCont ext instance for the current request, control must be transferred to the
Render Response phase of the request processing lifecycle. Otherwise, control must
proceed to the Update Model Values phase.

Update Model Values

If this phase of the request processing lifecycle is reached, it is assumed that the
incoming request is syntactically and semantically valid (according to the validations
that were performed), that the local value of every component in the component tree
has been updated, and that it is now appropriate to update the application's model
data in preparation for performing any application events that have been enqueued.

During the Update Model Values phase, the JSF implementation must call the
processUpdat es() method of the Ul Vi ewRoot component of the tree. This will
normally cause the pr ocessUpdat es() method of each component in the tree to be
called recursively, as described in the API reference for the

Ul Conponent . pr ocessUpdat es() method. The actual model update for a
particular component is done in the updat eModel () method for that component.

During the processing of model updates, events may have been queued by the
components whose updat eMbdel () method was invoked. As described in
Section 2.3 “Common Event Processing”, the pr ocessUpdat es() method on the
UlViewRoot component at the root of the component tree will have caused any
gueued events to be broadcast to interested listeners.

At the end of this phase, all appropriate model data objects will have had their
values updated to match the local value of the corresponding component, and the
component local values will have been cleared.

If any of the updat eMbdel () methods that were invoked, or an event listener that
processed a queued event, called r esponseConpl et e() on the FacesCont ext
instance for the current request, lifecycle processing of the current request must be
immediately terminated. If any of the updat eModel () methods that was invoked,
or an event listener that processed a queued event, called r ender Response() on
the FacesCont ext instance for the current request, control must be transferred to
the Render Response phase of the request processing lifecycle. Otherwise, control
must proceed to the Invoke Application phase.

Chapter 2 Request Processing Lifecycle 2-7

2.2.5

2.2.6

Invoke Application

If this phase of the request processing lifecycle is reached, it is assumed that all
model updates have been completed, and any remaining event broadcast to the
application needs to be performed. The implementation must ensure that the
processAppl i cation() method of the Ul Vi ewRoot instance is called. The default
behavior of this method will be to broadcast any queued events that specify a phase
identifier of Phasel d. | NVOKE_APPLI CATI ON.

Advanced applications (or application frameworks) may replace the default

Act i onLi st ener instance by calling the set Acti onLi st ener () method on the
Appl i cat i on instance for this application. However, the JSF implementation must
provide a default Act i onLi st ener instance that behaves as described in

Section 7.1.1 “ActionListener Property”.

Render Response

This phase accomplishes two things:
1. Causes the response to be rendered to the client

2. Causes the state of the response to be saved for processing on subsequent
requests.

The reason for bundling both of these responsibilities into this phase is that in JSP
applications, the act of rendering the response may cause the view to be built, as the
page renders. Thus, we can’t save the state until the view is built, and we have to
save the state before sending the response to the client to enable saving the state in
the client.

JSF supports a range of approaches that JSF implementations may utilize in creating
the response text that corresponds to the contents of the response view, including:

= Deriving all of the response content directly from the results of the encoding
methods (on either the components or the corresponding renderers) that are
called.

= Interleaving the results of component encoding with content that is dynamically
generated by application programming logic.

» Interleaving the results of component encoding with content that is copied from a
static “template” resource.

= Interleaving the results of component encoding by embedding calls to the
encoding methods into a dynamic resource (such as representing the components
as custom tags in a JSP page).

Because of the number of possible options, the mechanism for implementing the
Render Response phase cannot be specified precisely. However, all JSF
implementations of this phase must conform to the following requirements:

2-8 JavaServer Faces Specification February 2004

= JSF implementations must provide a default Vi ewHandl er implementation that
performs a Request Di spat cher. f orwar d() call to a web application resource
whose context-relative path is equal to the view identifier of the component tree.

= If all of the response content is being derived from the encoding methods of the
component or associated Render er s, the component tree should be walked in the
same depth-first manner as was used in earlier phases to process the component
tree, but subject to the additional constraints listed here.

= If the response content is being interleaved from additional sources and the
encoding methods, the components may be selected for rendering in any desired
orderl.

= During the rendering process, additional components may be added to the
component tree based on information available to the Vi ewHandl er
implementation2. However, before adding a new component, the Vi ewHand| er
implementation must first check for the existence of the corresponding
component in the component tree. If the component already exists (perhaps
because a previous phase has pre-created one or more components), the existing
component’s properties and attributes must be utilized.

= Under no circumstances should a component be selected for rendering when its
parent component, or any of its ancestors in the component tree, has its
r ender sChi | dr en property set to true. In such cases, the parent or ancestor
component must render the content of this child component when the parent or
ancestor was selected.

= If the i sRender ed() method of a component returns f al se, the renderer for
that component must not generate any markup, and none of its facets or children
(if any) should be rendered.

When each particular component in the component tree is selected for rendering,
calls to its encodeXxx() methods must be performed in the manner described in
Section 3.1.12 “Component Specialization Methods”. For components that
implement Val ueHol der (such as Ul | nput and Ul Cut put), data conversion must
occur as described in the Ul Qut put Javadocs.

Upon completion of rendering, the completed state of the view must have been
saved using the methods of the class St at eManager. This state information must
be made accessible on a subsequent request, so that the Restore View can access it. For
more on St at eManager, see Section 7.6.3 “State Saving Methods.”

1. Typically,component selection will be driven by the occurrence of special markup (such as the existence of a
JSP custom tag) in the template text associated with the component tree.

2. For example, this technique is used when custom tags in JSP pages are utilized as the rendering technology,
as described in Chapter 9 “Integration with JSP.

Chapter 2 Request Processing Lifecycle 2-9

2.3

Common Event Processing

For a complete description of the event processing model for JavaServer Faces
components, see Section 3.4 “Event and Listener Model”.

During several phases of the request processing lifecycle, as described in Section 2.2
“Standard Request Processing Lifecycle Phases”, the possibility exists for events to
be queued (via a call to the queueEvent () method on the source U Conponent
instance, or a call to the queue() method on the FacesEvent instance), which must
now be broadcast to interested event listeners. The broadcast is performed as a side
effect of calling the appropriate lifecycle management method (pr ocessDecodes(),
processVal i dat ors(), processUpdat es(), or processApplication())on
the Ul Vi ewRoot instance at the root of the current component tree.

For each queued event, the br oadcast () method of the source Ul Conponent must
be called to broadcast the event to all event listeners who have registered an interest,
on this source component for events of the specified type, after which the event is
removed from the event queue. See the API reference for the

U Conponent . br oadcast () method for the detailed functional requirements.

It is also possible for event listeners to cause additional events to be enqueued for
processing during the current phase of the request processing lifecycle. Such events
must be broadcast in the order they were enqueued, after all originally queued
events have been broadcast, before the lifecycle management method returns.

2.4

2-10

Common Application Activities

The following subsections describe common activities that may be undertaken by an
application that is using JSF to process an incoming request and/or create an
outgoing response. Their use is described in Section 2.1 “Request Processing
Lifecycle Scenarios”, for each request processing lifecycle scenario in which the
activity is relevant.

JavaServer Faces Specification ¢ February 2004

24.1

24.11

24.1.2

Acquire Faces Object References

This phase is only required when the request being processed was not submitted
from a previous response, and therefore did not initiate the Faces Request Generates
Faces Response lifecycle. In order to generate a Faces Response, the application must
first acquire references to several objects provided by the JSF implementation, as
described below.

Acquire and Configure Lifecycle Reference

As described in Section 11.1 “Lifecycle”, the JSF implementation must provide an
instance of j avax. faces. | ifecycl e. Li fecycl e that may be utilized to manage
the remainder of the request processing lifecycle. An application may acquire a
reference to this instance in a portable manner, as follows:

Li fecycl eFactory | Factory = (Lifecycl eFactory)

Fact or yFi nder. get Fact or y(Fact or yFi nder . LI FECYCLE_FACTCRY) ;
Lifecycle lifecycle =

| Factory. get Li fecycl e(Li fecycl eFact ory. DEFAULT_LI FECYCLE) ;

It is also legal to specify a different lifecycle identifier as a parameter to the

get Li fecycl e() method, as long as this identifier is recognized and supported by
the JSF implementation you are using. However, using a non-default lifecycle
identifier will generally not be portable to any other JSF implementation.

Acquire and Configure FacesContext Reference

As described in Section 6.1 “FacesContext”, the JSF implementation must provide an
instance of j avax. f aces. cont ext . FacesCont ext to contain all of the per-
request state information for a Faces Request or a Faces Response. An application
that is processing a Non-Faces Request, but wants to create a Faces Response, must
acquire a reference to a FacesCont ext instance as follows

FacesCont ext Factory fcFactory = (FacesCont ext Factory)
Fact or yFi nder. get Fact or y(Fact or yFi nder . FACES_CONTEXT_FACTORY) ;
FacesCont ext facesContext =
f cFact ory. get FacesCont ext (cont ext, request, response,
lifecycle);

Chapter 2 Request Processing Lifecycle 2-11

2.4.2

2421

where the cont ext , r equest, and r esponse objects represent the corresponding
instances for the application environment. For example, in a servlet-based
application, these would be the Ser vl et Cont ext , Ht t pSer vl et Request , and
Ht t pSer vl et Response instances for the current request.

Create And Configure A New View

When a Faces response is being intially created, or when the application decides it
wants to create and configure a new view that will ultimately be rendered, it may
follow the steps described below in order to set up the view that will be used. You
must start with a reference to a FacesCont ext instance for the current request.

Create A New View

Views are represented by a data structure rooted in an instance of

javax. f aces. conponent . Ul Vi ewRoot , and identified by a view identifier whose
meaning depends on the Vi ewHandl| er implementation to be used during the
Render Response phase of the request processing lifecycle3. The Vi ewHand| er
provides a factory method that may be utilized to construct new component trees, as
follows:

String viewmdd = ...identifier of the desired Tree...;
Vi ewHandl er vi ewHandl er = applicati on. get Vi ewHandl er () ;
Ul Vi ewRoot vi ew = vi ewHandl er. creat eVi ew(f acesCont ext, view d);

The Ul Vi ewRoot instance returned by the cr eat eVi ew() method must minimally
contain a single Ul Vi ewRoot provided by the JSF implementation, which must
encapsulate any implementation-specific component management that is required.
Optionally, a JSF implementation’s Vi ewHandl er may support the automatic
population of the returned Ul Vi ewRoot with additional components, perhaps based
on some external metadata description.

The caller of Vi ewHandl er. cr eat eVi ewm() must cause the FacesCont ext to be
populated with the new Ul Vi ewRoot . Applications must make sure that it is safe to
discard any state saved in the view rooted at the Ul Vi ewRoot currently stored in the
FacesCont ext .

3. The default Vi ewHandl er implementation performsa Request Di spat cher . f or war d call to the web
application resource that will actually perform the rendering, so it expects the tree identifier to be the context-
relative path (starting with a/ character) of the web application resource

2-12 JavaServer Faces Specification February 2004

24.2.2

2.4.2.3

Configure the Desired RenderKit

The Ul Vi ewRoot instance provided by the Vi ewHand| er, as described in the
previous subsection, must automatically be configured to utilize the default

j avax. f aces. render. Render Ki t implementation provided by the JSF
implementation, as described in Section 8.1 “RenderKit”. This Render Ki t must
support the standard components and Render er s described later in this
specification, to maximize the portability of your application.

However, a different Render Ki t instance provided by your JSF implementation (or
as an add-on library) may be utilized instead, if desired. A reference to this

Render Ki t instance can be obtained from the standard Render Ki t Fact ory, and
then assigned to the Ul Vi ewRoot instance created previously, as follows:

String renderKitld = ... identifier of desired RenderKit
Render Ki t Factory rkFactory = (RenderKitFactory)

Fact or yFi nder . get Fact or y(Fact or yFi nder . RENDER_KI T_FACTORY) ;
RenderKit renderKit = rkFactory.getRenderKit(renderKitld,

f acesCont ext);
view. set RenderKitld(renderKitld);

L]

As described in Chapter 8, changing the Render Ki t being used changes the set of

Render er s that will actually perform decoding and encoding activities. Because the
components themselves store only a r ender er Type property (a logical identifier of
a particular Render er), it is thus very easy to switch between RenderKi t s, as long
as they support renderers with the same renderer types.

In the current version of this specification, the default Vi ewHandl er
implementation does not support using Render Ki t s other than the default one
(configured by the <def aul t -r ender - ki t -i d> configuration element), because
the render kit identifier is not exposed separately in the St at eManager APIs. This
restriction may be lifted in a future version of the specification. In the mean time, it
is possible to support this feature by implementing a custom Vi ewHand| er that
handles saving and restoring the render kit identifier in a custom manner.

Configure The View’s Components

At any time, the application can add new components to the view, remove them, or
modify the attributes and properties of existing components. For example, a new
FooConmponent (an implementation of Ul Conponent) can be added as a child to the
root Ul Vi ewRoot in the component tree as follows:

FooConponent conponent = ...create a FooConponent instance...;
f acesCont ext . get Vi ewRoot (). get Chi | dren() . add(conponent) ;

Chapter 2 Request Processing Lifecycle 2-13

2424

Store the new View in the FacesContext

Once the view has been created and configured, the FacesCont ext instance for this
request must be made aware of it by calling set Vi ewRoot ().

2.5

2.5.1

2511

2512

Concepts that impact several lifecycle
phases

This section is intended to give the reader a “big picture” perspective on several
complex concepts that impact several request processing lifecycle phases.

Value Handling

At a fundamental level, JavaServer Faces is a way to get values from the user, into
your model tier for processing. The process by which values flow from the user to
the model has been documented elsewhere in this spec, but a brief holistic survey
comes in handy. The following description assumes the JSP/ZHTTP case, and that all
components have Renderers.

Apply Request Values Phase

The user presses a button that causes a form submit to occur. This causes the state of
the form to be sent as name=val ue pairs in the POST data of the HTTP request. The
JSF request processing lifecycle is entered, and eventually we come to the Apply
Request Values Phase. In this phase, the decode() method for each Render er for
each Ul Conponent in the view is called. The Render er takes the value from the
request and passes it to the set Submi tt edVal ue() method of the component,
which is, of course, an instance of Edi t abl eVal ueHol der. If the component has
the "i mredi at e" property set to t r ue, we execute validation immediately after
decoding. See below for what happens when we execute validation.

Process Validators Phase

processVal i dat ors() is called on the root of the view. For each

Edi t abl eVal ueHol der in the view, If the “i mredi at e” property is not set, we
execute validation for each Ul | nput in the view. Otherwise, validation has already
occurred and this phase is a no-op.

2-14 JavaServer Faces Specification February 2004

25.1.3

25.14

2.5.2

2521

Executing Validation

Please see the javadocs for Ul | nput . val i dat e() for more details, but basically,
this method gets the submitted value from the component (set during Apply Request
Values), gets the Render er for the component and calls its get Convert edVal ue(),
passing the submitted value. If a conversion error occurs, it is dealt with as
described in the javadocs for that method. Otherwise, all validators attached to the
component are asked to validate the converted value. If any validation errors occur,
they are dealt with as described in the javadocs for Val i dat or. val i date(). The
converted value is pushed into the component's set Val ue() method, and a

Val ueChangeEvent is fired if the value has changed.

Update Model Values Phase

For each Ul | nput component in the view, its updat eMbdel () method is called.
This method only takes action if a local value was set when validation executed and
if the page author configured this component to push its value to the model tier. This
phase simply causes the converted local value of the Ul | nput component to be
pushed to the model in the way specified by the page author. Any errors that occur
as a result of the attempt to push the value to the model tier are dealt with as
described in the javadocs for Ul | nput . updat eMbdel ().

Localization and Internationalization
(L1ON/I118N)

JavaServer Faces is fully internationalized. The 118N capability in JavaServer Faces
builds on the 118N concepts offered in the Servlet, JSP and JSTL specifications. 118N
happens at several points in the request processing lifecycle, but it is easiest to
explain what goes on by breaking the task down by function.

Determining the active Local e

JSF has the concept of an active Local e which is used to look up all localized
resources. Converters must use this Local e when performing their conversion. This
Local e is stored as the value of the | ocal e JavaBeans property on the
Ul Vi ewRoot of the current FacesCont ext . The application developer can tell JSF
what locales the application supports in the applications’ VEB- | NF/ f aces-
config.xm file. For example:
<faces-config>

<appl i cation>

<l ocal e-confi g>

Chapter 2 Request Processing Lifecycle 2-15

2522

<defaul t-1 ocal e>en</ defaul t-1 ocal e>
<support ed- 1 ocal e>de</ supported-|ocal e>
<supported-1ocal e>fr</supported-I|ocal e>
<supported- 1 ocal e>es</ supported-|ocal e>
</l ocal e-config>
</ application>

This application’s default locale is en, but it also supports de, fr, and es locales.
These elements cause the Appl i cati on instance to be populated with Local e data.
Please see the javadocs for details.

The Ul Vi ewRoot ’s Local e is determined and set by the Vi ewHand!| er during the
execution of the Vi ewHandl er ’s cr eat eVi ewm() method. This method must cause
the active Local e to be determined by looking at the user’s preferences combined
with the application’s stated supported locales. Please see the javadocs for details.

The application can call Ul Vi ewRoot . set Local e() directly, but it is also possible
for the page author to override the Ul Vi ewRoot ’s locale by using the | ocal e
attribute on the <f : vi ew> tag. The value of this attribute must be specified as

| anguage[{-]| _}country[{-]| _}variant]] without the colons, for example
"fa_JP_SJI S". The separators between the segments may be '-'or'_".

In all cases where JSP is utilized, the active Local e is set under “request scope” into
the JSTL class j avax. servl et.jsp.jstl.core. Confi g, under the key
Config. FMI_LOCALE.

Determining the Character Encoding

The request and response character encoding are set and interpreted as follows.

On an initial request to a Faces webapp, the request character encoding is left
unmodified, relying on the underlying request object (e.g., the servlet or portlet
request) to parse request parameter correctly.

At the beginning of the render-response phase, the ViewHandler must ensure that
the response Locale is set to be that of the UlViewRoot, for example by calling
Ser vl et Response. set Local e() when running in the servlet environment.
Setting the response Locale may affect the response character encoding, see the
Servlet and Portlet specifications for details.

At the end of the render-response phase, the ViewHandler must store the response
character encoding used by the underlying response object (e.g., the servlet or
portlet response) in the session (if and only if a session already exists) under a well
known, implementation-dependent key.

2-16 JavaServer Faces Specification February 2004

2.5.2.3

On a subsequent postback, before any of the ExternalContext methods for accessing
request parameters are invoked, the ViewHandler must examine the Content-Type
header to read the charset attribute and use its value to set it as the request encoding
for the underlying request object. If the Content-Type header doesn't contain a
charset attribute, the encoding previously stored in the session (if and only if a
session already exists), must be used to set the encoding for the underlying request
object. If no character encoding is found, the request encoding must be left
unmodified.

The above algorithm allows an application to use the mechanisms of the underlying
technologies to adjust both the request and response encoding in an application-
specific manner, for instance using the page directive with a fixed character
encoding defined in the contentType attribute in a JSP page, see the Servlet, Portlet
and JSP specifications for details. Note, though, that the character encoding rules
prior to Servlet 2.4 and JSP 2.0 are imprecise and special care must be taken for
portability between containers.

Localized Text

There is no direct support for this in the API, but the JSP layer provides a
convenience tag that converts a Resour ceBundl e into a j ava. util . Map and
stores it in the scoped namespace so all may get to it. This section describes how
resources displayed to the end user may be localized. This includes images, labels,
button text, tooltips, alt text, etc.

Since most JSF components allow pulling their display value from the model tier, it
is easy to do the localization at the model tier level. As a convenience, JSF provides
the <f : | oadBundl e> tag, which takes a Resour ceBundl e and loads it into a Map,
which is then stored in the scoped namespace in request scope, thus making its
messages available using the same mechanism for accessing data in the model tier.
For example:

<f:l oadBundl e basename="com f 00. i ndust ryMessages. cheni cal ”
var =" nessages” />
<h: out put Text val ue="#{ messages. benzene}” />
This must cause the Resour ceBundl e named
com fo0o. i ndustryMessages. cheni cal to be loaded as a Map into the request

scope under the key nessages. Localized content can then be pulled out of it using
the normal value binding syntax.

Chapter 2 Request Processing Lifecycle 2-17

25.2.4 Localized Application Messages

This section describes how JSF handles localized error and informational messages
that occur as a result of conversion, validation, or other application actions during
the request processing lifecycle. The JSF class

javax. faces. appl i cati on. FacesMessage is provided to encapsulate summary;,
detail, and severity information for a message. A JSF implementation must provide a
javax. f aces. Messages Resour ceBundl e containing all of the necessary keys
for the standard messages. The required keys (and a non-normative indication of the
intended message text) are as follows:

= javax.faces.component.UlInput. CONVERSION -- Conversion error occurred
= javax.faces.component.Ullnput.REQUIRED -- Value is required

= javax.faces.component.UISelectOne.INVALID -- Value is not a a valid option
= javax.faces.component.UISelectMany.INVALID -- Value is not a valid option

= javax.faces.validatorNOT_IN_RANGE -- Specified attribute is not between the
expected values of {0} and {1}

= javax.faces.validator.DoubleRangeValidator MAXIMUM -- Value is greater than
allowable maximum of “{0}”

= javax.faces.validator.DoubleRangeValidator. MINIMUM -- Value is less than
allowable minimum of “{0}"”

= javax.faces.validator.DoubleRangeValidator. TYPE -- Value is not of the correct
type

= javax.faces.validator.LengthValidator MAXIMUM -- Value is greater than
allowable maximum of “{0}”

= javax.faces.validator.LengthValidator MINIMUM -- Value is less than allowable
minimum of “{0}"”

= javax.faces.validator.LongRangeValidator MAXIMUM -- Value is greater than
allowable maximum of “{0}”

= javax.faces.validator.LongRangeValidator. MINIMUM -- Value is less than
allowable minimum of “{0}"”

= javax.faces.validator.LongRangeValidator.TYPE -- Value is not of the correct type

A JSF application may provide its own messages, or overrides to the standard
messages by supplying a <nessage- bundl e> element to in the application
configuration resources. Since the Resour ceBundl e provided in the Java platform
has no notion of summary or detail, JSF adopts the policy that Resour ceBundl e
key for the message looks up the message summary. The detail is stored under the
same key as the summary, with _det ai | appended. These Resour ceBundl| e keys
must be used to look up the necessary values to create a localized FacesMessage
instance. Note that the value of the summary and detail keys in the

Resour ceBundl e may contain parameter substitution tokens, which must be
substituted with the appropriate values using j ava. t ext . MessageFor mat .

2-18 JavaServer Faces Specification February 2004

2.5.3

2531

These messages can be displayed in the page using the Ul Message and
Ul Messages components and their corresponding tags, <h: message> and
<h: messages>.

The following algorithm must be used to create a FacesMessage instance given a
message key.

= Call get MessageBundl e() on the Appl i cati on instance for this web
application, to determine if the application has defined a resource bundle name. If
so, load that ResourceBundle and look for the message there.

= If not there, look in the j avax. f aces. Messages resource bundle.

= In either case, if a message is found, use the above conventions to create a
FacesMessage instance.

State Management

JavaServer Faces introduces a powerful and flexible system for saving and restoring
the state of the view between requests to the server. It is useful to describe state
management from several viewpoints. For the page author, state management
happens transparently. For the app assembler, state management can be configured
to save the state in the client or on the server by setting the ServletContext
InitParameter named j avax. f aces. STATE_SAVI NG_METHOD to either cl i ent or
server. The value of this parameter directs the state management decisions made
by the implementation.

State Management Considerations for the Custom
Component Author

Since the component developer cannot know what the state saving method will be at
runtime, they must be aware of state management. As shown in Section FIGURE 4-1
“The javax.faces.component package”, all JSF components implement the

St at eHol der interface. As a consequence the standard components provide
implementations of St at eHol der to suit their needs. A custom component that
extends Ul Conponent directly, and does not extend any of the standard components
must implement St at eHol der manually.Please see Section 3.2.3 “StateHolder” for
details.

A custom component that does extend from one of the standard components and
maintains its own state, in addition to the state maintained by the superclass must
take special care to implement St at eHol der correctly. Notably, calls to

saveSt at e() must not alter the state in any way. The subclass is responsible for
saving and restoring the state of the superclass. Consider this example. My custom
component represents a “slider” ui widget. As such, it needs to keep track of the
maximum value, minimum value, and current values as part of its state.

Chapter 2 Request Processing Lifecycle 2-19

2.5.3.2

public class Slider extends Ul Sel ectOne {
protected Integer min = null;

protected I nteger nmax nul | ;

protected I nteger cur nul | ;

/1 ... details onmtted

public Object saveState(FacesContext context) {
bj ect values[] = new Object[4];
val ues[0] = super.saveState(context);

values[1] = min;
val ues[2] = nax;
val ues[3] = cur;

public void restoreState(FacesCont ext context, Object state) {
Obj ect values[] = (nject {}) state; // guaranteed to succeed
super.restoreState(context, values[0]);

mn = (Integer) val ues[1];
max = (Integer) val ues[2];
cur = (Integer) val ues[3];

}

Note that we call super. saveState() and super.restoreState() as
appropriate. This is absolutely vital! Failing to do this will prevent the component
from working.

State Management Considerations for the JSF Implementor

The intent of the state management facility is to make life easier for the page author,
app assembler, and component author. However, the complexity has to live
somewhere, and the JSF implementor is the lucky role. Here is an overview of the
key players. Please see the javadocs for each individual class for more information.

Key Players in State Management

= Vi ewHandl er the entry point to the state management system. Uses a helper
class, St at eManager, to do the actual work. In the JSP case, delegates to the tag
handler for the <f : vi ew> tag for some functionality.

2-20 JavaServer Faces Specification February 2004

St at eManager abstraction for the hard work of state saving. Uses a helper class,
ResponseSt at eManager, for the rendering technology specific decisions.

ResponsesSt at eManager abstraction for rendering technology specific state
management decisions.

Ul Conponent directs process of saving and restoring individual component state.

Chapter 2 Request Processing Lifecycle 2-21

2-22 JavaServer Faces Specification February 2004

CHAPTER 3

User Interface Component Model

A JSF user interface component is the basic building block for creating a JSF user
interface. A particular component represents a configurable and reusable element in
the user interface, which may range in complexity from simple (such as a button or
text field) to compound (such as a tree control or table). Components can optionally
be associated with corresponding objects in the data model of an application, via
value binding expressions.

JSF also supports user interface components with several additional helper APIs:

= Converters—Pluggable support class to convert the markup value of a component
to and from the corresponding type in the model tier.

= Events and Listeners—An event broadcast and listener registration model based on
the design patterns of the JavaBeans Specification, version 1.0.1.

= Validators—Pluggable support classes that can examine the local value of a
component (as received in an incoming request) and ensure that it conforms to
the business rules enforced by each Validator. Error messages for validation
failures can be generated and sent back to the user during rendering.

The user interface for a particular page of a JSF-based web application is created by
assembling the user interface components for a particular request or response into a
view. The view is a tree of classes that implement U Conponent . The components in
the tree have parent-child relationships with other components, starting at the root
element of the tree, which must be an instance of Ul Vi ewRoot . Components in the
tree can be anonymous or they can be given a component identifier by the framework
user. Components in the tree can be located based on component identifiers, which
must be unique within the scope of the nearest ancestor to the component that is a
naming container. For complex rendering scenarios, components can also be attached
to other components as facets.

This chapter describes the basic architecture and APIs for user interface components
and the supporting APIs.

3.1

3.11

UlIComponent and UIComponentBase

The base abstract class for all user interface components is

j avax. f aces. conponent . Ul Conponent . This class defines the state information
and behavioral contracts for all components through a Java programming language
API, which means that components are independent of a rendering technology such
as JavaServer Pages (JSP). A standard set of components (described in Chapter 4
“Standard User Interface Components”) that add specialized properties, attributes,
and behavior, is also provided as a set of concrete subclasses.

Component writers, tool providers, application developers, and JSF implementors
can also create additional Ul Conponent implementations for use within a particular
application. To assist such developers, a convenience subclass,

j avax. f aces. conponent . Ul Conponent Base, is provided as part of JSF. This
class provides useful default implementations of nearly every Ul Conponent
method, allowing the component writer to focus on the unique characteristics of a
particular Ul Conponent implementation.

The following subsections define the key functional capabilities of JSF user interface
components.

Component Identifiers

public String getld();

public void setld(String conponentld);

Every component may be named by a component identifier, which (if utilized) must be
uniqgue among the components that share a common naming container parent in a
component tree. Component identifiers must conform to the following rules:

» They must start with a letter (as defined by the Character.isLetter()
method) or underscore (‘).

= Subsequent characters may be letters (as defined by the
Character.isLetter() method), digits as defined by the
Character.isDigit() method, dashes (‘-’), and underscores (‘_’).

To minimize the size of responses generated by JavaServer Faces, it is recommended
that component identifiers be as short as possible.

If a component has been given an identifier, it must be unique in the namespace of
the closest ancestor to that component that is a Nam ngCont ai ner (if any).

3-2 JavaServer Faces Specification ¢ February 2004

3.1.2

3.1.3

3.14

Component Type

While not a property of Ul Conponent , the conponent -t ype is an important piece
of data related to each Ul Conponent subclass that allows the Appl i cation
instance to create new instances of Ul Conponent subclasses with that type. Please
see Section 7.1.10 “Object Factories” for more on conponent - t ype.

Component types starting with “javax.faces.” are reserved for use by the JSF
specification.

Component Family

public String getFam ly();

Each standard user interface component class has a standard value for the
component family, which is used to look up renderers associated with this
component. Subclasses of a generic UIComponent class will generally inherit this
property from its superclass, so that renderers who only expect the superclass will
still be able to process specialized subclasses.

Component families starting with “javax.faces.” are reserved for use by the JSF
specification.

Value Binding Expressions

Properties and attributes of standard concrete component classes may be value
binding enabled. This means that, rather than specifying a literal value as the
parameter to a property or attribute setter, the caller instead associates a
ValueBinding (see Section 5.3.3 “ValueBinding”) whose get Val ue() method must
be called (by the property getter) to return the actual property value to be returned
if no value has been set via the corresponding property setter. If a property or
attribute value has been set, that value must be returned by the property getter
(shadowing any associated value binding expression for this property).

Value binding expressions are managed with the following method calls:

public Val ueBi ndi ng get Val ueBi ndi ng(String nane);

public voi d setVal ueBi ndi ng(String nane, Val ueBi nding bindi ng);

Chapter 3 User Interface Component Model 3-3

3.1.5

3.1.6

where namne is the name of the attribute or property for which to establish the value
binding. For the standard component classes defined by this specification, all
attributes, and all properties other than i d and par ent, are value binding enabled.

Component Bindings

A component binding is a special value binding expression that can be used to
facilitate “wiring up” a component instance to a corresponding property of a
JavaBean that is associated with the page, and wants to manipulate component
instances programatically. It is established by calling set Val ueBi ndi ng() (see
Section 3.1.4 “Value Binding Expressions”) with the special property name bi ndi ng.

The specified Val ueBi ndi ng must point to a read-write JavaBeans property of type
Ul Conmponent (or appropriate subclass). Such a component binding is used at two
different times during the processing of a Faces Request:

= When a component instance is first created (typically by virtue of being
referenced by a Ul Conponent Tag in a JSP page), the JSF implementation will
retrieve the Val ueBi ndi ng for the name binding, and call getVal ue()
on it. If this call returns a non-null Ul Conponent value (because the JavaBean
programmatically instantiated and configured a component already), that
instance will be added to the component tree that is being created. If the call
returns nul |, a new component instance will be created, added to the component
tree, and set Val ue() will be called on the Val ueBi ndi ng (which will cause the
property on the JavaBean to be set to the newly created component instance).

= When a component tree is recreated during the Restore View phase of the request
processing lifecycle, for each component that has a Val ueBi ndi ng associated
with the name binding, set Val ue() will be called on it, passing the recreated
component instance.

Component bindings are often used in conjunction with JavaBeans that are
dynamically instantiated via the Managed Bean Creation facility (see Section 5.3.1.2
“Default VariableResolver Implementation”). It is strongly recommend that
application developers place managed beans that are pointed at by component
binding expressions in “request” scope. This is because placing it in session or
application scope would require thread-safety, since Ul Conponent instances depend
on running inside of a single thread.

Client Identifiers

Client identifiers are used by JSF implementations, as they decode and encode
components, for any occasion when the component must have a client side name.
Some examples of such an occasion are:

3-4 JavaServer Faces Specification ¢ February 2004

3.1.7

= to name request parameters for a subsequent request from the JSF-generated
page.

= to serve as anchors for client side scripting code.

= to serve as anchors for client side accessibility labels.

public String getClientld(FacesContext context);

The client identifier is derived from the component identifier (or the result of calling
Ul Vi ewRoot . creat eUni quel d() if there is not one), and the client identifier of
the closest parent component that is a Nam ngCont ai ner. The Render er associated
with this component, if any, will then be asked to convert this client identifier to a
form appropriate for sending to the client. The value returned from this method
must be the same throughout the lifetime of the component instance unless set | d()
is called, in which case it will be recalculated by the next call to get A i entld().

Component Tree Manipulation

public Ul Conponent getParent();

public void setParent (U Conponent parent);

Components that have been added as children of another component can identify
the parent by calling the get Par ent method. For the root node component of a
component tree, or any component that is not part of a component tree, get Par ent
will return nul | . The set Par ent () method should only be called by the Li st
instance returned by calling the get Chi | dren() method, or the Map instance
returned by calling the get Facet s() method, when child components or facets are
being added, removed, or replaced.

public List getChildren();

Return a mutable Li st that contains all of the child U Conponent s for this
component instance. The returned Li st implementation must support all of the
required and optional methods of the Li st interface, as well as update the parent
property of children that are added and removed, as described in the Javadocs for
this method.

public int getChildCount();

Chapter 3 User Interface Component Model 3-5

3.1.8

3.1.9

A convenience method to return the number of child components for this
component. If there are no children, this method must return 0. The method must
not cause the creation of a child component list, so it is preferred over calling

get Chil dren(). si ze() when there are no children.

Component Tree Navigation

public Ul Conmponent findConponent(String expr);

Search for and return the UlIComponent with an i d that matches the specified
search expression (if any), according to the algorithm described in the Javadocs for
this method.

public Iterator getFacetsAndChildren();

Return an immutable | t er at or over all of the facets associated with this
component (in an undetermined order), followed by all the child components
associated with this component (in the order they would be returned by

get Chil dren()).

Facet Management

JavaServer Faces supports the traditional model of composing complex components
out of simple components via parent-child relationships that organize the entire set
of components into a tree, as described in Section 3.1.7 “Component Tree
Manipulation”. However, an additional useful facility is the ability to define
particular subordinate components that have a specific role with respect to the
owning component, which is typically independent of the parent-child relationship.
An example might be a “data grid” control, where the children represent the
columns to be rendered in the grid. It is useful to be able to identify a component
that represents the column header and/or footer, separate from the usual child
collection that represents the column data.

To meet this requirement, JavaServer Faces components offer support for facets,
which represent a named collection of subordinate (but non-child) components that
are related to the current component by virtue of a unique facet name that represents

3-6 JavaServer Faces Specification ¢ February 2004

3.1.10

the role that particular component plays. Although facets are not part of the parent-
child tree, they participate in request processing lifecycle methods, as described in
Section 3.1.13 “Lifecycle Management Methods”.

public Map get Facets();

Return a mutable Map representing the facets of this UIComponent, keyed by the
facet name.

public Ul Conponent getFacet (String nane);

A convenience method to return a facet value, if it exists, or nul | otherwise. If the
requested facet does not exist, no facets Map must not be created, so it is preferred
over calling get Facet s() . get () when there are no Facet s.

For easy use of components that use facets, component authors may include type-
safe getter and setter methods that correspond to each named facet that is supported
by that component class. For example, a component that supports a header facet of
type Ul Header should have methods with signatures and functionality as follows:

public Ul Header getHeader () {
return ((U Header) getFacet(“header”);

}

public voi d setHeader (U Header header) {
get Facets() . put (“header”, header);

}

Generic Attributes

public Map getAttributes();

The render-independent characteristics of components are generally represented as
JavaBean component properties with getter and setter methods (see Section 3.1.11
“Render-Independent Properties™). In addition, components may also be associated
with generic attributes that are defined outside the component implementation class.
Typical uses of generic attributes include:

= Specification of render-dependent characteristics, for use by specific Render er s.
= General purpose association of application-specific objects with components.

Chapter 3 User Interface Component Model ~ 3-7

3.1.11

The attributes for a component may be of any Java programming language object
type, and are keyed by attribute name (a String). However, see Section 7.6.2 “State
Saving Alternatives and Implications” for implications of your application’s choice
of state saving method on the classes used to implement attribute values.

Attribute names that begin with j avax. f aces are reserved for use by the JSF
specification. Names that begin with j avax are reserved for definition through the
Java Community Process. Implementations are not allowed to define names that
begin with j avax.

The Map returned by get Attri but es() must also support attribute-property
transparency, which operates as follows:

= When the get () method is called, if the specified attribute name matches the
name of a readable JavaBeans property on the component implementation class,
the value returned will be acquired by calling the appropriate property getter
method, and wrapping Java primitive values (such as int) in their corresponding
wrapper classes (such as j ava. | ang. | nt eger) if necessary.

= When the put () method is called, if the specified attribute name matches the
name of a writable JavaBeans property on the component implementation class,
the appropriate property setter method will be called.

Render-Independent Properties

The render-independent characteristics of a user interface component are
represented as JavaBean component properties, following JavaBeans naming
conventions. Specifically, the method names of the getter and/or setter methods are
determined using standard JavaBeans component introspection rules, as defined by
j ava. beans. | ntrospect or. The render-independent properties supported by all
U Conponent s are described in the following table:

Name

Access Type Description

id

par ent

render ed

RW String The component identifier, as described in Section 3.1.1
“Component Identifiers”.

RW Ul Conponent The parent component for which this component is a child or
a facet.

RW bool ean A flag that, if set to t r ue, indicates that this component
should be processed during all phases of the request
processing lifecycle. The default value is “true”.

3-8 JavaServer Faces Specification ¢ February 2004

Name

Access Type Description

render er Type

render sChi | dr
en

transient

RW String Identifier of the Render er instance (from the set of
Render er instances supported by the Render Ki t associated
with the component tree we are processing. If this property is
set, several operations during the request processing lifecycle
(such as decode and the encodeXxx family of methods) will
be delegated to a Render er instance of this type. If this
property is not set, the component must implement these
methods directly.

RO bool ean A flag that, if set to t r ue, indicates that this component
manages the rendering of all of its children components (so
the JSF implementation should not attempt to render them).
The default implementation in Ul Conponent Base delegates
this setting to the associated Render er, if any, and returns
f al se otherwise.

RW boolean A flag that, if set to t r ue, indicates that this component must
not be included in the state of the component tree. The
default implementation in Ul Conponent Base returnsf al se
for this property.

3.1.12

The method names for the render-independent property getters and setters must
conform to the design patterns in the JavaBeans specification. See Section 7.6.2 “State
Saving Alternatives and Implications” for implications of your application’s choice
of state saving method on the classes used to implement property values.

Component Specialization Methods

The methods described in this section are called by the JSF implementation during
the various phases of the request processing lifecycle, and may be overridden in a
concrete subclass to implement specialized behavior for this component.

public bool ean broadcast (FacesEvent event) throws
Abort Processi ngExcepti on;

The br oadcast () method is called during the common event processing (see
Section 2.3 “Common Event Processing”) at the end of several request processing
lifecycle phases. For more information about the event and listener model, see
Section 3.4 “Event and Listener Model”. Note that it is not necessary to override this
method to support additional event types.

public void decode(FacesContext context);

Chapter 3 User Interface Component Model 3-9

3-10

This method is called during the Apply Request Values phase of the request
processing lifecycle, and has the responsibility of extracting a new local value for
this component from an incoming request. The default implementation in

U Conponent Base delegates to a corresponding Render er, if the render er Type
property is set, and does nothing otherwise.

Generally, component writers will choose to delegate decoding and encoding to a
corresponding Render er by setting the r ender er Type property (which means the
default behavior described above is adequate).

public void encodeBegi n(FacesCont ext context) throws |OException;

public void encodeChil dren(FacesCont ext context) throws
| CExcepti on;

public voi d encodeEnd(FacesCont ext context) throws | COException;

These methods are called during the Render Response phase of the request processing
lifecycle, and have the responsibility of creating the response data for the beginning
of this component, this component’s children (only called if the r ender sChi | dren
property of this componentis t r ue), and the ending of this component, respectively.
Typically, this will involve generating markup for the output technology being
supported, such as creating an HTML <i nput > element for a Ul | nput component.
For clients that support it, the encode methods might also generate client-side
scripting code (such as JavaScript), and/or stylesheets (such as CSS). The default
implementations in Ul Conponent Base delegate to a corresponding Render er, if
the r ender er Type property is tr ue, and do nothing otherwise.

Generally, component writers will choose to delegate encoding to a corresponding
Render er, by setting the r ender er Type property (which means the default
behavior described above is adequate).

public void queueEvent (FacesEvent event);

Enqueue the specified event for broadcast at the end of the current request
processing lifecycle phase. Default behavior is to delegate this to the queueEvent ()
of the parent component, normally resulting in broadcast via the default behavior in
the Ul Vi ewRoot lifecycle methods.

The component author can override any of the above methods to customize the
behavior of their component.

JavaServer Faces Specification ¢ February 2004

3.1.13

Lifecycle Management Methods

The following methods are called by the various phases of the request processing
lifecycle, and implement a recursive tree walk of the components in a component
tree, calling the component specialization methods described above for each
component. These methods are not generally overridden by component writers, but
doing so may be useful for some advanced component implementations. See the
javadocs for detailed information on these methods.

public void processRestoreState(FacesContext context, Object
state);

Perform the component tree processing required by the Restore View phase of the
request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

public void processDecodes(FacesContext context);

Perform the component tree processing required by the Apply Request Values phase of
the request processing lifecycle for all facets of this component, all children of this
component, and this component itself

public void processVali dators(FacesContext context);

Perform the component tree processing required by the Process Validations phase of
the request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

public void processUpdat es(FacesCont ext context);

Perform the component tree processing required by the Update Model Values phase
of the request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

public void processSaveSt at e(FacesCont ext cont ext);

Perform the component tree processing required by the state saving portion of the
Render Response phase of the request processing lifecycle for all facets of this
component, all children of this component, and this component itself.

Chapter 3 User Interface Component Model 3-11

3.1.14

Utility Methods

protected FacesContext getFacesContext();

Return the FacesContext instance for the current request.

protected Renderer getRenderer(FacesContext context);

Return the Render er that is associated with this Ul Conrponent , if any, based on the
values of the fami | y and r ender er Type properties.

protected void addFaceslLi st ener (FacesLi stener |istener);

protected void renoveFacesLi stener(FacesLi stener |istener);

These methods are used to register and deregister an event listener. They should be
called only by a public addXxxListener() method on the component implementation
class, which provides typesafe listener registration.

3.2

3.2.1

Component Behavioral Interfaces

In addition to extending Ul Conponent, component classes may also implement one
or more of the behavioral interfaces described below. Components that implement
these interfaces must provide the corresponding method signatures and implement
the described functionality.

ActionSource

The Act i onSour ce interface defines a way for a component to indicate that wishes
to be a source of Acti onEvent events, including the ability invoke application
actions (see Section 7.3 “Application Actions”) via the default Act i onLi st ener
facility (see Section 7.1.1 “ActionListener Property™).

3-12 JavaServer Faces Specification ¢ February 2004

3.2.11 Properties

The following render-independent properties are added by the Acti onSource
interface:

Name Access Type Description

action RW Met hodBi ndi A Met hodBi ndi ng (see Section 5.3.4
ng “MethodBinding”) that must (if non-nul)

point at an action method (see Section 7.3
“Application Actions”). The specified
method will be called during the Apply
Request Values or Invoke Application phase of
the request processing lifecycle, as
described in Section 2.2.5 “Invoke
Application”.

actionListener RW MethodBindin A Met hodBi ndi ng (see Section 5.3.4
g “MethodBinding”) that (if non-nul |) must

point at a method accepting an
Act i onEvent, with a return type of voi d.
Any Act i onEvent that is sent by this
Act i onSour ce will be passed to this
method along with the pr ocessActi on()
method of any registered
Acti onLi st eners, in either Apply
Request Values or Invoke Application
phase, depending upon the state of the
i medi at e property.

immediate RW boolean A flag indicating that the default
Acti onLi st ener should execute
immediately (that is, during the Apply
Request Values phase of the request
processing lifecycle, instead of waiting for
Invoke Application phase). The default value
of this property must be f al se.

3.2.1.2 Methods

Act i onSour ce adds no new processing methods.

Chapter 3 User Interface Component Model 3-13

3.2.1.3

3.2.2

Events

A component implementing Act i onSour ce is a source of Acti onEvent events.
There are three important moments in the lifetime of an Acti onEvent:

= When an the event is created
= Wwhen the event is queued for later processing
= When the listeners for the event are notified

Act i onEvent creation occurs when the system detects that the component
implementing Act i onSour ce has been activated. For example, a button has been
pressed. This happens when the decode() processing of the Apply Request Values
phase of the request processing lifecycle detects that the corresponding user
interface control was activated.

Act i onEvent queueing occurs immediately after the event is created.

Event listeners that have registered an interest in Act i onEvent s fired by this
component (see below) are notified at the end of the Apply Request Values or Invoke
Application phase, depending upon the immediate property of the originating

U Conmmand.

Act i onSour ce includes the following methods to register and deregister
Act i onLi st ener instances interested in these events. See Section 3.4 “Event and
Listener Model” for more details on the event and listener model provided by JSF.

public voi d addActi onLi st ener (Acti onLi stener listener);

public void renmpbveActionLi stener(ActionListener |istener);

In addition to manually registered listeners, the JSF implementation provides a
default Acti onLi st ener that will process Acti onEvent events during the Apply
Request Values or Invoke Application phases of the request processing lifecycle. See
Section 2.2.5 “Invoke Application” for more information.

NamingContainer

Nam ngCont ai ner is a marker interface. Components that implement

Nam ngCont ai ner have the property that, for all of their children that have non-
nul | component identifiers, all of those identifiers are unique. This property is
enforced by the r ender Vi ew() method on Vi ewHandl er. In JSP based
applications, it is also enforced by the Ul Conponent Tag. Since this is just a marker
interface, there are no properties, methods, or events.

3-14 JavaServer Faces Specification ¢ February 2004

3.2.3

3.23.1

Nam ngCont ai ner defines a public static final character constant,
SEPARATOR_CHAR, that is used to separate components of client identifiers, as well
as the components of search expressions used by the f i ndConmponent () method see
(Section 3.1.8 “Component Tree Navigation”). The value of this constant must be a
colon character (*:”).

Use of this separator character in client identifiers rendered by Render er s can cause
problems with CSS stylesheets that attach styles to a particular client identifier. For
the Standard HTML RenderKit, this issue can be worked around by using the st yl e
attribute to specify CSS style values directly, or the st yl eCl ass attribute to select

CSS styles by class rather than by identifier.

StateHolder

The St at eHol der interface is implemented by Ul Conponent, Convert er,
FacesLi st ener, and Val i dat or classes that need to save their state between
requests. Ul Conponent implements this interface to denote that components have
state that must be saved and restored between requests.

Properties

The following render-independent properties are added by the St at eHol der
interface:

Name Access Type Description

transient RW bool ean A flag indicating whether this instance has
decided to opt out of having its state
information saved and restored. The
default value for all standard component,
converter, and validator classes that
implement St at eHol der must be f al se.

Chapter 3 User Interface Component Model 3-15

3.2.3.2

3.2.3.3

Methods

Any class implementing St at eHol der must implement both the saveSt at e() and
rest or eSt at e() methods, since these two methods have a tightly coupled contract
between themselves. In other words, if there is an inheritance hierarchy, it is not
permissible to have the saveSt at e() and rest or eSt at e() methods reside at
different levels of the hierarchy.

public Object saveState(FacesContext context);
public void restoreState(FacesContext context, Object state)
t hrows | CExcepti on;

Gets or restores the state of the instance as a Seri al i zabl e (bj ect .

If the class that implements this interface has references to Objects which also
implement St at eHol der (such as a Ul Conponent with a converter, event listeners,
and/or validators) these methods must call the saveSt at e() orrest oreSt at e()
method on all those instances as well.

Any class implementing St at eHol der must have a public no-args constructor.
If the state saving method is server, these methods may not be called.

If the class that implements this interface has references to Objects which do not
implement St at eHol der, these methods must ensure that the references are
preserved. For example, consider class MySpeci al Conponent , which implements
St at eHol der, and keeps a reference to a helper class,

My Speci al Conponent Hel per, which does not implement St at eHol der.

My Speci al Conponent . saveSt at e() must save enough information about

My Speci al Conmponent Hel per, so that when

My Speci al Conponent . rest oreSt at e() is called, the reference to

My Speci al Conponent Hel per can be restored. The return from saveSt at e()
must be Seri al i zabl e.

Since all of the standard user interface components listed in Chapter 4 “Standard
User Interface Components” extend from U Conponent , they all implement the
St at eHol der interface. In addition, the standard Convert er and Val i dat or
classes that require state to be saved and restored also implement St at eHol der.

Events

St at eHol der does not originate any standard events.

3-16 JavaServer Faces Specification ¢ February 2004

3.24

3.24.1

3.24.2

ValueHolder

Val ueHol der is an interface that may be implemented by any concrete

Ul Conponent that wishes to support a local value, as well as access data in the
model tier via a val ue bi ndi ng expression, and support conversion between
Stri ng and the model tier data's native data type.

Properties

The following render-independent properties are added by the Val ueHol der

interface:

Name Access Type Description

converter RW Converter The Convert er (if any) that is registered for
this UIComponent.

val ue RW bj ect First consult the local value property of this
component. If non-nul | return it. If the local
value property is nul | , see if we have a
Val ueBi ndi ng for the value property. If so,
return the result of evaluating the property,
otherwise return nul | .

localValue RO Object allows any value set by calling set Val ue() to

be returned, without potentially evaluating a
Val ueBi ndi ng the way that get Val ue() will
do

Like nearly all component properties, the val ue property may have a value binding
expression (see Section 3.1.4 “Value Binding Expressions”) associated with it. If
present (and if there is no val ue set directly on this component), such an expression
is utilized to retrieve a value dynamically from a model tier object during Render
Response Phase of the request processing lifecycle. In addition, for input components,
the value binding is used during Update Model Values phase (on the subsequent
request) to push the possibly updated component value back to the model tier

object.

The Convert er property is used to allow the component to know how to convert
the model type from the Stri ng format provided by the Servlet API to the proper

type in the model tier.

Methods

ValueHolder adds no methods.

Chapter 3 User Interface Component Model 3-17

3.2.4.3 Events

Val ueHol der does not originate any standard events.

3.2.5 EditableValueHolder

The Edi t abl eVal ueHol der interface (extends Val ueHol der, see Section 3.2.4
“ValueHolder) describes additional features supported by editable components,
including Val ueChangeEvent s and Val i dat or s.

3.25.1 Properties

3-18

The following render-independent properties are added by the
Edi t abl eVal ueHol der interface:

Name Access Type Description

immediate RW boolean Flag indicating that conversion and validation
of this component’s value should occur during
Apply Request Values phase instead of Process
Validations phase.

localvalueS RW boolean Flag indicating whether the val ue property

et has been set.

required RW boolean Is the user required to provide a non-empty
value for this component? Default value must
be f al se.

submitted RW oj ect The submitted, unconverted, value of this

Value component. This property should only be set by

the decode() method of this component, or its
corresponding Renderer, or by the validate
method of this component. This property
should only be read by the validate() method of
this component.

JavaServer Faces Specification ¢ February 2004

3.25.2

3.25.3

Name Access Type Description

valid RW boolean A flag indicating whether the local value of this
component is valid (that is, no conversion error
or validation error has occurred).

validator RW MethodBindin A Met hodBi ndi ng that (if not null) must point
g at a method accepting a FacesCont ext and a
Ul | nput, with a return type of voi d. This
method will be called during Process Validations
phase, after any validators that are externally

registered.
valueChan RW MethodBindin A MethodBinding that (if not null) must point
geListener g at a method that accepts a

Val ueChangeEvent, with a return type of
voi d. The specified method will be called
during the Process Validations phase of the
request processing lifecycle, after any externally
registered Val ueChangeli st eners.

Methods

The following methods support the validation functionality performed during the
Process Validations phase of the request processing lifecycle:

public void addVal i dator(Validator validator);

public void renpbveVal i dator(Validator validator);

The addVal i dat or () and renoveVal i dat or () methods are used to register and
deregister additional external Val i dat or instances that will be used to perform
correctness checks on the local value of this component.

If the val i dat or property is not null, the method it points at must be called by the
processVal i dati ons() method, after the val i dat e() method of all registered
Val i dat or s is called.

Events

Edi t abl eVal ueHol der is a source of Val ueChangeEvent events, which are
emitted when the val i dat e() processing of the Process Validations phase of the
request processing lifecycle determines that the previous value of this component
differs from the current value, and all validation checks have passed (i.e. the val i d
property of this component is still true). It includes the following methods to register

Chapter 3 User Interface Component Model 3-19

and deregister Val ueChangelLi st ener instances interested in these events. See
Section 3.4 “Event and Listener Model” for more details on the event and listener
model provided by JSF.

public void addVal ueChangelLi st ener (Val ueChangeli stener |i stener);

public voi d renmpveVal ueChangeli st ener (Val ueChangeli st ener
listener);

In addition to the above listener registration methods, If the

val ueChangelLi st ener property is not nul |, the method it points at must be
called by the br oadcast () method, after the pr ocessVal ueChange() method of
all registered Val ueChangeli st eners is called.

3-20 JavaServer Faces Specification ¢ February 2004

3.3

3.3.1

3.3.2

Conversion Model

This section describes the facilities provided by JavaServer Faces to support type
conversion between server-side Java objects and their (typically String-based)
representation in presentation markup.

Overview

A typical web application must constantly deal with two fundamentally different
viewpoints of the underlying data being manipulated through the user interface:

= The model view—Data is typically represented as Java programming language
objects (often JavaBeans components), with data represented in some native Java
programming language datatype. For example, date and time values might be
represented in the model view as instances of j ava. util . Dat e.

= The presentation view—Data is typically represented in some form that can be
perceived or modified by the user of the application. For example, a date or type
value might be represented as a text string, as three text strings (one each for
month/date/year or one each for hour/minute/second), as a calendar control,
associated with a spin control that lets you increment or decrement individual
elements of the date or time with a single mouse click, or in a variety of other
ways. Some presentation views may depend on the preferred language or locale
of the user (such as the commonly used mm/dd/yy and dd/mm/yy date
formats, or the variety of punctuation characters in monetary amount
presentations for various currencies).

To transform data formats between these views, JavaServer Faces provides an ability
to plug-in an optional Convert er for each Val ueHol der, which has the
responsibility of converting the internal data representation between the two views.
The application developer attaches a particular Convert er to a particular

Val ueHol der by calling set Convert er, passing an instance of the particular
converter. A Convert er implementation may be acquired from the Appl i cati on
instance (see Section 7.1.10 “Object Factories”) for your application.

Converter

JSF provides the j avax. f aces. convert. Convert er interface to define the
behavioral characteristics of a Convert er. Instances of implementations of this
interface are either identified by a converter identifier, or by a class for which the

Chapter 3 User Interface Component Model 3-21

Convert er class asserts that it can perform successful conversions, which can be
registered with, and later retrieved from, an Appl i cati on, as described in
Section 7.1.10 “Object Factories”.

Often, a Convert er will be an object that requires no extra configuration
information to perform its responsibilities. However, in some cases, it is useful to
provide configuration parameters to the Converter (such as a

java. t ext. Dat eFor mat pattern for a Convert er that supports

java. util . Dat e model objects). Such configuration information will generally
may be provided via JavaBeans properties on the Convert er instance.

Convert er implementations should be programmed so that the conversions they
perform are symmetric. In other words, if a model data object is converted to a
String (via a call to the get AsSt ri ng method), it should be possible to call

get AsCbj ect and pass it the converted String as the value parameter, and return a
model data object that is semantically equal to the original one. In some cases, this is
not possible. For example, a converter that uses the formatting facilities provided by
the j ava. t ext . For mat class might create two adjacent integer numbers with no
separator in between, and in this case the Convert er could not tell which digits
belong to which number.

For Ul | nput and Ul Qut put components that wish to explicitly select a Converter
to be used, a new Converter instance of the appropriate type must be created,
optionally configured, and registered on the component by calling

set Convert er () 1. Otherwise, the JSF implementation will automatically create
new instances based on the data type being converted, if such Converter classes
have been registered. In either case, Converter implementations need not be
threadsafe, because they will be used only in the context of a single request
processing thread.

The following two method signatures are defined by the Convert er interface:

public Object get As(bject (FacesContext context, U Conponent
conponent, String value) throws ConverterException;

This method is used to convert the presentation view of a component’s value
(typically a String that was received as a request parameter) into the corresponding
model view. It is called during the Apply Request Values phase of the request
processing lifecycle.

public String getAsString(FacesContext context, U Conponent
conponent, Object val ue) throws ConverterException;

3-22

1. InalJSPenvironment, these steps are performed by a custom tag extending ConverterTag.

JavaServer Faces Specification ¢ February 2004

3.3.3

This method is used to convert the model view of a component’s value (typically
some native Java programming language class) into the presentation view (typically
a String that will be rendered in some markup language. It is called during the
Render Response phase of the request processing lifecycle.

Standard Converter Implementations

JSF provides a set of standard Convert er implementations. A JSF implementation
must register the Dat eTi me and Nunber converters by name with the

Appl i cat i on instance for this web application, as described in the table below. This
ensures that the converters are available for subsequent calls to

Application. createConverter().Each concrete implementation class must
define a static final String constant CONVERTER_| D whose value is the standard
converter id under which this Converter is registered.

The following converter id values must be registered to create instances of the
specified Converter implementation classes:

= javax. faces. Bi gDeci mal -- An instance of
j avax. f aces. convert . Bi gDeci mal Converter (or a subclass of this class).

= javax. faces. Bi gl nt eger -- An instance of

j avax. f aces. convert. Bi gl nt eger Converter (or a subclass of this class).

= javax. f aces. Bool ean -- An instance of
j avax. f aces. convert. Bool eanConvert er (or a subclass of this class).

= javax. faces. Byt e -- An instance of
j avax. f aces. convert. Byt eConverter (or asubclass of this class).

= javax. faces. Character -- An instance of
j avax. faces. convert. Character Converter (or asubclass of this class).

=« javax. faces. Dat eTi me -- An instance of
j avax. f aces. convert. Dat eTi meConverter (or a subclass of this class).

= javax. faces. Doubl e -- An instance of
j avax. f aces. convert . Doubl eConverter (or asubclass of this class).

= javax. faces. Fl oat -- An instance of
j avax. f aces. convert . Fl oat Convert er (or a subclass of this class).

= javax. faces. | nteger -- An instance of
j avax. faces. convert. | nt eger Converter (or a subclass of this class).

= javax. faces. Long -- An instance of
j avax. f aces. convert. LongConverter (or asubclass of this class).

= javax. faces. Nunber -- An instance of
j avax. f aces. convert. Nunmber Converter (or a subclass of this class).

= javax. faces. Short -- An instance of
j avax. f aces. convert. Short Convert er (or a subclass of this class).

Chapter 3 User Interface Component Model ~ 3-23

See the Javadocs for these classes for a detailed description of the conversion
operations they perform, and the configuration properties that they support.

A JSF implementation must register converters for all of the following classes using
the by-type registration mechanism:

= java.l ang. Bool ean, and j ava. | ang. Bool ean. TYPE -- An instance of
javax. faces. convert. Bool eanConvert er (or a subclass of this class).

= java.l ang. Byte, and j ava. | ang. Byt e. TYPE -- An instance of
javax. faces. convert. Byt eConverter (or asubclass of this class).

= java.l ang. Character, andjava.l ang. Charact er. TYPE -- An instance of
javax. faces. convert. Character Converter (or asubclass of this class).

= java.l ang. Doubl e, and j ava. | ang. Doubl e. TYPE -- An instance of
javax. f aces. convert . Doubl eConverter (or asubclass of this class).

= java.l ang. Fl oat, and j ava. | ang. Fl oat . TYPE -- An instance of
javax. f aces. convert . Fl oat Convert er (or a subclass of this class).

= java.lang. I nteger, and java.l ang. I nteger. TYPE -- An instance of
javax. faces. convert. | ntegerConverter (or asubclass of this class).

= java.l ang. Long, and j ava. | ang. Long. TYPE -- An instance of
javax. faces. convert.LongConverter (or asubclass of this class).

= java.l ang. Short,andj ava.l ang. Short. TYPE -- An instance of
javax. faces. convert. Short Convert er (or a subclass of this class).

See the Javadocs for these classes for a detailed description of the conversion
operations they perform, and the configuration properties that they support.

3-24 JavaServer Faces Specification ¢ February 2004

3.4

3.4.1

Event and Listener Model

This section describes how JavaServer Faces provides support for generating and
handling user interface events.

Overview

JSF implements a model for event notification and listener registration based on the
design patterns in the JavaBeans Specification, version 1.0.1. This is similar to the
approach taken in other user interface toolkits, such as the Swing Framework
included in the JDK.

A Ul Conrponent subclass may choose to emit events that signify significant state
changes, and broadcast them to listeners that have registered an interest in receiving
events of the type indicated by the event’s implementation class. At the end of
several phases of the request processing lifecycle, the JSF implementation will
broadcast all of the events that have been queued to interested listeners.The
following UML class diagram illustrates the key players in the event model.

Chapter 3 User Interface Component Model 3-25

3-26

UICamponent 22interfacer> Lifecycle
java.util.Eventlistenear
s T Rl)

<<intefaces>

FacesListener

<<intefaces>

FhaseListener

T

<<intefaces>

ActionListener WalueChangeLlistener

Z<interfacer=

D.:!:

HICommand

EditableWalueHolder

java.util.EventObject

i

b

FhaseEvent FacesEvent
WalueChangeBEwent ActionEwvent

JavaServer Faces Specification ¢ February 2004

3.4.2

Event Classes

All events that are broadcast by JSF user interface components must extend the

j avax. f aces. event . FacesEvent abstract base class. The parameter list for the
constructor(s) of this event class must include a Ul Conponent , which identifies the
component from which the event will be broadcast to interested listeners. The source
component can be retrieved from the event object itself by calling get Conrponent .
Additional constructor parameters and/or properties on the event class can be used
to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event
classes typically have a class name that ends with Event . It is recommended that
application event classes follow this naming pattern as well.

The component that is the source of a FacesEvent can be retrieved via this method:

public Ul Conponent get Conponent () ;

FacesEvent has a phasel d property (of type Phasel d, see Section 3.4.4 “Phase
Identifiers”) used to identify the request processing lifecycle phase after which the
event will be delivered to interested listeners.

public Phaseld get Phaseld();

public voi d setPhasel d(Phasel d phaseld);

If this property is set to Phaseld. ANY_PHASE (which is the default), the event will
be delivered at the end of the phase in which it was enqueued.

To facilitate general management of event listeners in JSF components, a
FacesEvent implementation class must support the following methods:

public abstract bool ean i sAppropriatelistener(FacesLi stener
listener);

public abstract void processListener(FacesLi stener |istener);

The i sAppr opri at eLi st ener () method returns true if the specified

FaceslLi st ener is a relevant receiver of this type of event. Typically, this will be
implemented as a simple “instanceof” check to ensure that the listener class
implements the FacesLi st ener subinterface that corresponds to this event class

Chapter 3 User Interface Component Model 3-27

3.4.3

The processlLi st ener () method must call the appropriate event processing
method on the specified listener. Typically, this will be implemented by casting the
listener to the corresponding FacesLi st ener subinterface and calling the
appropriate event processing method, passing this event instance as a parameter.

public void queue();

The above convenience method calls the queueEvent () method of the source
U Conponent for this event, passing this event as a parameter.

JSF includes two standard FacesEvent subclasses, which are emitted by the
corresponding standard Ul Conponent subclasses described in the following
chapter.

= Acti onEvent —Emitted by a U Command component when the user activates the
corresponding user interface control (such as a clicking a button or a hyperlink).

» Val ueChangeEvent —Emitted by a Ul | nput component (or appropriate
subclass) when a new local value has been created, and has passed all validations.

Listener Classes

For each event type that may be emitted, a corresponding listener interface must be
created, which extends the j avax. f aces. event . FacesLi st ener interface. The
method signature(s) defined by the listener interface must take a single parameter,
an instance of the event class for which this listener is being created. A listener
implementation class will implement one or more of these listener interfaces, along
with the event handling method(s) specified by those interfaces. The event handling
methods will be called during event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener
interfaces have a class name based on the class hame of the event being listened to,
but with the word Li st ener replacing the trailing Event of the event class name
(thus, the listener for a FooEvent would be a FooLi st ener). It is recommended
that application event listener interfaces follow this naming pattern as well.

Corresponding to the two standard event classes described in the previous section,
JSF defines two standard event listener interfaces that may be implemented by
application classes:

= ActionLi st ener —a listener that is interested in receiving Act i onEvent events.
= Val ueChangeli st ener —a listener that is interested in receiving
Val ueChangeEvent events.

3-28 JavaServer Faces Specification ¢ February 2004

3.4.4

3.4.5

Phase Identifiers

As described in Section 2.3 “Common Event Processing”, event handling occurs at
the end of several phases of the request processing lifecycle. In addition, a particular
event must indicate, through the value it returns from the get Phasel d() method,
the phase in which it wishes to be delivered. This indication is done by returning an
instance of j avax. f aces. event . Phasel d. The class defines a typesafe
enumeration of all the legal values that may be returned by get Phasel d(). In
addition, a special value (Phasel d. ANY_PHASE) may be returned to indicate that
this event wants to be delivered at the end of the phase in which it was queued.

Listener Registration

A concrete Ul Conponent subclass that emits events of a particular type must
include public methods to register and deregister a listener implementation. In order
to be recognized by development tools, these listener methods must follow the
naming patterns defined in the JavaBeans Specification. For example, for a component
that emits FooEvent events, to be received by listeners that implement the

FoolLi st ener interface, the method signatures (on the component class) must be:

public voi d addFooli st ener (FooLi stener |istener);
public FoolLi stener[] getFoolListeners();

public void renmoveFoolLi st ener (FoolLi stener |i stener);

The application (or other components) may register listener instances at any time, by
calling the appropriate add method. The set of listeners associated with a component
is part of the state information that JSF saves and restores. Therefore, listener
implementation classes must have a public zero-argument constructor, and may
implement St at eHol der (see Section 3.2.3 “StateHolder”) if they have internal state
information that needs to be saved and restored.

The Ul Command and Ul | nput standard component classes include listener
registration and deregistration methods for event listeners associated with the event
types that they emit. The Ul | nput methods are also inherited by Ul | nput
subclasses, including Ul Sel ect Bool ean, Ul Sel ect Many, and Ul Sel ect One.

Chapter 3 User Interface Component Model 3-29

3.4.6

3.4.7

Event Queueing

During the processing being performed by any phase of the request processing
lifecycle, events may be created and queued by calling the queueEvent () method
on the source Ul Conmponent instance, or by calling the queue() method on the
FacesEvent instance itself. As described in Section 2.3 “Common Event
Processing”, at the end of certain phases of the request processing lifecycle, any
gueued events will be broadcast to interested listeners in the order that the events
were originally queued.

Deferring event broadcast until the end of a request processing lifecycle phase
ensures that the entire component tree has been processed by that state, and that
event listeners all see the same consistent state of the entire tree, no matter when the
event was actually queued.

Event Broadcasting

As described in Section 2.3 “Common Event Processing”, at the end of each request
processing lifecycle phase that may cause events to be queued, the lifecycle
management method of the Ul Vi ewRoot component at the root of the component
tree will iterate over the queued events and call the br oadcast () method on the
source component instance to actually notify the registered listeners. See the
Javadocs of the br oadcast () method for detailed functional requirements.

During event broadcasting, a listener processing an event may:

= Examine or modify the state of any component in the component tree.

= Add or remove components from the component tree.

= Add messages to be returned to the user, by calling addMessage on the
FacesCont ext instance for the current request.

= Queue one or more additional events, from the same source component or a
different one, for processing during the current lifecycle phase.

= Throw an Abort Processi ngExcept i on, to tell the JSF implementation that no
further broadcast of this event, or any further events, should take place.

= Call render Response() on the FacesCont ext instance for the current request.
This tells the JSF implementation that, when the current phase of the request
processing lifecycle has been completed, control should be transferred to the
Render Response phase.

= Call responseConpl et e() on the FacesCont ext instance for the current
request. This tells the JSF implementation that, when the current phase of the
request processing lifecycle has been completed, processing for this request
should be terminated (because the actual response content has been generated by
some other means).

3-30 JavaServer Faces Specification ¢ February 2004

3.5

3.5.1

3.5.2

3.5.3

Validation Model

This section describes the facilities provided by JavaServer Faces for validating user
input.

Overview

JSF supports a mechanism for registering zero or more validators on each

Edi t abl eVal ueHol der component in the component tree. A validator’s purpose is
to perform checks on the local value of the component, during the Process Validations
phase of the request processing lifecycle. In addition, a component may implement
internal checking in a val i dat e method that is part of the component class.

Validator Classes

A validator must implement the j avax. f aces. val i dat or. Val i dat or interface,
which contains a val i dat e method signature. General purpose validators may
require configuration values in order to define the precise check to be performed.
For example, a validator that enforces a maximum length might wish to support a
configurable length limit. Such configuration values are typically implemented as
JavaBeans component properties, and/or constructor arguments, on the Val i dat or
implementation class. In addition, a validator may elect to use generic attributes of
the component being validated for configuration information.

JSF includes implementations of several standard validators, as described in
Section 3.5.5 “Standard Validator Implementations”.

Validation Registration

The Edi t abl eVal ueHol der interface (implemented by Ul | nput) includes an
addVal i dat or method to register an additional validator for this component, and a
renoveVal i dat or method to remove an existing registration, as well as the ability
to add a Met hodBi ndi ng that points to a method that adheres to the val i dat e
signature in the Val i dat or interface.

Chapter 3 User Interface Component Model 3-31

3.5.4

3.5.5

The application (or other components) may register validator instances at any time,
by calling the addVal i dat or method. The set of validators associated with a
component is part of the state information that JSF saves and restores. Validators
that wish to have configuration properties saved and restored must also implement
St at eHol der (see Section 3.2.3 “StateHolder”).

Validation Processing

During the Process Validations phase of the request processing lifecycle (as described
in Section 2.2.3 “Process Validations”), the JSF implementation will ensure that the
val i dat e() method of each registered Val i dat or, the method referenced by the
val i dat or property (if any), and the val i dat e() method of the component itself,
is called for each Edi t abl eVal ueHol der component in the component tree,
regardless of the validity state of any of the components in the tree. The
responsibilities of each val i dat e() method include:

= Perform the check for which this validator was registered.

= If violation(s) of the correctness rules are found, create a FacesMessage instance
describing the problem, and create a Val i dat or Except i on around it, and throw
the Val i dat or Excepti on. The Edi t abl eVal ueHol der on which this
validation is being performed will catch this exception, set val i d to f al se for
that instance, and cause the message to be added to the FacesCont ext .

In addition, a val i dat e() method may:

= Examine or modify the state of any component in the component tree.

= Add or remove components from the component tree.

= Queue one or more events, from the same component or a different one, for
processing during the current lifecycle phase.

The render-independent property r equi r ed is a shorthand for the function of a
“required” validator. If the value of this property is true and the component has no
value, the component is marked invalid and a message is added to the

FacesCont ext instance. See Section 2.5.2.4 “Localized Application Messages” for
details on the message.

Standard Validator Implementations

JavaServer Faces defines a standard suite of Val i dat or implementations that
perform a variety of commonly required checks. In addition, component writers,
application developers, and tool providers will often define additional Val i dat or
implementations that may be used to support component-type-specific or
application-specific constraints. These implementations share the following common
characteristics:

3-32 JavaServer Faces Specification ¢ February 2004

Standard Val i dat or s accept configuration information as either parameters to
the constructor that creates a new instance of that Val i dat or, or as JavaBeans
component properties on the Val i dat or implementation class.

To support internationalization, FacesMessage instances should be created. The
message identifiers for such standard messages are also defined by manifest
String constants in the implementation classes. It is the user’s responsibility to
ensure the content of a FacesMessage instance is properly localized, and
appropriate parameter substitution is performed, perhaps using

j ava.text. MessageFor mat .

Unless otherwise specified, components with a nul | local val ue cause the
validation checking by this Val i dat or to be skipped. If a component should be
required to have a non-nul | value, a component attribute with the name

requi r ed and the value t r ue must be added to the component in order to
enforce this rule.

Concrete Validator implementations must define a public static final String
constant VALIDATOR_ID, whose value is the standard identifier under which the
JSF implementation must register this instance (see below).

Please see Section 2.5.2.4 “Localized Application Messages” for the list of message
identifiers.

The following standard Val i dat or implementations (in the
j avax. f aces. val i dat or package) are provided:

Doubl eRangeVal i dat or —Checks the local value of a component, which must
be of any numeric type, against specified maximum and/or minimum values.
Standard identifier is “javax.faces.DoubleRange”.

Lengt hVval i dat or —Checks the length (i.e. number of characters) of the local
value of a component, which must be of type St ri ng, against maximum and/or
minimum values. Standard identifier is “javax.faces.Length”.

LongRangeVal i dat or —Checks the local value of a component, which must be
of any numeric type convertible to | ong, against maximum and/or minimum
values. Standard identifier is “javax.faces.LongRange”.

Chapter 3 User Interface Component Model 3-33

CHAPTER 4

Standard User Interface
Components

In addition to the abstract base class Ul Conponent and the abstract base class

Ul Conponent Base, described in the previous chapter, JSF provides a number of
concrete user interface component implementation classes that cover the most
common requirements. In addition, component writers will typically create new
components by subclassing one of the standard component classes (or the

Ul Conponent Base class). It is anticipated that the number of standard component
classes will grow in future versions of the JavaServer Faces specification.

Each of these classes defines the render-independent characteristics of the
corresponding component as JavaBeans component properties. Some of these
properties may be value binding expressions that indirectly point to values related to
the current request, or to the properties of model data objects that are accessible
through request-scope, session-scope, or application-scope attributes. In addition,
the render er Type property of each concrete implementation class is set to a
defined value, indicating that decoding and encoding for this component will (by
default) be delegated to the corresponding Render er.

4.1

Standard User Interface Components

This section documents the features and functionality of the standard Ul Conponent
classes and implementations that are included in JavaServer Faces.

The implementation for each standard U Conponent class must specify two public
static final String constant values:

= COVPONENT_TYPE -- The standard component type identifier under which the
corresponding component class is registered with the Appl i cat i on object for
this application. This value may be used as a parameter to the
creat eConponent () method.

41

= COVPONENT_FAM LY -- The standard component family identifier used to select
an appropriate Renderer for this component.

For all render-independent properties in the following sections (except for i d,
scope, and var) the value may either be a literal, or it may come from a value
binding expression. Please see Chapter 5 “Value Binding Expressions” for more
information.

4-2 JavaServer Faces Specification ¢ February 2004

The following UML class diagram shows the classes and interfaces in the package
j avax. f aces. conmponent .

Chapter 4 Standard User Interface Components ~ 4-3

FIGURE 4-1 The j avax. f aces. conponent package

“dinterfacerx “dinterfaces= 4einterface==

ActionSource StateHolder MamingContianer

<ginterface=> ‘{h‘ A{F\ f‘%" ."% 4\

WalueHolder

iy

“dinterfacess

UICampanent

i z

<<interfaces> I

Editable'alueHalder UIComponentBase

[
(I
(I
[
(I
(I
[
I
I
| I
I
[
[
(I
I
[
[

|
|
|
|
|
|
|
|
s \
I i .
| | 5 -
I | u L e
I | L ' “
| | 5 | | "\\
o :
| I Ulzraphic UICammand 1L ata UIHamingContainer UIFarm
| |
| |
| |
| |
| |
o]
| |
I | UIFanel UISelectitem UISelectitems UIParameter
| |
| |
| |
| |
| |
| |
I 1
: UI0utput UliemR oot Ulhdessage Ulhdeszages UICalumn
|
|
|
|
|
l

i

Ulinput UISelectOne

..;:]_
o
UlSelecthany

UI5electBoalean

4-4 JavaServer Faces Specification « February 2004

4.1.1 UlIColumn

Ul Col um (extends Ul Conponent Base) is a component that represents a single
column of data with a parent Ul Dat a component. The child components of a

Ul Col umm wiill be processed once for each row in the data managed by the parent
Ul Dat a.

41.1.1 Component Type

The standard component type for Ul Col unm components is “javax.faces.Column”.

41.1.2 Properties

Ul Col umm adds the following render-independent properties:

Name Access Type Description

f oot er RW U Conponent Convenience methods to get and set the
“footer” facet for this component.

header RW UlComponent Convenience methods to get and set the
“header” facet for this component.

Ul Col um specializes the behavior of render-independent properties inherited from
the parent class as follows:

» The default value of the f am | y property must be set to “javax.faces.Column”.
= The default value of the r ender er Type property must be set to nul | .

41.1.3 Methods

Ul Col umm adds no new processing methods.

4114 Events

Ul Col umm adds no new event handling methods.

Chapter 4 Standard User Interface Components ~ 4-5

4.1.2

4121

4.1.2.2

4.1.2.3

41.2.4

UlCommand
U Command (extends Ul Conponent Base; implements Acti onSour ce) is a control
which, when activated by the user, triggers an application-specific “command” or

“action.” Such a component is typically rendered as a push button, a menu item, or
a hyperlink.

Component Type

The standard component type for Ul Cormand components is “javax.faces.Command”.

Properties

U Commrand adds the following render-independent properties.

Name Access Type Description
val ue RW oj ect The value of this component, normally used as
a label.

See Section 3.2.1 “ActionSource” for information about properties introduced by the
implemented classes.

U Conmand components specialize the behavior of render-independent properties
inherited from the parent class as follows:
= The default value of the f am | y property must be set to “javax.faces.Command”.

» The default value of the r ender er Type property must be set to
“javax.faces.Button”.

Methods

U Commrand adds no new processing methods. See Section 3.2.1 “ActionSource” for
information about methods introduced by the implemented classes.

Events

U Conmand adds no new event processing methods. See Section3.2.1
“ActionSource” for information about event handling introduced by the
implemented classes.

4-6 JavaServer Faces Specification ¢ February 2004

4.1.3

4131

4.1.3.2

UlData

Ul Dat a (extends Ul Conponent Base;

implements Nam ngCont ai er) is a

component that represents a data binding to a collection of data objects represented
by a DataModel instance (see Section 4.2.1 “DataModel”). Only children of type
Ul Col um should be processed by renderers associated with this component.

Component Type

The standard component type for Ul Dat a components is “javax.faces.Data”

Properties

Ul Dat a adds the following render-independent properties.

Name Access Type Description

first RW int One-relative row number of the first row in the
underlying data model to be displayed, or zero
to start at the beginning of the data model.

f oot er RW Ul Conponent Convenience methods to get and set the
“footer” facet for this component.

header RW UlComponent Convenience methods to get and set the
“header” facet for this component.

rowCount RO int The number of rows in the underlying
Dat aMbdel , which can be -1 if the number of
rows is unknown.

rowAvailab RO boolean Return t r ue if there is row data available for

le the currently specified r ow ndex; else return
fal se.

rowData RO Object The data object representing the data for the
currently selected r om ndex value.

rowlIndex RW int Zero-relative index of the row currently being

accessed in the underlying Dat aMbdel , or -1
for no current row. See below for further
information.

Chapter 4 Standard User Interface Components 4-7

Name Access Type Description

rows RW int The number of rows (starting with the one
identified by the f i r st property) to be
displayed, or zero to display the entire set of
available rows.

value RW Object The Dat aMbdel instance representing the data
to which this component is bound, or a
collection of data for which a Dat aMbdel
instance is synthesized. See below for more
information.

var RW String The request-scope attribute (if any) under
which the data object for the current row will
be exposed when iterating.

See Section 3.2.2 “NamingContainer” for information about properties introduced by
the implemented classes.

Ul Dat a specializes the behavior of render-independent properties inherited from
the parent component as follows:
» The default value of the f am | y property must be set to “javax.faces.Data”.
= The default value of the r ender er Type property must be set to
“j avax. faces. Tabl e”.

The current value identified by the val ue property is normally of type Dat aivbdel .
However, a Dat aMbdel wrapper instance must automatically be provided by the JSF
implementation if the current value is of one of the following types:

= java.util.List

= Array of java.util. Object

= java.sqgl.Result Set (which therefore also supports j avax. sql . RowSet)

= javax.servlet.jsp.jstl.sqgl.Result

= Any other Java object is wrapped by a Dat aMbdel instance with a single row.
Convenience implementations of Dat aMbdel are provided in the

j avax. f aces. nodel package for each of the above (see Section 4.2.1.4 “Concrete

Implementations”), and must be used by the Ul Dat a component to create the
required Dat aMbdel wrapper.

4.1.3.3 Methods

Ul Dat a adds no new processing methods. See Section 3.2.2 “NamingContainer” for
information about methods introduced by the implemented classes.

4-8 JavaServer Faces Specification ¢ February 2004

41.3.4

UlData specializes the behavior of the get Cl i ent | d() method inherited from its
parent, in order to create a client identifier that includes the current rowlndex value
(if it is not -1). Because Ul Dat a is a Nani ngCont ai ner, this makes it possible for
rendered client identifiers of child components to be row-specific.

Ul Dat a specializes the behavior of the queueEvent () method inherited from its
parent, to wrap the specified event (bubbled up from a child component) in a private
wrapper containing the current rowlndex value, so that this rowlndex can be reset
when the event is later broadcast.

Ul Dat a specializes the behavior of the br oadcast () method to unwrap the private
wrapper (if this event was wrapped), and call set Rowl ndex() to re-establish the
context in which the event was queued, followed by delivery of the event.

Ul Dat a specializes the behavior of the processDecodes(),
processVal i dat ors(), and processUpdat es() methods inherited from its
parent as follows:

= For each of these methods, the Ul Dat a implementation must iterate over each
row in the underlying data model, starting with the row identified by the fi r st
property, for the number of rows indicated by the r ows property, by calling the
set Rowl ndex() method.

= When iteration is complete, set the r ow ndex property of this component, and of
the underlying Dat aMbdel , to zero, and remove any request attribute exposed
via the var property.

Events

Ul Dat a adds no new event handling methods. SeeSection 3.2.2 “NamingContainer”
for information about event handling introduced by the implemented classes.

Chapter 4 Standard User Interface Components ~ 4-9

414

4141

4.1.4.2

4143

UlIForm

U For m(extends Ul Conponent Base; implements Nani ngCont ai ner) is a
component that represents an input form to be presented to the user, and whose
child components (among other things) represent the input fields to be included
when the form is submitted.

The encodeEnd() method of the renderer for Ul For mmust call
Vi ewHandl er. wri teSt at e() before writing out the markup for the closing tag of
the form.This allows the state for multiple forms to be saved.

Component Type

The standard component type for Ul For mcomponents is “javax.faces.For ni’.

Properties
U For madds no new render-independent properties.

U For mspecializes the behavior of render-independent properties inherited from
the parent component as follows:
» The default value of the f am | y property must be set to “j avax. f aces. For ni’.

= The default value of the r ender er Type property must be set to
“j avax. f aces. For nt’.

Methods.

public boolean isSubmtted();
public void setSubmtted(bool ean subm tted)

The set Subni tt ed() method of each Ul For minstance in the view must be called
during the Apply Request Values phase of the request processing lifecycle, during the
processing performed by the Ul Conponent . decode() method. If this Ul For m
instance represents the form actually being submitted on this request, the parameter
must be set to t r ue; otherwise, it must be set to f al se. The standard
implementation of Ul For mdelegates the responsibility for calling this method to the
Render er associated with this instance.

4-10 JavaServer Faces Specification ¢ February 2004

4144

The value of a Ul For m s subni t t ed property must not be saved as part of its state.

public void processDecodes(FacesContext context);

Override Ul Conponent . pr ocessDecodes() to ensure that the submi tt ed
property is set for this component. If the subni tt ed property decodes to false, do
not process the children and return immediately.

public void processVali dators(FacesContext context);
public void processUpdat es(FacesCont ext context);

Override processVal i dat or s() and processUpdat es() to ensure that the
children of this Ul For minstance are only processed if i sSubni tt ed() returns true.

public void saveState(FacesCont ext context);

The saveSt at e() method of UIForm must call set Submi tt ed(f al se) before
calling super. saveState().

Events

Ul For madds no new event handling methods.

Chapter 4 Standard User Interface Components ~ 4-11

4.1.5 UlGraphic

U Graphi c (extends Ul Conponent Base) is a component that displays a graphical
image to the user. The user cannot manipulate this component; it is for display
purposes only.

415.1 Component Type

The standard component type for Ul Gr aphi ¢ components is “javax.faces.Gr aphi c”.

4.15.2 Properties

The following render-independent properties are added by the UlGraphic

component:

Name Access Type Description

ur | RW String The URL of the image to be displayed. If this
URL begins with a/ character, it is assumed to
be relative to the context path of the current
web application. This property is a typesafe
alias for the val ue property, so that the actual
URL to be used can be acquired via a value
binding expression.

val ue RW oj ect The value of this component, normally used as

a URL.

U Graphi c specializes the behavior of render-independent properties inherited
from the parent component as follows:

» The default value of the f am | y property must be set to “javax.faces.Graphic”.

= The default value of the r ender er Type property must be set to
“j avax. faces. | mage”.

41.5.3 Methods

U Graphi ¢ adds no new processing methods.

4154 Events

U Graphi c does not originate any standard events.

4-12 JavaServer Faces Specification ¢ February 2004

4.1.6

416.1

4.1.6.2

4.1.6.3

Ullnput

Ul | nput (extends Ul Cut put , implements Edi t abl eVal ueHol der) is a component
that both displays the current value of the component to the user (as Ul Qut put
components do), and processes request parameters on the subsequent request that
need to be decoded.

Component Type

The standard component type for Ul | nput components is “j avax. f aces. | nput ”.

Properties

Ul | nput adds no new render-independent properties. See Section 3.2.5
“EditableValueHolder” for information about properties introduced by the
implemented interfaces.

Ullnput specializes the behavior of render-independent properties inherited from
the parent component as follows:

= The default value of the f am | y property must be set to “j avax. f aces. | nput ”.

= The default value of the r ender er Type property must be set to
“j avax. faces. Text ”.

= The Converter specified by the convert er property (if any) must also be used
to perform String->Object conversions during decoding.

= If the val ue property has an associated Val ueBi ndi ng, the set Val ue()
method of that Val ueBi ndi ng will be called during the Update Model Values
phase of the request processing lifecycle to push the local value of the component
back to the corresponding model bean property.

Methods

The following method is used during the Update Model Values phase of the request
processing lifecycle, to push the converted (if necessary) and validated (if necessary)
local value of this component back to the corresponding model bean property.

public voi d updat eModel (FacesCont ext context);

Chapter 4 Standard User Interface Components 4-13

41.6.4

The following method is over-ridden from Ul Conponent :

public voi d broadcast (FacesEvent event);

In addition to the default

U Conponent . br oadcast (j avax. f aces. event . FacesEvent) processing, pass
the Val ueChangeEvent being broadcast to the method referenced by the

val ueChangeli st ener property (if any).

public void validate(FacesContext context);

Perform the algorithm described in the javadoc to validate the local value of this
U | nput.

Events

All events are described in Section 3.2.5 “EditableVValueHolder™.

4-14 JavaServer Faces Specification ¢ February 2004

4.1.7

41.7.1

4.1.7.2

UlMessage

Ul Message (extends Ul Conponent Base) encapsulates the rendering of error
message(s) related to a specified input component.

Component Type

The standard component type for U Message components is
“j avax. f aces. Message”.

Properties

The following render-independent properties are added by the UIMessage
component:

Name Access Type Description

for RW String Identifier of the component for which to render
error messages. If this component is within the
same NamingContainer as the target
component, this must be the component
identifier. Otherwise, it must be an absolute
component identifier (starting with “:””). See the
UlComponent.findComponent() Javadocs for
more information.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should
be rendered. Default value is “true”.

showSum RW boolean Flag indicating whether the “summary”

mary property of messages for the specified
component should be rendered. Default value
is “false”.

Ul Message specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f am | y property must be set to
“j avax. f aces. Message”.

= The default value of the r ender er Type property must be set to
“j avax. f aces. Message”.

Chapter 4 Standard User Interface Components 4-15

41.7.3 Methods.

U Message adds no new processing methods.

4.1.7.4 Events

U Message adds no new event handling methods.

4-16 JavaServer Faces Specification ¢ February 2004

4.1.8 UlMessages

Ul Message (extends Ul Conponent Base) encapsulates the rendering of error
message(s) not related to a specified input component, or all enqueued messages.

4181 Component Type

The standard component type for U Message components is
“j avax. f aces. Messages”.

4.1.8.2 Properties

The following render-independent properties are added by the UlMessages

component:

Name Access Type Description

gl obal On RW bool ean Flag indicating whether only messages not

ly associated with any specific component should
be rendered. If not set, all messages will be
rendered. Default value is “false”.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should
be rendered. Default value is “false”.

showSum RW boolean Flag indicating whether the “summary”

mary property of messages for the specified
component should be rendered. Default value
is “true”.

Ul Messages specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f am | y property must be set to
“j avax. f aces. Messages”.

= The default value of the r ender er Type property must be set to
“j avax. f aces. Messages”.

4.1.8.3 Methods.

Ul Messages adds no new processing methods.

Chapter 4 Standard User Interface Components ~ 4-17

4.1.8.4 Events

U Messages adds no new event handling methods.

4-18 JavaServer Faces Specification ¢ February 2004

4.1.9

4191

4.19.2

4193

4194

UIOutput

Ul Cut put (extends Ul Conponent Base; implements Val ueHol der) is a
component that has a value, optionally retrieved from a model tier bean via a value
binding expression (see Section 5.1 “Value Binding Expressions”), that is displayed
to the user. The user cannot directly modify the rendered value; it is for display
purposes only:

Component Type

The standard component type for Ul Qut put components is “javax.faces.Qut put ™.

Properties

Ul Qut put adds no new render-independent properties. See Section 3.2.4
“ValueHolder” for information about properties introduced by the implemented
classes.

Ul Cut put specializes the behavior of render-independent properties inherited from
the parent component as follows:

= The default value of the f am | y property must be set to “javax.faces.Output”.

= The default value of the r ender er Type property must be set to
“javax.faces.Text”.

Methods

Ul Qut put adds no new processing methods. See Section 3.2.4 “ValueHolder” for
information about methods introduced by the implemented interfaces.

Events

UlOutput does not originate any standard events. See Section 3.2.4 “ValueHolder”
for information about events introduced by the implemented interfaces.

Chapter 4 Standard User Interface Components 4-19

4.1.10

41.10.1

4.1.10.2

4.1.10.3

4.1.10.4

UlPanel

U Panel (extends Ul Conponent Base) is a component that manages the layout of
its child components.

Component Type

The standard component type for Ul Panel components is “j avax. f aces. Panel ”.

Properties
U Panel adds no new render-independent properties.

Ul Panel specializes the behavior of render-independent properties inherited from
the parent component as follows:

= The default value of the f am | y property must be set to “j avax. f aces. Panel ”.
= The default value of the r ender er Type property must be set to nul | .

Methods

U Panel adds no new processing methods.

Events

U Panel does not originate any standard events

4-20 JavaServer Faces Specification ¢ February 2004

4111

41111

41.11.2

41.11.3

4.1.11.4

UlParameter

Ul Par anet er (extends Ul Conponent Base is a component that represents an
optionally named configuration parameter that affects the rendering of its parent
component. Ul Par amet er components do not generally have rendering behavior of
their own.

Component Type

The standard component type for Ul Par amet er components is
“j avax. f aces. Paranet er”.

Properties

The following render-independent properties are added by the Ul Par anet er
component:

Name Access Type Description
name RW String The optional name for this parameter.
value RW Object The value for this parameter.

Ul Par anet er specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f am | y property must be set to “javax.faces.Parameter”.
= The default value of the r ender er Type property must be set to nul | .

Methods

Ul Par anet er adds no new processing methods.

Events

Ul Par anet er does not originate any standard events

Chapter 4 Standard User Interface Components 4-21

4.1.12 UlSelectBoolean

Ul Sel ect Bool ean (extends Ul | nput) is a component that represents a single
boolean (tr ue or f al se) value. It is most commonly rendered as a checkbox.

4.1.12.1 Component Type

The standard component type for Ul Sel ect Bool ean components is
“javax.faces.Sel ect Bool ean”.

4.1.12.2 Properties

The following render-independent properties are added by the Ul Sel ect Bool ean

component:
Name Access Type Description
sel ected RW bool ean The selected state of this component. This

property is a typesafe alias for the val ue
property, so that the actual state to be used can
be acquired via a value binding expression.

Ul Sel ect Bool ean specializes the behavior of render-independent properties
inherited from the parent component as follows:

= The default value of the f am | y property must be set to
“j avax. f aces. Sel ect Bool ean”.

= The default value of the r ender er Type property must be set to
“j avax. f aces. Checkbox™.

41.12.3 Methods

Ul Sel ect Bool ean adds no new processing methods.

4.1.12.4 Events

Ul Sel ect Bool ean inherits the ability to send Val ueChangeEvent events from its
parent Ul | nput component.

4-22 JavaServer Faces Specification ¢ February 2004

4.1.13

41.13.1

4.1.13.2

UlSelectltem

Ul Sel ect | t em(extends Ul Conponent Base) is a component that may be nested
inside a Ul Sel ect Many or Ul Sel ect One component, and represents exactly one
Sel ect | t eminstance in the list of available options for that parent component.

Component Type

The standard component type for Ul Sel ect | t emcomponents is
“j avax. faces. Sel ect I t ent’.

Properties

The following render-independent properties are added by the Ul Sel ectltem
component:

Name Access Type Description

i tenDesc RW String The optional description of this available
ription selection item. This may be useful for tools.
itemDisabl RW boolean Flag indicating that any synthesized

ed Sel ect | t emobject should have its di sabl ed

property settotr ue.

itemLabel RW String The localized label that will be presented to the
user for this selection item.

itemValue RW Object The server-side value of this item, of the same
basic data type as the parent component’s
value. If the parent component type’s value is a
value binding expression that points at a
primitive, this value must be of the
corresponding wrapper type.

value RW javax.facesmo The Sel ect | t eminstance associated with this
del.Selectitem component.

Ul Sel ect | t emspecializes the behavior of render-independent properties inherited
» The default value of the f am | y property must be set to “javax.faces.Selectltem”.
= The default value of the r ender er Type property must be set to nul | .

= If the val ue property is non-nul | , it must contain a Sel ect | t eminstance used
to configure the selection item specified by this component.

Chapter 4 Standard User Interface Components 4-23

= If the val ue property is a value binding expression, it must point at a
Sel ect | t eminstance used to configure the selection item specified by this
component.

= If the val ue property is nul | , and there is no corresponding value binding
expression, the i t enDescri ption,itenDi sabl ed, itenLabel and
i t emval ue properties must be used to construct a new Sel ectltem
representing the selection item specified by this component.

4.1.13.3 Methods

Ul Sel ect | t emadds no new processing methods.

4.1.13.4 Events

Ul Sel ect | t emdoes not originate any standard events.

4-24 JavaServer Faces Specification ¢ February 2004

4.1.14

41141

4.1.14.2

4.1.14.3

UlSelectltems

Ul Sel ect It ens (extends Ul Conponent Base) is a component that may be nested
inside a Ul Sel ect Many or Ul Sel ect One component, and represents zero or more
Sel ect | t eminstances for adding selection items to the list of available options for
that parent component.

Component Type

The standard component type for Ul Sel ect | t ems components is
“javax.faces.Sel ect It ens”.

Properties

The following render-independent properties are added by the Ul Sel ect | tens
component:

Name Access Type Description
value RW See below The Sel ect | t eminstances associated with this
component.

Ul Sel ect | t ens specializes the behavior of render-independent properties
inherited

= The default value of the f am | y property must be set to
“j avax.faces. Sel ectltens”.

= The default value of the r ender er Type property must be set to nul | .

= If the val ue property (or the value returned by a value binding expression
associated with the val ue property) is non-null, it must contain a Sel ect |t em
bean, an array of Sel ect | t embeans, a Col | ecti on of Sel ect |t embeans, or a
Map, where each map entry is used to construct a Sel ect | t embean with the key
as the | abel property of the bean, and the value as the val ue property of the
bean (which must be of the same basic type as the value of the parent
component’s value).

Methods

Ul Sel ect |t ens adds no new processing methods.

Chapter 4 Standard User Interface Components 4-25

4.1.14.4 Events

Ul Sel ect | t ens does not originate any standard events.

4-26 JavaServer Faces Specification ¢ February 2004

4.1.15

41151

4.1.15.2

4.1.15.3

UlSelectMany

Ul Sel ect Many (extends Ul | nput) is a component that represents one or more
selections from a list of available options. It is most commonly rendered as a
combobox or a series of checkboxes.

Component Type

The standard component type for Ul Sel ect Many components is
“j avax. f aces. Sel ect Many”.

Properties

The following render-independent properties are added by the Ul Sel ect Many
component:

Name Access Type Description
sel ect ed RW oj ect[] or The selected item values of this component.
Val ues array of This property is a typesafe alias for the val ue

primtives property, so that the actual state to be used can
be acquired via a value binding expression.

Ul Sel ect Many specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f am | y property must be set to
“j avax. f aces. Sel ect Many”.

= The default value of the r ender er Type property must be set to
“j avax. f aces. Li st box”.

= See the class Javadocs for Ul Sel ect Many for additional requirements related to
implicit conversions for the val ue property.

Methods

Ul Sel ect Many must provide a specialized val i dat e() method which ensures that
any decoded values are valid options (from the nested Ul Sel ect |t emand
Ul Sel ect | t enrs children).

Chapter 4 Standard User Interface Components 4-27

4.1.15.4 Events

Ul Sel ect Many inherits the ability to send Val ueChangeEvent events from its
parent Ul | nput component.

4-28 JavaServer Faces Specification ¢ February 2004

4.1.16

41.16.1

4.1.16.2

4.1.16.3

4.1.16.4

UlSelectOne

Ul Sel ect One (extends Ul | nput) is a component that represents zero or one
selections from a list of available options. It is most commonly rendered as a
combobox or a series of radio buttons.

Component Type

The standard component type for Ul Sel ect One components is
“j avax. f aces. Sel ect One”.

Properties
Ul Sel ect One adds no new render-independent properties.

Ul Sel ect One specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f am | y property must be set to
“j avax. f aces. Sel ect One”.

= The default value of the r ender er Type property must be set to
“j avax. faces. Menu”.

Methods
Ul Sel ect One must provide a specialized val i dat e() method which ensures that

any decoded value is a valid option (from the nested Ul Sel ect | t emand
Ul Sel ect | t enrs children).

Events

Ul Sel ect One inherits the ability to send Val ueChangeEvent events from its
parent Ul | nput component.

Chapter 4 Standard User Interface Components 4-29

4.1.17

41171

4.1.17.2

UlViewRoot

U Vi ewRoot (extends Ul Conponent Base;) represents the root of the component
tree.

In JSP applications, the tag handler for this component is involved in the state saving
process. The tag handler for Ul Vi ewRoot must indicate that the body content must
be buffered. In the doAf t er Body() method of the tag handler, the

St at eManager . get Seri al i zedVi ew() and St at eManager . restoreVi ew)
methods must be called.

Component Type

The standard component type for Ul Vi ewRoot components is
“j avax. f aces. Vi ewRoot ”

Properties

The following render-independent properties are added by the Ul Vi ewRoot
component:

Name Access Type Description

locale RW java.util.Locale The Locale to be used in localizing the response
for this view.

renderKitl RW String The id of the Render Ki t used to render this

d page.

view d RW String The view identifier for this view.

For an existing view, the | ocal e property may be modified only from the event
handling portion of Process Validations phase through Invoke Application phase, unless
it is modified by an Apply Request Values event handler for an Acti onSour ce or
Edi t abl eVal ueHol der component that has its i medi at e property set to true
(which therefore causes Process Validations, Update Model Values, and Invoke
Application phases to be skipped).

U Vi ewRoot specializes the behavior of render-independent properties inherited
from the parent component as follows:

= The default value of the f am | y property must be set to
“j avax. f aces. Vi ewRoot ”.

= The default value of the r ender er Type property must be set to nul | .

4-30 JavaServer Faces Specification ¢ February 2004

4.1.17.3 Methods

Ul Vi ewRoot adds no new processing methods.

Ul Vi ewRoot specializes the behavior of the Ul Conponent . queueEvent () method
to maintain a list of queued events that can be transmitted later. It also specializes
the behavior of the pr ocessDecodes(), processVal i dat ors(),

processUpdat es(), and processAppl i cati on() methods to broadcast queued
events to registered listeners.

4.1.17.4 Events

Ul Vi ewRoot does not originate any standard events.

Chapter 4 Standard User Interface Components 4-31

4.2

4.2.1

Standard UlIComponent Model Beans

Several of the standard Ul Conponent subclasses described in the previous section
reference JavaBean components to represent the underlying model data that is
rendered by those components. The following subsections define the standard

U Component model bean classes.

DataModel

Dat aMbdel is an abstract base class for creating wrappers around arbitrary data
binding technologies. It can be used to adapt a wide variety of data sources for use
by JavaServer Faces components that want to support access to an underlying data
set that can be modelled as multiple rows. The data underlying a DataModel
instance is modelled as a collection of row objects that can be accessed randomly via
a zero-relative index

421.1 Properties
An instance of Dat aModel supports the following properties:

Name Access Type Description

rowAvailable RO boolean Flag indicating whether the current r owl ndex value points
at an actual row in the underlying data.

r owCount RO int The number of rows of data objects represented by this
DataModel instance, or -1 if the number of rows is unknown.

rowDat a RO oj ect An object representing the data for the currently selected
row. Dat aModel implementations must return an object that
be successfully processed as the “base” parameter for the
Pr opert yResol ver in use by this application. If the current
rowlndex value is -1, nul | is returned.

rowl ndex RW int Zero-relative index of the currently selected row, or -1 if no
row is currently selected. When first created, a Dat aModel
instance must return -1 for this property.

wrappedData RW Object Opaque property representing the data object wrapped by

this DataModel. Each individual implementation will restrict
the types of Object(s) that it supports.

4-32 JavaServer Faces Specification ¢ February 2004

4212

42.1.3

4214

Methods

An instance of Dat aModel supports no additional public processing methods.

Events

No events are generated for this component.

Concrete Implementations

The JSF implementation must provide concrete implementations of DataModel (in
the javax.faces.model package) for the following data wrapping scenarios:

= ArrayDat aModel -- Wrap an array of Java objects.

= ListDatalMdel --Wrap ajava.util.List ofJava objects.

= Resul t Dat aMbdel -- Wrap an object of type
javax. servlet.jsp.jstl.sqgl.Result (the query results from JSTL's SQL
tag library)

= Resul t Set Dat aModel -- Wrap an object of type j ava. sqgl . Resul t Set (which
therefore means that j avax. sql . RowSet instances are also supported).

= Scal ar Dat aMbdel -- Wrap a single Java object in what appears to be a one-row
data set.

Each concrete Dat aMbdel implementation must extend the Dat aModel abstract
base class, and must provide a constructor that accepts a single parameter of the
object type being wrapped by that implementation (in addition to a zero-args
constructor). See the JavaDocs for specific implementation requirements on

Dat aMbdel defined methods, for each of the concrete implementation classes.

Chapter 4 Standard User Interface Components 4-33

4.2.2 Selectltem

Sel ect I t emis a utility class representing a single choice, from among those made
available to the user, for a U Sel ect Many or Ul Sel ect One component. It is not
itself a Ul Conponent subclass.

4.22.1 Properties

An instance of Sel ect | t emsupports the following properties:

Name Access Type Description

description RW String A description of this selection item, for use in development
tools.

di sabl ed RW boolean Flag indicating that this option should be rendered in a
fashion that disables selection by the user. Default value is
fal se.

| abel RW String Label of this selection item that should be rendered to the
user.

val ue RW oj ect The server-side value of this item, of the same basic data type

as the parent component’s value. If the parent component
type’s value is a value binding expression that points at a
primitive, this value must be of the corresponding wrapper
type.

4222 Methods

An instance of Sel ect | t emsupports no additional public processing methods.

4.2.2.3 Events

An instance of Selectltem supports no events.

4-34 JavaServer Faces Specification ¢ February 2004

4.2.3

4231

SelectitemGroup

Sel ect I t emGr oup is a utility class extending Sel ect | t em that represents a group
of subordinate Sel ect | t eminstances that can be rendered as a “sub-menu” or
“option group”. Render er s will typically ignore the val ue property of this
instance, but will use the | abel property to render a heading for the sub-menu.

Properties

An instance of Sel ect | t entar oup supports the following additional properties:

Name

Access Type Description

selectltems

RW Selectltem[] Array of Selectltem instances representing the subordinate
selection items that are members of the group represented by
this SelectltemGroup instance.

4.2.3.2

4.2.3.3

Note that, since Sel ect |t emGr oup is a subclass of Sel ectltem

Sel ect | t enter oup instances can be included in the sel ect | t ens property in
order to create hierarchies of subordinate menus. However, some rendering
environments may limit the depth to which such nesting is supported; for example,
HTML/4.01 does not allow an <opt gr oup> to be nested inside another

<opt gr oup> within a <sel ect > control.

Methods

An instance of Sel ect | t enar oup supports no additional public processing
methods.

Events

An instance of Sel ect | t enGr oup supports no events.

Chapter 4 Standard User Interface Components 4-35

CHAPTER 5

Value Binding and Method Binding
Expression Evaluation

In the descriptions of the standard user interface component model, it was noted
that all attributes, and nearly all properties can have a value binding expression
associated with them (see Section 3.1.4 “Value Binding Expressions”). In addition,
the acti on, acti onLi stener, val i dat or, and val ueChangelLi st ener
properties can be defined by a method binding expression pointing at a public method
in some class to be executed. This chapter describes the mechanisms and APIs that
JavaServer Faces utilizes in order to evaluate value binding expressions and method
binding expressions.

5.1

5.1.1

Value Binding Expressions

Overview

To support binding of attribute and property of values to dynamically calculated
results, the name of the attribute or property can be associated with a value binding
expression using the set Val ueBi ndi ng() method. Whenever the dynamically
calculated result of evaluating the expression is required, the get Val ue() method
of the Val ueBi ndi ng is called, which returns the evaluated result. Such expressions
can be used, for example, to dynamically calculate a component value to be
displayed:

<h: out put Text val ue="#{cust oner. nane}”/>

5-1

5.1.2

which, when this page is rendered, will retrieve the bean stored under the
“customer” key, then acquire the name property from that bean and render it.

Besides the component value itself, value binding expressions can be used to
dynamically compute attributes and properties. The following example checks a
bool ean property manager on the current user bean (presumably representing the
logged-in user) to determine whether the sal ary property of an employee should
be displayed or not:

<h: out put Text rendered="#{user. manager}” val ue=
"#{ enpl oyee. sal ary}”"/ >

which sets the r ender ed property of the component to f al se if the user is not a
manager, and therefore causes this component to render nothing.

Value binding expressions also have special semantics (with restrictions on the
available syntax) when a component that implements EditableValueHolder
establishes a binding for the value property. See Section 5.1.4 “Set Value
Semantics”for more information.

Value Binding Expression Syntax

The syntax of a value binding expression is identical to the syntax of an expression
language expression defined in the JavaServer Pages Specification (version 2.0),
sections 2.3 through 2.9, with the following exceptions:

= The expression delimiters for a value binding expression are “#{* and “}” instead
of “${“ and “}H.
= Value binding expressions do not support EL functions.

This difference in delimiters points out the semantic differences between the two
expression types:

= During rendering, value binding expressions are evaluated by the JSF
implementation (via calls to the getValue() method) rather than by the compiled
code for a JSP page.

= Value binding expressions may be evaluated programmatically, even when a JSP
page is not present.

= Value binding expression evaluation leverages the facilities of the configured
VariableResolver and PropertyResolver objects available via the Application
object for the current web application, for which applications may provide plug in
replacement classes that provide additional capabilities.

5-2 JavaServer Faces Specification ¢ February 2004

5.1.3

= A value binding expression is used for the value property of an
Edi t abl eVal ueHol der component is used during the Update Model Values
phase of the request processing lifecycle to modify the referenced value, rather
than to retrieve it.

Examples of valid value binding expressions include:

« #{foo}

= #{foo0. bar}

=« #{foo0. bar. baz}

« #{foo[bar]}

[
« #{foo["“bar”]}
« #{foo[3]}
=« #[foo[3].bar}

« #{foo0.bar[3]}

= #{customer.status == ‘VIP’}

= #((city.farenheitTemp - 32) *5 / 9}

= Reporting Period: #{report.fromDate} to #{report.toDate}

For value binding expressions where the setValue() method is going to be called
(such as during Update Model Values), the syntax of a value binding expression is
limited to one of the following forms:

= #{expr-a.value-b}
= #{expr-a[value-b]]
= #{value-b}

where “expr-a” is a general expression (as described above) that evaluates to some
object, and “value-b” is an identifier.

Get Value Semantics

When the get Val ue() method of a Val ueBi ndi ng instance is called, the
expression is evaluated (and the result of that evaluation is returned), evaluation
takes place exactly as described in the JavaServer Pages Specification (version 2.0),
sections 2.3 through 2.9, with the following exceptions:

= The left-most identifier in an expression is evaluated by the VariableResolver
instance that is acquired from the Application instance for this web application.
See Section 5.3.1 “VariableResolver” for more information.

= Each occurrence of the “.” or “[...]” operators in an expression is evaluated by the
PropertyResolver instance that is acquired from the Application instance for this
web application. See Section 5.3.2 “PropertyResolver” for more information.

Chapter 5 Value Binding and Method Binding Expression Evaluation 5-3

5.14

Thus, page authors familiar with JSP EL expressions will be able to immediately
understand how value binding expressions work in JSF.

Set Value Semantics

When the set Val ue() method on a Val ueBi ndi ng is called, the syntax of the
value binding restriction is restricted as described above. The implementation must
perform the following processing to evaluate an expression of the form “#{expr-
a.value-b}” or “#{expr-a[value-b]}”:

Evaluate expr - a into val ue- a.

If val ue-ais nul |, throw Pr opert yNot FoundExcepti on.

If val ue- b is nul | , throw Pr opert yNot FoundExcepti on.

If val ue- a is a Map, call val ue- a. put (val ue-b, new val ue).
If val ue-ais alist oran array:

« Coerce val ue-b toi nt, throwing Ref er enceSynt axExcepti on on an error.
« Attempt to execute val ue- a. set (val ue-b, new-val ue) or
Array. set (val ue-b, new val ue) as appropriate.
« If I ndexQut Of BoundsExcepti on or Arrayl ndexQut O BoundsExcepti on
is thrown, throw Pr oper t yNot FoundExcept i on.
« If a different exception was thrown, throw Eval uati onExcept i on.
Otherwise (val ue- a is a JavaBean object):

« Coerceval ue-bto String.

« If val ue- b is a writeable property of val ue- a (as per the JavaBeans
Specification), call the setter method (passing new val ue); throwing
Ref er enceSynt axExcept i on if an exception is thrown.

« Otherwise, throw Pr oper t yNot FoundExcepti on.

If the entire expression consists of a single identifier, the following rules apply:

If the identifier matches the name of one of the implicit objects described below,
throw Ref er enceSynt axExcepti on.

Otherwise, if the identifier matches the key of an attribute in request scope,
session scope, or application scope, the corresponding attribute value will be
replaced by new- val ue.

Otherwise, a new request scope attribute will be created, whose key is the
identifier and whose value is new- val ue.

5-4 JavaServer Faces Specification ¢ February 2004

5.2

Method Binding Expressions

Method binding expressions are a specialized variant of value binding expressions.
Rather than supporting the dynamic retrieval and setting of properties, method
binding expressions support the invocation (i.e. execution) of an arbitrary public
method of an arbitrary object, passing a specified set of parameters, and returning
the result from the called method (if any). They may be used in any phase of the
request processing lifecycle; the standard JSF components and framework employ
them (encapsulated in a Met hodBi ndi ng object) at the following times:

During Apply Request Values or Invoke Application phase (depending upon the state
of the i medi at e property), components that implement the Acti onSour ce
behavioral interface (see Section 3.2.1 “ActionSource”) utilize MethodBindings as
follows:

If the act i on property is specified, it must be a Met hodBi ndi ng expression
that identifies an Application Action method (see Section 7.3 “Application
Actions”) that takes no parameters and returns a String.

If the acti onLi st ener property is specified, it must be a Met hodBi ndi ng
that identifies a public method that accepts an Act i onEvent (see Section 3.4.2
“Event Classes”) instance, and has a return type of voi d. The called method
has exactly the same responsibilities as the pr ocessActi on() method of an
Act i onLi st ener instance (see Section 3.4.3 “Listener Classes”) that was built
in to a separate Java class.

During the Apply Request Values or Process Validations phase (depending upon the
state of the i mmedi at e property), components that implement

Edi t abl eVal ueHol der (such as Ul | nput and its subclasses) components (see
Section 3.2.5 “EditableValueHolder”) utilize method binding expressions as
follows:

If the val i dat or property is specified, it must be a Met hodBi ndi ng that
identifies a public method that accepts a FacesCont ext instance and a

U Conponent instance, and an Obj ect containing the value to be validated,
and has a return type of voi d. The called method has exactly the same
responsibilities as the val i dat e() method of a Val i dat or instance (see
Section 3.5.2 “Validator Classes™) that was built in to a separate Java class.

If the val uelLi st ener Change property is specified, it must be a

Met hodBi ndi ng that identifies a public method that accepts a

Val ueChangeEvent (see Section 3.4.2 “Event Classes”) instance, and has a
return type of voi d. The called method has exactly the same responsibilities as
the pr ocessVal ueChange() method of a Val ueChangelLi st ener instance
(see Section 3.4.3 “Listener Classes”) that was built in to a separate Java class.

Chapter 5 Value Binding and Method Binding Expression Evaluation 5-5

5.2.1

5.2.2

Here is the set of component attributes that currently support Met hodBi ndi ngs,
and the method signatures to which they must point:

TABLE 5-1
component property method signature
action public String <methodNanme>();
actionLi stener public void
<met hodNarme>(j avax. f aces. event. Acti onEvent);
val i dat or public void
<met hodNanme>(j avax. f aces. cont ext . FacesCont ext
j avax. f aces. conponent . Ul Conponent ,
java.l ang. Obj ect);
val ueChangeli st ener public void

<met hodName>(j avax. f aces. event . Val ueChangeEvent) ;

Note that any of the method arguments may also be a subclass of what is listed
above.

Method Binding Expression Syntax

The syntax of a method binding expression must conform to one of the following
patterns:

= #{expr-a.value-b}
= #{expr-a[value-b]}
where “expr-a” is a value binding expression (see Section 5.1.2 “Value Binding

Expression Syntax”) and “value-b” is an identifier whose syntax matches that of a
Java method name.

Method Binding Expression Semantics

Method binding expressions are evaluated via the use of a Met hodBi ndi ng instance
(see Section 5.3.4 “MethodBinding”), which supports two methods:

= If the i nvoke() method is executed:

« The “expr-a” portion of the expression is used to construct a ValueBinding
instance, and the getValue() method is called.

5-6 JavaServer Faces Specification ¢ February 2004

« The underlying class of the object returned by this evaluation is examined for
the presence of a public Met hod whose parameter signature is compatible with
the signature specified when the MethodBinding was created. The Method
object may represent a Java method implemented by the underlying class, or
by one of its super-classes.

« The identified method is called on the referenced Java object, passing the
parameters specified on the invoke() call, and any returned value is returned.

= If the get Type() method is executed:

« The “expr-a” portion of the expression is used to construct a ValueBinding
instance, and the getValue() method is called.

« The underlying class of the object returned by this evaluation is examined for
the presence of a public method whose parameter signature is compatible with
the signature specified when the MethodBinding was created.

« The Cl ass representing the return type of the identified method is returned.

5.3

5.3.1

53.11

Expression Evaluation APIs

The description of expression evaluation in Section 5.1 “Value Binding Expressions”
describes the default behavior provided by the JSF implementation. For advanced
use cases, the application developer can modify the behavior of expression
evaluation by implementing one or both of the following APIs, and configuring their
use as described in Section 7.1 “Application”.

VariableResolver

Overview

A Vari abl eResol ver is used by a Val ueBi ndi ng (see Section 5.3.3
“ValueBinding”) to support retrieval of the object associated with the left most
identifier in a value binding expression.

The JSF implementation must provide a default Var i abl eResol ver
implementation that provides the functionality described in Section 5.3.1.2 “Default
VariableResolver Implementation”. It is accessible via the

get Var i abl eResol ver () method on the Appl i cati on instance for this
application (see Section 7.1 “Application”).

Chapter 5 Value Binding and Method Binding Expression Evaluation 5-7

5.3.1.2

An application (or framework) can provide an implementation with more features
(such as support for additional implicit object names). This is accomplished by
calling the set Vari abl eResol ver () method on the Appl i cat i on instance for
this application. Typically, such an enhanced implementation will employ the
Decorator Pattern, providing the additional support for implicit object names that it
recognizes, and delegating responsibility for variable resolution to the standard
implementation when the implicit object name is not recognized.

The following method signatures are supported:

public Object resolveVariabl e(FacesCont ext context, String nane);

This method resolves the specified variable name, and returns the corresponding
object instance, or nul | if no such instance can be identified.

Default VariableResolver Implementation

The JSF implementation must provide a default Var i abl eResol ver
implementation, which may be acquired by calling get Vari abl eResol ver () on
the Appl i cat i on instance for this application. This implementation’s

resol veVari abl e() method must support the following behavior:

The implementation must first compare the name parameter passed to the
resol veVari abl e() method against the following values, returning the
corresponding object on a match:

= applicationScope—A Map of the application scope attribute values, keyed by
attribute name.

= cooki e—An immutable Map of the cookie values for the current request, keyed
by cookie name.

=« facesCont ext —The FacesCont ext instance for the current request.

= header —An immutable Map of HTTP header values for the current request,
keyed by header name. Only the first value for each header name is included.

= header Val ues—An immutable Map of Stri ng arrays containing all of the
header values for HTTP headers in the current request, keyed by header name.

= initParam—An immutable Map of the context initialization parameters for this
web application.

= par am—An immutable Map of the request parameters for this request, keyed by
parameter name. Only the first value for each parameter name is included.

= par anVal ues—An immutable Map of St ri ng arrays containing all of the
parameter values for request parameters in the current request, keyed by
parameter name.

5-8 JavaServer Faces Specification ¢ February 2004

5.3.1.3

= request Scope—A Map of the request attributes for this request, keyed by
attribute name.

= SessionScope—A Map of the session attributes for this request, keyed by
attribute name.

= Vi ew—The Ul Vi enRoot in the current component tree stored in the
FacesCont ext for this request.

Next, the implementation must search for an attribute in request scope, then session
scope (if it exists), then application scope with a matching key. If a match is found,
the corresponding attribute value is returned.

Next, the implementation must examine the configuration information for the
Managed Bean Facility, to determine if there is an entry with a matching <managed-
bean-name>. If a match is found, a new bean will be created, optionally stored in
some scope, and returned. See Section 5.3.1.3 “The Managed Bean Facility” for more
information.

If no match is found based on any of the above rules, r esol veVari abl e() must
return nul | .

The Managed Bean Facility

The Managed Bean Creation facility is configured by the existence of <managed-
bean> elements in one or more application configuration resources (see Section 10.3
“Application Configuration Resources™). Such elements describe the characteristics
of a bean to be created, and properties to be initialized, with the following nested
elements:

= <managed- bean- name> -- The key under which the created bean can be
retrieved; also the key in the scope under which the created bean will be stored,
unless the value of <managed- bean- scope> is set to none.

= <managed- bean- cl ass> -- The fully qualified class name of the application
class used to instantiate a new instance. This class must conform to JavaBeans
design patterns -- in particular, it must have a public zero-args constructor, and
must have public property setters for any properties referenced with nested
<managed- pr opert y> elements -- or it must be a class that implements
java.util.Maporjava.util.List.

= <nmanaged- bean- scope> -- The scope (r equest, sessi on, or appl i cati on)
under which the newly instantiated bean will be stored after creation (under the
key specified by the <managed- bean- nane> element), or none for a bean that
should be instantiated and returned, but not stored in any scope. The latter option
is useful when dynamically constructing trees of related objects, as illustrated in
the following example.

Chapter 5 Value Binding and Method Binding Expression Evaluation 5-9

5-10

» <list-entries>or<map-entries>--Used to configure managed beans that
are themselves instances of j ava. uti |l . Li st orjava. util.Map, respectively.
See below for details on the contents of these elements.

= <managed- pr operty> -- Zero or more elements used to initialize the properties
of the newly instantiated bean (see below).

After the new managed bean instance is instantiated, but before it is placed into the
specified scope (if any), each nested <managed- pr opert y> element must be
processed and a call to the corresponding property setter must be made to initialize
the value of the corresponding property. If the managed bean has properties not
referenced by <managed- pr opert y> elements, the values of such properties will
not be affected by the creation of this managed bean; they will retain whatever
default values are established by the constructor.

Each <managed- pr opert y> element contains the following elements used to
configure the execution of the corresponding property setter call:

= <property-nane> -- The property name of the property to be configured. The
actual property setter method to be called will be determined as described in the
JavaBeans Specification.

= Exactly one of the following sub-elements that can be used to initialize the
property value in a number of different ways:

« <map-entries>-- A set of key/value pairs used to initialize the contents of a
property of type j ava. uti | . Map (see below for more details).

« <nul | -val ue/ > -- An empty element indicating that this property must be
explicitly initialized to nul | . This element is not allowed if the underlying
property is of a Java primitive type.

« <val ue> -- A String value that will have any leading and trailing spaces
stripped, and then be converted (according to the rules described in the JSP
Specification for the <jsp:setProperty> action) to the corresponding data type
of the property, prior to setting it to this value.

« <list-entries>--A setof values used to initialize the contents of a
property of type array or java. util . Li st. See below for more information.

As described above, the <map-entri es> element is used to initialize the key-value
pairs of a property of type j ava. uti | . Map. This element may contain the following
nested elements:

= <key-cl ass> -- Optional element specifying the fully qualified class name for
keys in the map to be created. If not specified, j ava. | ang. Stri ng is used.

= <val ue- cl ass> -- Optional element specifying the fully qualified class name for
values in the map to be created. If not specified, j ava. | ang. St ri ng is used.

= <map-entry>-- Zero or more elements that define the actual key-value pairs for
a single entry in the map. Nested inside is a <key> element to define the key, and
then exactly one of <nul | - val ue>, <val ue> to define the value. These elements

JavaServer Faces Specification ¢ February 2004

have the same meaning as when nested in a <managed- pr opert y> element,
except that they refer to an individual map entry’s value instead of the entire
property value.

As described above, the <l i st - ent ri es> element is used to initialize a set of
values for a property of type array or j ava. util . Li st. This element may contain
the following nested elements:

» <val ue- cl ass> -- Optional element specifying the fully qualified class name for
values in the map to be created. If not specified, j ava. | ang. St ri ng is used.

= Zero or more elements of type <nul | - val ue>, <val ue> to define the individual
values to be initialized. These elements have the same meaning as when nested in
a <managed- pr opert y> element, except that they refer to an individual list
element instead of the entire property value.

The following general rules apply to the operation of the Managed Bean Creation
facility:

= Properties are assigned in the order that their <nanaged- pr opert y> elements
are listed in the application configuration resource.

= If a managed bean has writeable properties that are not mentioned in <managed-
property> elements, the values of those properties are not assigned any values.

= The bean instantiation and population with properties must be done lazily, when
Vari abl e. resol veVari abl e() is called. For example, this is the case when a
Val ueBi ndi ng or Met hodBi ndi ng has its get Val ue() or set Val ue() method
called.

= Due to the above mentioned laziness constraint, any error conditions that occur
below are only required to be manifested at runtime. However, it is conceivable
that tools may want to detect these errors earlier; this is perfectly acceptable. The
presense of any of the errors described below, until the end of this section, must
not prevent the application from deploying and being made available to service
requests.

= Itis an error to specify a managed bean class that does not exist, or that cannot be
instantiated with a public, zero-args constructor.

= Itis an error to specify a <pr opert y- name> for a property that does not exist, or
does not have a public setter method, on the specified managed bean class.

= Itis an error to specify a <val ue> element that cannot be converted to the type
required by a managed property, or that, when evaluated, results in a value that
cannot be converted to the type required by a managed property.

= Itis an error for a managed bean created through this facility to have a property
that points at an object stored in a scope with a (potentially) shorter life span.
Specifically, this means, for an object created with the specified <managed- bean-
scope>, then <val ue> evaluations can only point at created objects with the
specified managed bean scope:

= Nnone -- none

Chapter 5 Value Binding and Method Binding Expression Evaluation 5-11

5-12

« application -- none, application
« Session -- none, application, session
« request -- none, application, session, request

If a bean points to a property whose value is a mixed expression containing literal
strings and expressions, the net scope of the mixed expression is considered to be
the scope of the narrowest sub-expression, excluding expressions in the none
scope.

Data accessed via an implicit object is also defined to be in a scope. The following
implicit objects are considered to be in request scope:

« cookie

« facesCont ext

« header

= header Val ues

« param

= paranval ues

« request Scope

= View

The only implicit object in session scope is sessi onScope

The following implicit objects are considered to be in application scope:
« applicationScope

« initParam

It is an error to configure cyclic references between managed beans.
Managed bean names must conform to the syntax of a Java language identifier.

The initialization bean properties from <map-entries>and <l i st-entri es>
elements must adhere to the following algorithm, though any confirming
implementation may be used.

For <map-entri es>:

1. Call the property getter, if it exists.

2.

If the getter returns nul | or doesn't exist, create a j ava. util . HashMap,
otherwise use the returned j ava. uti | . Map.

3. Add all entries defined by nested <map- ent r y> elements in the order they are

listed, converting key values defined by nested <key> elements to the type
defined by <key- cl ass> and entry values defined by nested <val ue> elements
to the type defined by <val ue- cl ass>. If a value is given as a value binding
expression, evaluate the reference and store the result, converting to <val ue-

cl ass> if necessary. If <key- cl ass> and/or <val ue- cl ass> are not defined,
use j ava. |l ang. Stri ng. Add nul | for each <nul | -val ue> element.

JavaServer Faces Specification ¢ February 2004

53.14

4.

If anew java. util . Map was created in step 2), set the property by calling the
setter method, or log an error if there is no setter method.

For<list-entries>:

1.
2.

Call the property getter, if it exists.

If the getter returns nul | or doesn't exist, create a j ava. util . Arrayli st,
otherwise use the returned Obj ect (an array or aj ava. util . Li st).

If a Li st was returned or created in step 2), add all elements defined by nested
<val ue> elements in the order they are listed, converting values defined by
nested <val ue> elements to the type defined by <val ue- cl ass>. If a value is
given as a value binding expression, evaluate the reference and store the result,
converting to <val ue- cl ass> if necessary. If a <val ue- cl ass> is not defined,
use the value as-is (i.e., as a j ava. | ang. St ri ng). Add null for each <nul I -
val ue> element.

If an array was returned in step 2), create aj ava. util . ArrayLi st and copy all
elements from the returned array to the new Li st , wrapping elements of a
primitive type. Add all elements defined by nested <val ue> elements as
described in step 3).

Ifanewjava. util.List was created in step 2) and the property is of type
Li st, set the property by calling the setter method, or log an error if there is no
setter method.

Ifanewjava.util.List wascreated in step 2) and the property is a java array,
convert the Li st into an array of the property type, and set it by calling the setter
method, or log an error if there is no setter method.

If anew java. util.List was created in step 4), convert the Li st to an array
of the proper type for the property and set the property by calling the setter
method, or log an error if there is no setter method.

Managed Bean Configuration Example

The following <managed-bean> elements might appear in one or more application
configuration resources (see Section 10.3 “Application Configuration Resources”) to
configure the behavior of the Managed Bean Creation facility.

Chapter 5 Value Binding and Method Binding Expression Evaluation ~ 5-13

5-14

Assume that your application includes Cust orrer Bean with properties

mai | i ngAddr ess and shi ppi ngAddr ess of type Addr ess (along with additional
properties that are not shown), and Addr essBean implementation classes with
String properties of type street, city, state, country, and post al Code.

<managed- bean>

<descri pti on>
A customer bean will be created as needed, and stored in
request scope. Its “mailingAddress” and “street Address”
properties will be initialized by virtue of the fact that the
“val ue” expressions will not encounter any object under
key “addressBean” in any scope.

</ descri ption>

<managed- bean- name>cust oner </ nanaged- bean- nane>

<managed- bean- cl ass>
com nyconpany. nybeans. Cust oner Bean

</ managed- bean-cl ass>

<managed- bean- scope> request </ nanaged-bean-scope>

<managed- property>
<property-nanme>nail i ngAddr ess</ property-nane>
<val ue>#{ addr essBean} </ val ue>

</ managed- pr operty>

<managed- property>
<property-name>shi ppi ngAddr ess</ pr operty-nane>
<val ue>#{ addr essBean} </ val ue>

</ managed- pr operty>

<managed- property>
<property-nane>cust omer Type</ pr opert y- nane>
<val ue>New</ val ue> <!-- Set to literal value -->

</ managed- pr operty>

</ managed- bean>

JavaServer Faces Specification ¢ February 2004

<managed- bean>
<descri pti on>
A new AddressBean will not be added to any scope, because we
only want to create i nstances when a Cust omer Bean creation asks
for them Therefore, we set the scope to “none”.
</ descri ption>
<managed- bean- nane>addr essBean</ nanaged- bean- name>
<managed- bean- cl ass>
com myconpany. nybeans. Addr essBean
</ managed- bean-cl ass>
<managed- bean- scope> none </ managed- bean-scope>
</ managed- bean>

If a value binding expression “#{ cust ormer . nai | i ngAddr ess. ci ty}” were to be
evaluated by the JSF implementation, and there was no object stored under key
“cust omer ” in request, session, or application scope, a new Cust orrer Bean
instance will be created and stored in request scope, with its mai | i ngAddr ess and
shi ppi ngAddr ess properties being initialized to instances of Addr essBean as
defined by the configuration elements shown above. Then, the evaluation of the
remainder of the expression can proceed as usual.

Although not used by the JSF implementation at application runtime, it is also
convenient to be able to indicate to JSF tools (at design time) that objects of
particular types will be created and made available (at runtime) by some other
means. For example, an application configuration resource could include the
following information to declare that a JDBC data source instance will have been
created, and stored in application scope, as part of the application’s own startup
processing.

<r ef er enced- bean>
<descri pti on>
A JDBC data source will be initialized and nade avail able in
sone scope (presumably application) for use by the JSF based
application when it is actually run. This information is not
used by the JSF inplenentation itself; only by tools.
</ descri ption>
<r ef er enced- bean- nane> dat aSour ce </referenced-bean-nane>
<r ef er enced- bean- cl ass>
j avax. sql . Dat aSour ce
</referenced-bean-cl ass>
</referenced-bean>

Chapter 5 Value Binding and Method Binding Expression Evaluation 5-15

This information can be utilized by the tool to construct user interfaces based on the
properties of the referenced beans.

5.3.2 PropertyResolver

A PropertyResol ver is used by a Val ueBi ndi ng (see Section 5.3.3
“ValueBinding”) to resolve an . or[] operator during the evaluation of a value
binding expression.

The JSF implementation must provide a default Pr opert yResol ver
implementation that provides the functionality described in Section 5.1.3 “Get Value
Semantics”. It is accessible via the get Pr opert yResol ver method on the

Appl i cat i on instance for this application (see Section 7.1 “Application”).

An application (or framework) can provide an implementation with more features
(such as support for non-JavaBeans-based property resolution on additional
supported base classes). This is accomplished by calling the

set Propert yResol ver method on the Appl i cat i on instance for this application.
Typically, such an enhanced implementation will employ the Decorator Pattern,
providing the additional support for additional base classes that it recognizes, and
delegating responsibility for property resolution to the standard implementation
when the implicit object name is not recognized.

The following method signatures are supported:

public Object getValue(hject base, Object property) throws
Eval uati onException, PropertyNot FoundExcepti on;

public Object getValue(hject base, int index) throws
Eval uati onException, PropertyNot FoundExcepti on;

Retrieve and return the specified property value from the specified base object. The
i nt variant is used for accessing elements of a property that is based on a Li st or
array, while the St ri ng variant is used in all other cases.

public void setVal ue(Obj ect base, Object property, Object
newVal ue) throws Eval uati onException, PropertyNotFoundExcepti on;

public void setVal ue(Object base, int index, Object newval ue)
t hrows Eval uati onException, PropertyNotFoundExcepti on;

5-16 JavaServer Faces Specification ¢ February 2004

5.3.3

Modify the value of the specified property on the specified base object. The i nt
variant is used for accessing elements of a property that is based on a Li st or array,
while the St ri ng variant is used in all other cases.

public bool ean i sReadOnl y(Obj ect base, Object property) throws
Eval uati onException, PropertyNotFoundExcepti on;

public bool ean i sReadOnl y(Obj ect base, int index) throws
Eval uati onException, PropertyNot FoundExcepti on;

Return t r ue if the specified property on the specified base object is known to be
immutable; otherwise, return f al se. The i nt variant is used for accessing elements
of a property that is based on a Li st or array, while the St ri ng variant is used in
all other cases.

public Class get Type(Object base, Object property) throws
Eval uati onException, PropertyNot FoundExcepti on;

public Class get Type(Object base, int index) throws
Eval uati onException, PropertyNotFoundExcepti on;

Return the d ass that defines the property type of the specified property on the
specified base object, if it can be determined; otherwise, return nul | . The i nt
variant is used for accessing elements of a property that is based on a Li st or array,
while the St ri ng variant is used in all other cases.

ValueBinding

The Val ueBi ndi ng class encapsulates the actual evaluation of a value binding
expression. Instances of Val ueBi ndi ng for specific references are acquired from the
Appl i cat i on instance by calling the cr eat eVal ueBi ndi ng method (see

Section 7.1 “Application”).

public Object getVal ue(FacesContext context) throws
Eval uati onException, PropertyNot FoundExcepti on;

Chapter 5 Value Binding and Method Binding Expression Evaluation ~ 5-17

5.3.4

Evaluate the value binding expression used to create this Val ueBi ndi ng instance,
relative to the specified FacesCont ext, and return the referenced value.

public void setVal ue(FacesContext context, Object value) throws
Eval uati onException, PropertyNot FoundExcepti on;

Evaluate the value binding expression used to create this Val ueBi ndi ng instance,
relative to the specified FacesCont ext, and update the referenced value to the
specified new value.

public bool ean i sReadOnl y(FacesCont ext context) throws
Eval uati onException, PropertyNot FoundExcepti on;

Evaluate the value binding expression used to create this Val ueBi ndi ng instance,
relative to the specified FacesCont ext, and return t r ue if the corresponding
property is known to be immutable. Otherwise, return f al se.

public Class get Type(FacesContext context) throws
Eval uati onException, PropertyNot FoundExcepti on;

Evaluate the value binding expression used to create this Val ueBi ndi ng instance,
relative to the specified FacesCont ext, and return the Cl ass that represents the
data type of the referenced value, if it can be determined. Otherwise, return nul | .

MethodBinding

The Met hodBi ndi ng class encapsulates the actual evaluation of a method binding
expression. Instances of Met hodBi ndi ng for specific references are acquired from
the Appl i cat i on instance by calling the cr eat eMet hodBi ndi ng() method (see
Section 7.1.9 “Acquiring MethodBinding Instances”). Note that instances of

Met hodBi ndi ng are immutable, and contain no references to a FacesCont ext
(which is passed in as a parameter when the reference expression is evaluated).

public Object i nvoke(FacesCont ext context, Object parans[]) throws
Eval uati onExcepti on, MethodNot FoundExcepti on;

5-18 JavaServer Faces Specification ¢ February 2004

5.3.5

Evaluate the method binding expression (see Section 5.2.2 “Method Binding
Expression Semantics”) and call the identified method, passing the specified
parameters. Return any value returned by the invoked method, or return nul | if the
invoked method is of type voi d.

public Class get Type(FacesContext context) throws
Met hodNot FoundExcepti on;

Evaluate the method binding expression (see Section 5.2.2 “Method Binding
Expression Semantics”) and return the Cl ass representing the return type of the
identified method. If this method is of type voi d, return nul | instead.

Expression Evaluation Exceptions

Three exception classes are defined to report errors related to the evaluation of value
binding exceptions:

= Eval uati onExcepti on (which extends FacesExcept i on)—used to report a
problem evaluating a value binding exception dynamically.

= Met hodNot FoundExcepti on (which extends Eval uat i onExcept i on)—used
to report that a requested public method does not exist in the context of
evaluation of a method binding expression.

= PropertyNot FoundExcepti on (which extends
Eval uat i onExcepti on)—used to report that a requested property does not
exist in the context of evaluation of a value binding expression.

= Ref erenceSynt axExcepti on (which extends Eval uat i onExcepti on)—used
to report a syntax error in a value binding exception.

Chapter 5 Value Binding and Method Binding Expression Evaluation ~ 5-19

CHAPTER 6

Per-Request State Information

During request processing for a JSF page, a context object is used to represent
request-specific information, as well as provide access to services for the application.
This chapter describes the classes which encapsulate this contextual information.

6.1

6.1.1

FacesContext

JSF defines the j avax. f aces. cont ext . FacesCont ext abstract base class for
representing all of the contextual information associated with processing an
incoming request, and creating the corresponding response. A FacesCont ext
instance is created by the JSF implementation, prior to beginning the request
processing lifecycle, by a call to the get FacesCont ext method of

FacesCont ext Fact ory, as described in Section 6.5 “FacesContextFactory”. When
the request processing lifecycle has been completed, the JSF implementation will call
the r el ease method, which gives JSF implementations the opportunity to release
any acquired resources, as well as to pool and recycle FacesCont ext instances
rather than creating new ones for each request.

Application

public Application getApplication();

The JSF implementation must ensure that the Appl i cati on instance for the current
web application is available via this method, as a convenient alternative to lookup
via an Appl i cati onFact ory.

6.1.2

ExternalContext

It is sometimes necessary to interact with APIs provided by the containing
environment in which the JavaServer Faces application is running. In most cases this
is the servlet API, but it is also possible for a JavaServer Faces application to run
inside of a portlet. JavaServer Faces provides the Ext er nal Cont ext abstract class
for this purpose. This class must be implemented along with the FacesCont ext
class, and must be accessible via the get Ext er nal Cont ext method in

FacesCont ext .

publ i c External Context getExternal Context();

The Ext er nal Cont ext instance provides immediate access to all of the components
defined by the containing environment (servlet or portlet) within which a JSF-based
web application is deployed. The following table lists the container objects available
from Ext er nal Cont ext . Note that the Access column refers to whether the
returned object is mutable. None of the properties may be set through

Ext er nal Cont ext . itself.

Name Access Type Description

appl i cati onMvap RW java. util.Mp The application context
attributes for this
application.

aut hType RO String The method used to

authenticate the currently
logged on user (if any).

cont ext RW Obj ect The application context
object for this application.

i ni t Par amet er Map RO java.util.Mp The context initialization
parameters for this
application

renot eUser RO String The login name of the
currently logged in user (if
any).

request RW Obj ect The request object for this
request.

request Cont ext Pat h RO String The context path for this
application.

request Cooki eMap RO java. util.Mp The cookies included with

this request.

6-2 JavaServer Faces Specification « February 2004

Name Access Type Description

request Header Map RO java. util.Mp The HTTP headers
included with this request
(value is a String).

request Header Val uesMap RO java. util.Mp .The HTTP headers
included with this request
(value is a String array).

request Local e RW java.util. The preferred Locale for

Local e this request.
request Local es RW java.util. The preferred Locales for
Iterator this request, in descending

order of preference.

request Map RW java.util.Mp The request scope
attributes for this request.

request Par anet er Map RO java.util.Mp The request parameters
included in this request
(value is a String).

request Par anet er Names RO Iterator The set of request
parameter names included
in this request.

request Par amet er Val ues RO java.util.Mp The request parameters

Map included in this request
(value is a String array).

request Pat hl nfo RO String The extra path information
from the request URI for
this request.

request Servl et Pat h RO String The servlet path
information from the
request URI for this
request.

response RW Obj ect The response object for the
current request.

sessi onMap RW java. util.Mp The session scope attributes
for this request”.

user Pri nci pal RO java. security. P The Principal object

rinci pal

containing the name of the
currently logged on user (if
any).

* Accessing attributes via this Map will cause the creation of a session associated with this request, if none cur-

rently exists.

Chapter 6 Per-Request State Information 6-3

6-4

In addition to the above properties of Ext er nal Cont ext, the following methods
must be exposed. See the JavaDocs for more details.

public void dispatch(String path) throws | CException;

public void redirect(String url) throws |OException;

The di spat ch() must use a RequestDispatcher provided by the application context
object to incorporate content from a specified context-relative resource. The
redi rect () method must cause an HTTP Redirect to be sent to the client.

public String encodeActi onURL(String url);

public String encodeResourceURL(String url);

Return the specified URLs, after performing any necessary encoding or rewriting to
ensure that the URL correctly identifies an addressable action or resource,
respectively, in the current application.

public String encodeNamespace(String val ue);

Return the specified name, prefixed as needed to ensure that it will be unique within
the scope of the current page.

public void log(String nessage);

public void log(String message, Throwabl e throwable);

Log the message (and a stack trace of the exception) to the underlying context.

public String getlnitParanmeter(String name);

Return the value of the specified context initialization parameter (if any).

public URL get Resource(String path);

public I nput Stream get ResourceAsStrean(String path);

JavaServer Faces Specification February 2004

6.1.3

Return a URL or an InputStream, respectively, for the specified web application
resource.

public Set get ResourcePaths(String path);

Return the context-relative paths of web application resources matching the
specified path.

public Object getSession(bool ean create);

Return the session option associated with the current request, if any. If the cr eate
flag is set to t r ue, a new session must be created if none is currently associated with
this request.

public boolean isUserlnRole(String role);

Return true if the currently logged in user is included in the specified role.

ViewRoot

public Ul Vi ewRoot get Vi ewRoot ();

public void setVi ewRoot (Ul Vi ewRoot root);

During the Restore View phase of the request processing lifecycle, the state
management subsystem of the JSF implementation will identify the component tree
(if any) to be used during the inbound processing phases of the lifecycle, and call
set Vi ewRoot () to establish it.

Chapter 6 Per-Request State Information 6-5

6.1.4

6.1.5

Message Queue

public void addMessage(String clientld, FacesMessage nessage);

During the Apply Request Values, Process Validations, Update Model Values, and Invoke
Application phases of the request processing lifecycle, messages can be queued to
either the component tree as a whole (if cl i ent 1 d is nul |), or related to a specific
component based on its client identifier.

public Interator getClientldsWthMessages();
public Severity getMaxi munSeverity();
public Iterator getMessages(String clientld);

public Iterator getMessages();

The getd i ent | dsWt hMessages() method must return an | t er at or over the
client identifiers for which at least one Message has been queued. The

get Maxi munSeverity() method returns the highest severity level on any
Message that has been queued, regardless of whether or not the message is
associated with a specific client identifier or not. The get Messages(Stri ng)
method returns an | t er at or over queued Messages, either those associated with
the specified client identifier, or those associated with no client identifier if the
parameter is nul | . The get Messages() method returns an | t er at or over all
gueued Messages, whether or not they are associated with a particular client
identifier.

For more information about the Message class, see Section 6.2 “FacesMessage”.

RenderKit

public RenderKit getRenderKit();

Return the Render Ki t associated with the render kit identifier in the current
Ul Vi ewRoot (if any).

6-6 JavaServer Faces Specification « February 2004

6.1.6

6.1.7

ResponseStream and ResponseWriter

publ i ¢ ResponseStream get ResponseStreamn();
public voi d set ResponseStreanm ResponseStream responseStrean);
public ResponseWiter getRResponseWiter();

public void set ResponseWiter(ResponseWiter responseWiter);

JSF supports output that is generated as either a byte stream or a character stream.
Ul Conponent s or Render er s that wish to create output in a binary format should
call get ResponseSt rean() to acquire a stream capable of binary output.
Correspondingly, Ul Conponent s or Render er s that wish to create output in a
character format should call get ResponseW i t er () to acquire a writer capable of
character output.

Due to restrictions of the underlying servlet APIs, either binary or character output
can be utilized for a particular response—they may not be mixed.

Please see Section 7.5 “ViewHandler” to learn when set ResponseW i ter () and
set ResponseStreant() are called.

Flow Control Methods

public void render Response();
public void responseConpl ete();
public bool ean get Render Response();

public bool ean get ResponseConpl ete();

Normally, the phases of the request processing lifecycle are executed sequentially, as
described in Chapter 2 “Request Processing Lifecycle.” However, it is possible for
components, event listeners, and validators to affect this flow by calling one of these
methods.

The render Response() method signals the JSF implementation that, at the end of
the current phase (in other words, after all of the processing and event handling
normally performed for this phase is completed), control should be transferred
immediately to the Render Response phase, bypassing any intervening phases that
have not yet been performed. For example, an event listener for a tree control that

Chapter 6 Per-Request State Information ~ 6-7

6.1.8

was designed to process user interface state changes (such as expanding or
contracting a node) on the server would typically call this method to cause the
current page to be redisplayed, rather than being processed by the application.

The responseConpl et e() method, on the other hand, signals the JSF
implementation that the HTTP response for this request has been completed by
some means other than rendering the component tree, and that the request
processing lifecycle for this request should be terminated when the current phase is
complete. For example, an event listener that decided an HTTP redirect was required
would perform the appropriate actions on the response object (i.e. calling

Ext er nal Cont ext . redirect ()) and then call this method.

In some circumstances, it is possible that both r ender Response() and
responseConpl et e() might have been called for the request. In this case, the JSF
implementation must respect the r esponseConpl et e() call (if it was made) before
checking to see if r ender Response() was called.

The get Render Response() and get ResponseConpl et e() methods allow a JSF-
based application to determine whether the renderResponse() or responseComplete()
methods, respectively, have been called already for the current request.

Access To The Current FacesContext Instance

public static FacesContext getCurrentlnstance();

public static void setCurrentlnstance(FacesContext context);

Under most circumstances, JSF components, and application objects that access
them, are passed a reference to the FacesCont ext instance for the current request.
However, in some cases, no such reference is available. The

get Current | nst ance() method may be called by any Java class in the current
web application to retrieve an instance of the FacesCont ext for this request. The
JSF implementation must ensure that this value is set correctly before

FacesCont ext Fact ory returns a FacesCont ext instance, and that the value is
maintained in a thread-safe manner.

6-8 JavaServer Faces Specification « February 2004

6.2 FacesMessage

Each message queued within a FacesCont ext is an instance of the
javax. f aces. appl i cati on. FacesMessage class. It offers the following
constructors:

public FacesMessage();
public FacesMessage(String summary, String detail);

public FacesMessage(Severity severity, String summary, String
detail);

The following method signatures are supported to retrieve and set the properties of
the completed message:

public String getDetail ();
public void setDetail (String detail);

public Severity getSeverity();
public void setSeverity(Severity severity);

public String getSummary();
public void setSummary(String sunmary);

The message properties are defined as follows:

det ai | —Localized detail text for this FacesMessage (if any). This will generally
be additional text that can help the user understand the context of the problem
being reported by this FacesMessage, and offer suggestions for correcting it.
severit y—A value defining how serious the problem being reported by this
FacesMessage instance should be considered. Four standard severity values
(SEVERI TY_I NFQ SEVERI TY_WARN, SEVERI TY_ERROR, and SEVERI TY_FATAL)
are defined as a typesafe enum in the FacesMessage class.

sunmar y—Localized summary text for this FacesMessage. This is normally a
relatively short message that concisely describes the nature of the problem being
reported by this FacesMessage.

Chapter 6 Per-Request State Information 6-9

6.3

ResponseStream

ResponseSt r eamis an abstract class representing a binary output stream for the
current response. It has exactly the same method signhatures as the
java.io. Qut put St reamclass.

6.4

6-10

ResponseWriter

ResponseW i t er is an abstract class representing a character output stream for the
current response. A ResponseW it er instance is obtained via a factory method on
Render Ki t. Please see Chapter 8 “RenderKit”. It supports both low-level and high
level APIs for writing character based information

public void close() throws | OException;

public void flush() throws | OException;

public void wite(char c[]) throws |CException;

public void wite(char c[], int off, int len) throws |OException;
public void wite(int c) throws | CException;

public void wite(String s) throws |COExcepti on;

public void wite(String s, int off, int len) throws |CException;

The ResponseW i t er class extends j ava. i 0. Wi t er, and therefore inherits these
method signatures for low-level output. The cl ose() method flushes the
underlying output writer, and causes any further attempts to output characters to
throw an | OExcepti on. The f | ush method flushes any buffered information to the
underlying output writer, and commits the response. The wri t e methods write raw
characters directly to the output writer.

public abstract String getContent Type();
public abstract String getCharacterEncoding();

JavaServer Faces Specification ¢ February 2004

Return the content type or character encoding used to create this ResponseWriter.

public void startDocunent() throws |CException;
public void endDocunent () throws | OExcepti on;

Write appropriate characters at the beginning (st art Docunent) or end
(endDocunent) of the current response.

public void startElement(String name, U Conponent
conponent For El enent) throws | CExcepti on;

Write the beginning of a markup element (the < character followed by the element
name), which causes the ResponseW it er implementation to note internally that
the element is open. This can be followed by zero or more callstowri teAttri bute
orwriteURI Attri but e to append an attribute name and value to the currently
open element. The element will be closed (i.e. the trailing > added) on any
subsequent call to st art El enent (), witeComrent (), wri t eText (),
endDocunent (), cl ose(),flush(),orwrite(). The conponent For El enent
parameter tells the ResponseW it er which Ul Conponent this element
corresponds to, if any. This parameter may be null to indicate that the element has
no corresponding component. The presence of this parameter allows tools to provide
their own implementation of ResponseW i t er to allow the design time
environment to know which component corresponds to which piece of markup.

public void endEl ement (String name) throws | CExcepti on;

Write a closing for the specified element, closing any currently opened element first
if necessary.

public void witeComrent(CObject comment) throws | OExcepti on;

Write a comment string wrapped in appropriate comment delimiters, after
converting the comment object to a St ri ng first. Any currently opened element is
closed first.

public void witeAttribute(String nane, bject value, String
conponent PropertyNane) throws | CExcepti on;

public void witeURIAttribute(String nane, Cbject value, String
conponent Propert yNane) throws | OException;

Chapter 6 Per-Request State Information 6-11

These methods add an attribute name/value pair to an element that was opened
with a previous call to st art El enent (), throwing an exception if there is no
currently open element. Thewr i t eAt t ri but e() method causes character encoding
to be performed in the same manner as that performed by the wri t eText ()
methods. The writ eURI At tri but e() method assumes that the attribute value is a
URI, and performs URI encoding (such as %encoding for HTML). The

conponent Pr oper t yNane, if present, denotes the property on the associated

U Component for this element, to which this attribute corresponds. The
conponent Pr oper t yName parameter may be null to indicate that this attribute has
no corresponding property.

public void witeText(Object text, String property) throws
| CExcepti on;

public void witeText(char text[], int off, int len) throws
| CExcepti on;

Write text (converting from Qbj ect to Stri ng first, if necessary), performing
appropriate character encoding and escaping. Any currently open element created
by a call to st art El enent is closed first.

public abstract ResponseWiter cloneWthWiter(Witer witer);

Creates a new instance of this ResponseW i t er, using a different Wi ter.

6.5

6-12

FacesContextFactory

A single instance of j avax. f aces. cont ext . FacesCont ext Fact ory must be
made available to each JSF-based web application running in a servlet or portlet
container. This class is primarily of use by JSF implementors—applications will not
generally call it directly. The factory instance can be acquired, by JSF
implementations or by application code, by executing:

FacesCont ext Factory factory =
(FacesCont ext Fact ory)
Fact or yFi nder. get Fact or y(Fact or yFi nder . FACES_CONTEXT_FACTCRY) ;

JavaServer Faces Specification ¢ February 2004

The FacesCont ext Fact ory implementation class provides the following method
signature to create (or recycle from a pool) a FacesCont ext instance:

public FacesCont ext get FacesContext (Obj ect context, hject
request, Object response, Lifecycle lifecycle);

Create (if necessary) and return a FacesCont ext instance that has been configured
based on the specified parameters. In a servlet environment, the first argument is a
Ser vl et Cont ext, the second a Ser vl et Request and the third a

Ser vl et Response.

Chapter 6 Per-Request State Information 6-13

6-14 JavaServer Faces Specification February 2004

CHAPTER 7

Application Integration

Previous chapters of this specification have described the component model, request
state information, and the next chapter describes the rendering model for JavaServer
Faces user interface components. This chapter describes APIs that are used to link an
application’s business logic objects, as well as convenient pluggable mechanisms to
manage the execution of an application that is based on JavaServer Faces. These
classes are in the j avax. faces. appl i cat i on package.

Access to application related information is centralized in an instance of the

Appl i cati on class, of which there is a single instance per application based on
JavaServer Faces. Applications will typically provide one or more implementations
of Acti onLi st ener (or a method that can be referenced by an act i on expression)
in order to respond to Act i onEvent events during the Apply Request Values or
Invoke Application phases of the request processing lifecycle. Finally, a standard
implementation of Navi gat i onHandl er (replaceable by the application or
framework) is provided to manage the selection of the next view to be rendered.

7.1

Application

There must be a single instance of Appl i cati on per web application that is
utilizing JavaServer Faces. It can be acquired by calling the get Appl i cati on()
method on the FacesCont ext instance for the current request, or the

get Appl i cation() method of the Appl i cati onFact ory (see Section 7.2
“ApplicationFactory”), and provides default implementations of features that
determine how application logic interacts with the JSF implementation. Advanced
applications (or application frameworks) can install replacements for these default
implementations, which will be used from that point on. Access to several
integration objects is available via JavaBeans property getters and setters, as
described in the following subsections.

7.1.1

7.1.2

ActionListener Property

public ActionListener getActionListener();

public void setActionListener(ActionListener |istener);

Return or replace an Act i onLi st ener instance that will be utilized to process
Act i onEvent events during the Apply Request Values or Invoke Application phase of
the request processing lifecycle. The JSF implementation must provide a default
implementation Act i onLi st ener that performs the following functions:

= The processAction() method must call FacesCont ext . r ender Response()
in order to bypass any intervening lifecycle phases, once the method returns.

= The processAction() method must next determine the logical outcome of this
event, as follows:

« If the originating component has a non-null act i on property, retrieve the
Met hodBi ndi ng and call i nvoke() to perform the application-specified
processing in this action method, and use the value returned as the logical
outcome.

« Otherwise, the logical outcome is nul | .

= The processAction() method must finally retrieve the Navi gati onHandl er
instance for this application, and pass the logical outcome value (determined
above) as a parameter to the handl eNavi gati on() method of the
Navi gat i onHandl er instance.

DefaultRenderKitld Property

public String getDefaul tRenderKitld();

public void setDefaul tRenderKitld(String defaultRenderKitld);

An application may specify the render kit identifier of the Render Ki t to be used by
the Vi ewHand! er to render views for this application. If not specified, the default

render kit identifier specified by Render Ki t Fact ory. HTM__BASI C_RENDER KI T
will be used by the default Vi ewHandl er implementation.

Unless the application has provided a custom Vi ewHandl er that supports the use of
multiple RenderKit instances in the same application, this method may only be
called at application startup, before any Faces requests have been processed. This is
a limitation of the current Specification, and may be lifted in a future release.

7-2 JavaServer Faces Specification « February 2004

7.1.3

7.1.4

7.1.5

NavigationHandler Property

publ i c Navi gati onHandl er get Navi gati onHandl er();

public void setNavigati onHandl er (Navi gati onHandl er handl er);

Return or replace the Navi gat i onHandl er instance (see Section 7.4
“NavigationHandler”) that will be passed the logical outcome of the application
Act i onLi st ener as described in the previous subsection. A default
implementation must be provided, with functionality described in Section 7.4.2
“Default NavigationHandler Implementation”:

PropertyResolver Property

public PropertyResol ver getPropertyResol ver();

public void setPropertyResol ver (PropertyResol ver resol ver);

Return or replace the Propert yResol ver instance that will be utilized to evaluate
each . or [] operator when processing a value binding expression. A default
implementation must be provided, which operates as described in Section 5.3.2
“PropertyResolver”.

StateManager Property

public StateManager get StateManager();

public void set StateManager (St at eManager nmnager);

Return or replace the St at eManager instance that will be utilized during the Restore
View and Render Response phases of the request processing lifecycle to manage state
persistence for the components belonging to the current view. A default
implementation must be provided, which operates as described in Section 7.6
“StateManager”.

Chapter 7 Application Integration ~ 7-3

7.1.6

7.1.7

7.1.8

VariableResolver Property

public Variabl eResol ver get Vari abl eResol ver();

public void setVariabl eResol ver (Vari abl eResol ver resol ver);

Return or replace the Var i abl eResol ver instance that will be utilized to convert
the first name in a value binding expression into a corresponding object. A default
implementation must be provided, which operates as described in Section 5.3.1
“VariableResolver”.

ViewHandler Property

public Vi ewHandl er get Vi ewHandl er () ;

public void setVi ewHandl er (Vi ewHandl er handl er);

See Section 7.5 “ViewHandler” for the description of the ViewHandler. The JSF
implementation must provide a default Vi ewHandl er implementation. This
implementation may be replaced by calling set Vi ewHandlI er () before the first
time the Render Response phase has executed. If a call is made to

set Vi ewHandl er () after the first time the Render Response phase has executed, the
call must be ignored by the implementation.

Acquiring ValueBinding Instances

public Val ueBi ndi ng createVal ueBi nding(String ref);

Create and return a Val ueBi ndi ng (see Section 5.3.3 “ValueBinding”) that can be
used to evaluate the specified value binding expression. To avoid nondeterministic
behavior, it is recommended that applications (or frameworks) wishing to plug in
their own resolver implementations do so before cr eat eVal ueBi ndi ng() is called
for the first time.

7-4 JavaServer Faces Specification « February 2004

7.1.9

7.1.10

Acquiring MethodBinding Instances

publ i ¢ Met hodBi ndi ng createMethodBi ndi ng(String ref, d ass
paranms[]);

Create and return a Met hodBi ndi ng (see Section 5.3.4 “MethodBinding”) that can
be used to evaluate the specified method binding expression, and invoke the
specified method. This method must have parameter signatures that are compatible
with the classes in the par ams parameter! (which may be nul | or a zero-length
array if the method to be called takes no parameters). The actual parameters to be
passed when the method is executed are specified on the i nvoke() call of the
returned Met hodBi ndi ng instance.

To avoid nondeterministic behavior, it is recommended that applications (or
frameworks) wishing to plug in their own resolver implementations do so before
calling cr eat eMet hodBi ndi ng() for the first time.

Object Factories

The Appl i cati on instance for a web application also acts as an object factory for
the creation of new JSF objects such as components, converters, and validators.

public Ul Conponent createConponent(String component Type);
public Converter createConverter(C ass targetC ass);
public Converter createConverter(String converterld);

public Validator createValidator(String validatorld);

Each of these methods creates a new instance of an object of the requested type?,

based on the requested identifier. The names of the implementation class used for
each identifier is normally provided by the JSF implementation automatically (for
standard classes described in this Specification), or in one or more application

1. The actual Met hod selected for execution must be selected as if by calling Class.getMethod() and passing the
method name and the parameters signature specified in the createMethodBinding() call.

2. Converters can also be requested based on the object class of the value to be converted.

Chapter 7 Application Integration ~ 7-5

7-6

configuration resources (see Section 10.3 “Application Configuration Resources™)
included with a JSF web application, or embedded in a JAR file containing the
corresponding implementation classes.

public Ul Conponent createConponent (Val ueBi ndi ng conponent Ref,
FacesCont ext context, String conponent Type);

Special version of the factory for UIComponent instances that is used when
evaluating component reference expression properties. This method has the
following behavior:

= Call the get Val ue() method on the specified Val ueBi ndi ng, in the context of
the specified FacesCont ext . If this results in a non-null Ul Conponent instance,
return that as the value of the get Conponent () call.

= If the getValue() call did not return a component instance, create a new
component instance of the specified component type.

public voi d addConponent (String conmponent Type, String
conponent Cl ass) ;

public void addConverter(C ass targetCl ass, String
converterCl ass);

public void addConverter(String converterld, String
converterCl ass);

public void addValidator(String validatorld, String
val i dat or Cl ass);

JSF-based applications can register additional mappings of identifiers to a
corresponding fully qualified class name, or replace mappings provided by the JSF
implementation in order to customize the behavior of standard JSF features. These
methods are also used by the JSF implementation to register mappings based on
<conponent >, <converter >, and <val i dat or > elements discovered in an
application configuration resource.

public Iterator getConponentTypes();
public Iterator getConverterlds();
public Iterator getConverterTypes();

public Iterator getValidatorlds();

JavaServer Faces Specification February 2004

7.1.11

JSF-based applications can ask the Appl i cat i on instance for a list of the registered
identifiers for components, converters, and validators that are known to the instance.

Internationalization Support

The following methods and properties allow an application to describe its supported
locales, and to provide replacement text for standard messages created by JSF
objects.

public Iterator getSupportedLocal es();

public voi d set SupportedLocal es(Col | ecti on newLocal es);
public Local e getDefaul tLocal e();

public void setDefaul tLocal e(Local e newLocal e);

JSF applications may state the Local es they support (and the default Local e
within the set of supported Local es) in the application configuration resources file.
The setters for the following methods must be called when the configuration
resources are parsed. Each time the setter is called, the previous value is overwritten.

public String get MessageBundl e();

public void set MessageBundl e(Stri ng nessageBundl e) ;

Specify the fully qualified name of the ResourceBundle from which the JSF
implementation will acquire message strings that correspond to standard message
keys See Section 2.5.2.4 “Localized Application Messages” for a list of the standard
message keys recognized by JSF.

7.2

ApplicationFactory

A single instance of j avax. f aces. appl i cati on. Appl i cati onFact ory must be
made available to each JSF-based web application running in a servlet or portlet
container. The factory instance can be acquired by JSF implementations or by
application code, by executing:

ApplicationFactory factory = (ApplicationFactory)
Fact or yFi nder . get Fact or y(Fact or yFi nder . APPLI CATI ON_FACTORY) ;

Chapter 7 Application Integration 7-7

The Appl i cati onFact ory implementation class supports the following methods:

public Application getApplication();

public void setApplication(Application application);

Return or replace the Appl i cati on instance for the current web application. The
JSF implementation must provide a default Appl i cat i on instance whose behavior
is described in Section 7.1 “Application”.

Note that applications will generally find it more convenient to access the
Appl i cati on instance for this application by calling the get Appl i cati on()
method on the FacesCont ext instance for the current request.

7.3

Application Actions

An application action is an application-provided method on some Java class that
performs some application-specified processing when an Act i onEvent occurs,
during either the Apply Request Values or the Invoke Application phase of the request
processing lifecycle (depending upon the i medi at e property of the

Act i onSour ce instance initiating the event).

Application action is not a formal JSF API; instead any method that meets the
following requirements may be used as an Action by virtue of evaluating a method
binding expression:

= The method must be public.

= The method must take no parameters.

= The method must return Stri ng.

The action method will be called by the default Acti onLi st ener implementation,
as described in Section 7.1.1 “ActionListener Property” above. Its responsibility is to
perform the desired application actions, and then return a logical “outcome”
(represented as a St ri ng) that can be used by a Navi gati onHandl er in order to
determine which view should be rendered next. The action method to be invoked is
defined by a Met hodBi ndi ng that is specified in the acti on property of a
component that implements Act i onSour ce. Thus, a component tree with more
than one such Act i onSour ce component can specify individual action methods to
be invoked for each activated component, either in the same Java class or in different
Java classes.

7-8 JavaServer Faces Specification « February 2004

7.4

7.4.1

7.4.2

NavigationHandler

Overview

A single Navi gat i onHandl er instance is responsible for consuming the logical
outcome returned by an application action that was invoked, along with additional
state information that is available from the FacesCont ext instance for the current
request, and (optionally) selecting a new view to be rendered. As mentioned below,
if the outcome returned by the application action is nul | , the same view must be re-
displayed. This is the only case where the same view (and component tree) is re-
used..

public voi d handl eNavi gati on(FacesCont ext context, String
fromAction, String outcone);

The handl eNavi gat i on method may select a new view by calling cr eat eVi ew()
on the Vi ewHandl er instance for this application, optionally customizing the
created view, and then selecting it by calling the set Vi ewRoot () method on the
FacesCont ext instance that is passed. Alternatively, the Navi gat i onHandl er can
complete the actual response (for example, by issuing an HTTP redirect), and call
responseConpl et e() on the FacesCont ext instance.

After a return from the Navi gat i onHandl er, control will normally proceed to the
Render Response phase of the request processing lifecycle (see Section 2.2.6 “Render
Response™), which will cause the newly selected view to be rendered. If the

Navi gat i onHandl er called the r esponseConpl et e() method on the
FacesCont ext instance, however, the Render Response phase will be bypassed.

Default NavigationHandler Implementation

JSF implementations must provide a default Navi gat i onHandl er implementation
that maps the action reference that was utilized (by the default Act i onLi st ener
implementation) to invoke an application action, the logical outcome value returned
by that application action, as well as other state information, into the view identifier
for the new view to be selected. The remainder of this section describes the
functionality provided by this default implementation.

Chapter 7 Application Integration ~ 7-9

The behavior of the default Navi gat i onHandl er implementation is configured, at
web application startup time, from the contents of zero or more application
configuration resources (see Section 10.3 “Application Configuration Resources”). The
configuration information is represented as zero or more <navi gat i on-rul e>
elements, each keyed to a matching pattern for the view identifier of the current view
expressed in a <f r om vi ew- i d> element. This matching pattern must be either an
exact match for a view identifier (such as “/Zindex.jsp” if you are using the default
Vi ewHandl er), or the prefix of a component view id, followed by an asterisk (“*”)
character. A matching pattern of “*”, or the lack of a <f r om vi ew i d> element
inside a <navi gat i on-rul e> rule, indicates that this rule matches any possible
component view identifier.

Nested within each <navi gati on-rul e> element are zero or more <navi gat i on-
case> elements that contain additional matching criteria based on the action
reference expression value used to select an application action to be invoked (if any),
and the logical outcome returned by calling the i nvoke() method of that
application action3. Finally, the <navi gat i on- case> element contains a <t o-

vi ew- i d> element whose content is the view identifier that will be selected and
stored in the FacesCont ext for the current request. See below for an example of the
configuration information for the default Navi gat i onHandl er might be
configured.

It is permissible for the application configuration resource(s) used to configure the
default Navi gati onHandl er to include more than one <navi gati on-rul e>
element with the same <f r om vi ew- i d> matching pattern. For the purposes of the
algorithm described below, all of the nested <navi gat i on- case> elements for all
of these rules shall be treated as if they had been nested inside a single

<navi gati on-rul e> element.

The default Navi gat i onHandl er implementation must behave as if it were
performing the following algorithm (although optimized implementation techniques
may be utilized):

= If the logical outcome value passed to the handl eNavi gati on() method is null,
do not scan for matching rules. This is an indication that the current view should
be redisplayed.

= Find a <navi gat i on-r ul e> element for which the view identifier (of the view
in the FacesCont ext instance for the current request) matches the <f rom
vi ew- i d> matching pattern of the <navi gat i on- r ul e>. Rule instances are
considered in the following order:

« An exact match of the view identifier against a <f r om vi ew- i d> pattern that
does not end with an asterisk (“*””) character.

7-10

3. Itisan error to specify more than one <navigation-case>, nested within one or more <navigation-rule>
elements with the same <from-view-id> matching pattern, that have exactly the same combination of <from-
xxx>element values.

JavaServer Faces Specification ¢ February 2004

« For <from vi ewi d> patterns that end with an asterisk, an exact match on
characters preceding the asterisk against the prefix of the view id. If the
patterns for multiple navigation rules match, pick the longest matching prefix
first.

« Ifthereisa<navigation-rul e>witha<fromvi ewi d> pattern of only an
asterisk?, it matches any view identifier.

= From the <navi gati on- case> elements nested within the matching
<navi gati on-rul e> element, locate a matching navigation case by matching
the <f rom act i on> and <f r om out conme> values against the corresponding
parameter values passed in to the handleNavigation() method. Navigation cases
are checked in the following order:

« Cases specifying both a <fr om act i on> value and a <f r om out conme> value
are matched against the act i on expression and out conme parameters passed
to the handl eNavi gati on() method (both parameters must be not null, and
both must be equal to the corresponding condition values, in order to match).

« Cases that specify only a <f r om out cone> value are matched against the
out cone parameter passed to the handl eNavi gat i on() method (which
must be not null, and equal to the corresponding condition value, to match).

« Cases that specify only a <f rom act i on> value are matched against the
act i on expression parameter passed to the handl eNavi gati on() method
(which must be not null, and equal to the corresponding condition value, to
match).

« Any remaining case is assumed to match.

= If a matching <navi gat i on- case> element was located, and the <redirect/>
element was not specified in this <navigation-case> (or the application is running
in a Portlet environment, where redirects are not possible), use the <t 0- vi ew-
i d> element of the matching case to request a new Ul Vi ewRoot instance from
the Vi ewHandl er instance for this application, and pass it to the
set Vi ewRoot () method of the FacesCont ext instance for the current request.
Then, exit the algorithm.

= If a matching <navi gat i on- case> element was located, the <r edi rect/ >
element was specified in this <navi gat i on- case>, and the application is not
running in a Portlet environment, use the <t o- vi ew-i d> element of the
matching case to construct a context-relative path that corresponds to that view
id, cause the current response to perform an HTTP redirect to this path, and call
responseConpl et e() on the FacesCont ext instance for the current request.

= If no matching <navi gati on- case> element was located, return to Step 1 and
find the next matching <navi gat i on-r ul e> element (if any). If there are no
more matching rule elements, return without changing the current view.

A rule match always causes a new view to be created, losing the state of the old
view.

4. Or, equivalently, with no <f r om vi ew- i d>elementat all.

Chapter 7 Application Integration ~ 7-11

7.4.3 Example NavigationHandler Configuration

The following <navi gat i on- r ul e> elements might appear in one or more
application configuration resources (see Section 10.3 “Application Configuration
Resources”) to configure the behavior of the default Navi gat i onHandl er
implementation:

<navi gation-rul e>

<descri pti on>

APPLI CATI ON W DE NAVI GATI ON HANDLI NG
</ descri ption>
<fromviewid>* </fromviewid>

<navi gat i on- case>
<descri pti on>
Assume there is a “Logout” button on every page that
i nvokes the | ogout Action.
</ descri ption>
<di spl ay- name>GCGeneri c Logout Button</displ ay-name>
<from acti on>#{user Bean. | ogout} </ from acti on>
<t o-vi ew-i d>/| ogout . j sp</to-viewid>
</ navi gati on-case>

<navi gat i on- case>
<descri pti on>
Handl e a generic error outconme that m ght be returned
by any application Action.
</ descri ption>
<di spl ay- name>Generic Error Cutcome</displ ay-name>
<f rom out come>| ogi nRequi r ed</ fr om out come>
<to-view-id>/nust-login-first.jsp</to-viewid>
</ navi gati on-case>

</ navi gati on-rul e>

7-12 JavaServer Faces Specification February 2004

<navi gation-rul e>

<descri pti on>
LOG N PAGE NAVI GATI ON HANDLI NG
</ descri ption>
<fromviewid> /login.jsp </fromviewid>

<navi gat i on- case>
<descri pti on>
Handl e case where | ogi n succeeded.
</ descri ption>
<di spl ay- nanme>Successful Logi n</di spl ay- nane>
<from acti on>#{user Bean. | ogi n}</fromacti on>
<f rom out conme>success</ from out come>
<t 0-vi ew-i d>/ hone. j sp</to-viewid>
</ navi gati on-case>

<navi gat i on- case>
<descri pti on>
User registration for a new user succeeded.
</ descri ption>

<di spl ay- name>Successful New User Regi stration</displ ay- nane>

<fromacti on>#{userBean.register}</fromacti on>
<f rom out conme>success</ from out come>
<t 0-vi ew-i d>/ wel cone. j sp</to-viewid>

</ navi gati on-case>

<navi gat i on- case>
<descri pti on>
User registration for a new user failed because of a
dupl i cat e usernane.
</ descri ption>
<di spl ay- name>Fai | ed New User Regi stration</di spl ay- name>
<fromacti on>#{userBean.register}</fromacti on>
<f rom out come>dupl i cat eUser Nane</ f r om out cone>
<t 0-vi ew-i d>/try-anot her-nane. j sp</to-vi ewid>
</ navi gati on-case>

</ navi gati on-rul e>

Chapter 7 Application Integration

7-13

<navi gation-rul e>

<descri pti on>
Assume there is a search formon every page. These navi gation
cases get nerged with the application-w de rul es above because
they use the same “fromviewid” pattern. The same thing woul d
al so happen i f “fromviewid” was onmtted here, because that is
equi valent to a matching pattern of “*”.

</ descri ption>

<fromviewid> * </fromviewid>

<navi gat i on- case>
<di spl ay- nanme>Sear ch Form Success</di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<f rom out come>success</ from out come>
<t o-vi ew-i d>/search-results.jsp</to-viewid>
</ navi gati on-case>

<navi gat i on- case>
<di spl ay- nanme>Search Form Fai | ure</ di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<t 0- vi ew-i d>/ sear ch-probl em j sp</to-vi ewi d>

</ navi gati on-case>

</ navi gati on-rul e>

7-14 JavaServer Faces Specification February 2004

<navi gation-rul e>

<descri pti on>

Searching works slightly differently in part of the site.
</ descri ption>
<fromviewid> /novies/* </fromviewid>

<navi gat i on- case>
<di spl ay- nanme>Sear ch Form Success</di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<f rom out conme>success</ from out come>
<t 0- vi ew-i d>/ novi e- search-resul ts.jsp</to-viewid>
</ navi gati on-case>

<navi gat i on- case>
<di spl ay- nanme>Search Form Fai | ure</ di spl ay- nane>
<from acti on>#{sear chForm go}</from acti on>
<t 0- vi ew-i d>/ sear ch-probl em j sp</to-vi ewi d>

</ navi gati on-case>

</ navi gati on-rul e>

7.5

7.5.1

ViewHandler

Vi ewHand! er is the pluggability mechanism for allowing implementations of or
applications using the JavaServer Faces specification to provide their own handling
of the activities in the Render Response and Restore View phases of the request
processing lifecycle. This allows for implementations to support different response
generation technologies, as well as different state saving/restoring approaches.

A JSF implementation must provide a default implementation of the Vi ewHandl er
interface. See Section 7.1.7 “ViewHandler Property” for information on replacing
this default implementation with another implementation.

Overview

ViewHandler defines the public APIs described in the following paragraphs

public Local e cal cul ateLocal e(FacesCont ext context);
public String cal cul at eRender Ki t | d(FacesCont ext cont ext);

Chapter 7 Application Integration 7-15

7-16

These methods are called from creat eVi ew() to allow the new view to determine
the Local e to be used for all subsequent requests, and to find out which
render Ki t | d should be used for rendering the view.

public Ul Vi ewRoot createVi ew FacesContext context, String view d);

Create and return a new Ul Vi ewRoot instance, initialized with information from the
specified FacesCont ext and view identifier parameters. It is the callers
responsibility to ensure that set Vi ew d() is called on the returned view, passing
the same vi ewl d value.

public String getActi onURL(FacesContext context, String view d);

Returns a URL, suitable for encoding and rendering, that (if activated) will cause the
JSF request processing lifecycle for the specified vi ewl d to be executed

public String get ResourceURL(FacesCont ext context, String path);

Returns a URL, suitable for encoding and rendering, that (if activated) will retrieve
the specified web application resource.

public void render Vi ew(FacesCont ext context, Ul Vi ewRoot
vi ewToRender) throws | OException, FacesExcepti on;

This method must be called during the Render Response phase of the request
processing lifecycle. It must provide a valid ResponseW it er or ResponseSt r eam
instance, storing it in the FacesCont ext instance for the current request (see
Section 6.1.6 “ResponseStream and ResponseWriter”), and then perform whatever
actions are required to cause the view currently stored in the vi ewRoot of the
FacesCont ext instance for the current request to be rendered to the corresponding
writer or stream. It must also interact with the associated St at eManager (see
Section 7.6 “StateManager”), by calling the get Seri al i zedVi ew() and

saveVi ew() methods, to ensure that state information for current view is saved
between requests.

public U Vi ewRoot restoreVi ew FacesCont ext context, String vi ew d)
t hrows | CExcepti on;

JavaServer Faces Specification ¢ February 2004

7.5.2

This method must be called from the Rest or e Vi ew phase of the request
processing lifecycle. It must perform whatever actions are required to restore the
view associated with the specified FacesCont ext and vi ewl d.

It is the caller’s responsibility to ensure that the returned Ul Vi ewRoot instance is
stored in the FacesCont ext as the new vi ewRoot property. In addition, if
restoreView() returns nul | (because there is no saved state for this view
identifier), the caller must call cr eat eVi ew() , and call r ender Response() on the
FacesCont ext instance for this request.

public void witeState(FacesContext context) throws |COException;

Take any appropriate action to either immediately write out the current view’s state
information (by calling St at eManager. writ eSt at e()), or noting where state
information may later be written. This method must be called once per call to the
encodeEnd() method of any renderer for a U For mcomponent, in order to provide
the Vi ewHandl er an opportunity to cause saved state to be included with each
submitted form

Default ViewHandler Implementation

The terms view identifier and vi ewl d are used interchangeably below and mean the
context relative path to the web application resource that produces the view, such as
a JSP page. In the JSP case, this is a context relative path to the jsp page representing
the view, such as / f 0o. j sp.

JSF implementations must provide a default Vi ewHandl er implementation,
designed to support the rendering of JSP pages containing JSF components, that
must behave as described in the remainder of this section:

The cal cul at eLocal e() method must fulfill the following responsibilities:

= Attempt to match one of the locales returned by the get Local es() method of
the Ext er nal Cont ext instance for this request, against the supported locales for
this application as defined in the application configuration resources. Matching is
performed by the algorithm described in Section JSTL.8.3.2 of the JSTL
Specification. If a match is found, return the corresponding Local e object.

= Otherwise, if the application has specified a default locale in the application
configuration resources, return the corresponding Local e object.

= Otherwise, return the value returned by calling Local e. get Def aul t ().

The cal cul at eRender Ki t I d() method must fulfill the following responsibilities:

= Return the value returned by Appl i cati on. get Def aul t RenderKi t1d() ifitis
not nul | .

Chapter 7 Application Integration 7-17

7-18

= Otherwise, return the value specified by the symbolic constant
Render Ki t Fact ory. HTM._BASI C_RENDER KI T.

The cr eat eVi ew() method must fulfill the following responsibilities:
= Create a new Ul Vi ewRoot object instance

= Conditionally copy the r ender Ki t 1 d and | ocal e from any current view for the
current request (as described in the Javadocs for cr eat eVi ew()).

= Return the newly created Ul Vi ewRoot .

The get Acti onURL() method must fulfill the following responsibilities:

= If the specified vi ew d does not start with a “/”, throw
1l egal Argument Excepti on.

= If prefix mapping (such as “/faces/*”) is used for FacesSer vl et , prepend the
context path of the current application, and the specified prefix, to the specified
viewld and return the completed value. For example
“/ car denmo/ f aces/ chooselLocal e. j sp”.

= If suffix mapping (such as “*.faces”) is used for FacesSer vl et , and the specified
viewld ends with the specified suffix, replacing the suffix with the value specified
by the context initialization parameter named by the symbolic constant
Vi ewHandl er . DEFAULT_SUFFI X_NANME (if no such context initialization
parameter is present, use the value of the symbolic constant
ViewHandler. DEFAULT_SUFFIX as the replacement suffix), prefix this value with
the context path for the current web application, and return the result. For
example “/ car deno/ chooselLocal e. f aces”

The get Resour ceURL() method must fulfill the following responsibilities:

= If the specified path starts with a “/”, prefix it with the context path for the
current web application, and return the result.

= Otherwise, return the specified pat h value unchanged.

The render Vi ew() method must fulfill the following responsibilities:

= If the current request is a Ser vl et Request, call the set () method of the
javax. servl et.jsp.jstl.core. Confi g class, passing the current
Ser vl et Request , the symbolic constant Conf i g. FMI_LOCALE, and the | ocal e
property of the specfied Ul Vi ewRoot . This configures JSTL with the application’s
preferred locale for rendering this response.

= If suffix mapping (such as “*.faces”) is used for FacesSer vl et , examine the
vi ewl d property of the specfied Ul Vi ewRoot . If it ends with a matching suffix,
modify the viewld property by replacing the suffix with the value specified by the
context initialization parameter named by the symbolic constant
Vi ewHandl er . DEFAULT_SUFFI X_NAME (if no such context initialization
parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_SUFFIX as the replacement suffix).

JavaServer Faces Specification ¢ February 2004

Treat the (possibly modified) vi ew d as a context-relative path (starting with a
slash character), by passing it to the di spat ch() method of the
Ext er nal Cont ext associated with this request.

The restoreVi ewm() method must fulfill the following responsibilities:

If the current request is a servlet request, set the character encoding to be used for
processing this request, either from a “charset” attribute included on the
incoming Content-Type header, or from a value previously saved in the session
under the key specified by the symbolic constant

Vi ewHandl er . CHARACTER _ENCODI NG_KEY (if the request is part of a session).

Calculate the vi ewl d that corresponds to this request, as follows:

« If prefix mapping (such as “/faces/*”) is used for FacesSer vl et, the vi e d
is set from the extra path information of the request URI.

« If suffix mapping (such as “*.faces”) is used for FacesSer vl et , the vi ewl d is
set from the servlet path information of the request URI, after replacing the
suffix with the value of the context initialization parameter named by the
symbolic constant Vi ewHand| er . DEFAULT_SUFFI X_NAME (if no such context
initialization parameter is present, use the value of the symbolic constant
Vi ewHandl er . DEFAULT_SUFFI X as the replacement suffix).

If no vi ew d could be identified, call the r edi rect () method of the
Ext er nal Cont ext instance for this request, passing the context path of this web
application.

Otherwise, call the r est or eVi ew() method of the associated St at eManager,
passing the FacesContext instance for the current request and the calculated
vi ewl d, and return the returned Ul Vi ewRoot .

In JSP applications, the default ViewHandler must delegate certain of its
responsibilities, as follows:

The responsibility to configure and install an appropriate ResponseW i ter is
delegated to the doSt art Tag() method of Ul Conponent Tag.

The render Vi ewm() responsibility to interact with the St at eManager for
ensuring that state is saved between requests (by calling
saveSerializedView() andwiteState()) is delegated to the

doAf t er Body() method of the tag handler corresponding to the <f : vi ew>
custom action.

In non-JSP applications, these responsibilities must be performed by a custom
ViewHandler implementation.

Chapter 7 Application Integration 7-19

7.6

7.6.1

StateManager

St at eManager directs the process of saving and restoring the view between
requests. The St at eManager instance for an application is retrieved from the
Appl i cati on instance, and therefore cannot know any details of the markup
language created by the Render Ki t being used to render a view. Therefore, the
St at eManager utilizes a helper object (see Section 8.3 “ResponseStateManager”),
that is provided by the Render Ki t implementation, and is therefore aware of the
markup language details. The JSF implementation must provide a default

St at eManager implementation that supports the behavior described below.

Overview

The state of a view is divided into two pieces:

= Tree Structure. This includes component parent-child relationships, including
facets.

= Component State. This includes:
« Component attributes and properties, and

« Validators, Convert ers, FacesLi st eners, and other objects attached to a
component. The manner in which these attached objects are saved is up to the
component implementation. For attached objects that may have state, the
St at eHol der interface (see Section 3.2.3 “StateHolder”) is provided to allow
these objects to preserve their own attributes and properties. If an attached
object does not implement St at eHol der, but does implement
Seri al i zabl e, it is saved using standard serialization. Attached objects that
do not implement either St at eHol der or Seri al i zabl e must have a public,
zero-arg constructor, and will be restored only to their initial, default object
stated.

The separation between tree structure and tree state has been explicitly called out
to make it clear that implementations can use a different mechanism for persisting
the structure than is used to persist the state. For example, in a system where the
tree structure is stored statically, as an XML file, for example, the system could
keep a DOM representation of the trees representing the webapp Ul in memory,
to be used by all requests to the application.

5. The implementation classes for attached object must include a public zero-arguments constructor.

7-20 JavaServer Faces Specification February 2004

7.6.2

7.6.3

State Saving Alternatives and Implications

JSF implementations support two primary mechanisms for saving state, based on the
value of the j avax. f aces. STATE_SAVI NG_METHOD initialization parameter (see
Section 10.1.3 “Application Configuration Parameters”). The possible values for this
parameter give a general indication of the approach to be used, while allowing JSF
implementations to innovate on the technical details:

= client -- Cause the saved state to be included in the rendered markup that is sent
to the client (such as in a hidden input field for HTML). The state information
must be included in the subsequent request, making it possible for JSF to restore
the view without having saved information on the server side.

= server -- Cause the saved state to be stored on the server (perhaps by being stored
in a servlet or portlet session) in between requests.

If your application uses client state saving, the values of all component attributes and
properties (as well as the saved state of attached objects) must implement
java.io. Serializable.

State Saving Methods.

public StateManager. SerializedView
saveSeri al i zedVi ew(FacesCont ext context);

This method causes the tree structure and component state of the view contained in
the argument FacesCont ext to be collected, stored, and returned in a

St at eManager . Seri al i zedVi ew instance. If nul | is returned from this method,
there is no state to save.

This method must also enforce the rule that component ids within a
Nami ngCont ai ner must be unique

public void witeState(FacesContext context,
St at eManager . Seri al i zedVi ew state) throws | OException;

Save the state represented in the specified Seri al i zedVi ew instance, in an
implementation dependent manner.

protected Object getTreeStructureToSave(FacesContext context);

Chapter 7 Application Integration 7-21

7.6.4

This method must create a Seri al i zabl e object that represents the tree structure of
the component tree for this view. Tree structure is comprised of parent-child
relationships, including facets. The i d of each component and facet must also be
saved to allow the naming containers in the tree to be correctly restored when this
view is restored.

protected Object get Conponent St at eToSave(FacesCont ext context);

This method must create a Seri al i zabl e object representing the component state
(attributes, properties, and attached objects) of the component tree for this view.
Attached objects that wish to save and restore their own state must implement

St at eHol der.

State Restoring Methods

public Ul ViewRoot restoreVi ewFacesContext context, String
viewl d) ;

Restore the tree structure and the component state of the view for this vi ewl d to be
restored, in an implementation dependent manner. If there is no saved state
information available for this vi ewl d, this method returns nul | .

The default implementation of this method calls through to
restoreTreeStructure() and, if necessary r est oreConponent State() .

protected U Vi ewRoot restoreTreeStructure(FacesContext context,
String viewd);

Convenience method to construct a new UlViewRoot and populate it with the child
and facet descendants represented in the saved tree structure information.

protected void restoreConponent St at e(FacesCont ext cont ext,
Ul Vi ewRoot vi ewRoot) ;

Convenience method to restore the attributes, properties, and attached objects of all
components in the restored component tree. This method must be called only if
restoreTreeStructure() returned a non-nul I Ul Vi ewRoot instance.

7-22 JavaServer Faces Specification February 2004

CHAPTER 8

Rendering Model

JavaServer Faces supports two programming models for decoding component values
from incoming requests, and encoding component values into outgoing responses -
the direct implementation and delegated implementation models. When the direct
implementation model is utilized, components must decode and encode themselves.
When the delegated implementation programming model is utilized, these operations
are delegated to a Render er instance associated (via the r ender er Type property)
with the component. This allows applications to deal with components in a manner
that is predominantly independent of how the component will appear to the user,
while allowing a simple operation (selection of a particular Render Ki t) to
customize the decoding and encoding for a particular client device or localized
application user.

Component writers, application developers, tool providers, and JSF implementations
will often provide one or more Render Ki t implementations (along with a
corresponding library of Render er instances). In many cases, these classes will be
provided along with the Ul Conponent classes for the components supported by the
Render Ki t . Page authors will generally deal with Render Ki t s indirectly, because
they are only responsible for selecting a render kit identifier to be associated with a
particular page, and a r ender er Type property for each Ul Conponent that is used
to select the corresponding Render er.

8.1

RenderKit

A Render Ki t instance is optionally associated with a view, and supports
components using the delegated implementation programming model for the decoding
and encoding of component values. Each JSF implementation must provide a default

8-2

Render Ki t instance (named by the render Kit identifier associated with the String
constant Render Ki t Fact ory. HTML_BASI C_RENDER_KI T as described below) that
is utilized if no other Render Ki t is selected.

public Renderer getRenderer(String famly, String rendererType);

Return the Render er instance corresponding to the specified component f ami | y
and renderer Type (if any), which will typically be the value of the
render er Type property of a U Conponent about to be decoded or encoded.

public void addRenderer(String famly, String rendererType,
Render er renderer);

Applications that wish to go beyond the capabilities of the standard Render Ki t that
is provided by every JSF implementation may either choose to create their own
Render Ki t instances and register them with the Render Ki t Fact or y instance (see
Section 8.4 “RenderKitFactory”), or integrate additional (or replacement) supported
Render er instances into an existing Render Ki t instance. For example, it will be
common to for an application that requires custom component classes and

Render er s to register them with the standard Render Ki t provided by the JSF
implementation, at application startup time See Section 10.3.6 “Example Application
Configuration Resource”for an example of a f aces- confi g. xml configuration
resource that defines two additional Renderer instances to be registered in the
default Render Ki t .

public ResponseWiter createResponseWiter(Witer witer, String
content TypeList, String characterEncoding);

Use the provided Wit er to create a new ResponseW it er instance for the
specified character encoding.

The cont ent TypelLi st parameter is an "Accept header style" list of content types
for this response, or nul | if the Render Ki t should choose the best fit. The

Render Ki t must support a value for the cont ent TypeLi st argument that comes
straight from the Accept HTTP header, and therefore requires parsing according to
the specification of the Accept header. Please see Section 14.1 of RFC 2616 (he
HTTP 1.1 RFC) for the specification of the Accept header.

Implementors are advised to consult the get Char act er Encodi ng() method of
class j avax. f aces. servl et. Ser vl et Response to get the required value for the
characterEncoding parameter for this method. Since the Wi t er for this response

JavaServer Faces Specification February 2004

will already have been obtained (due to it ultimately being passed to this method),
we know that the character encoding cannot change during the rendering of the
response. Please see Section 6.4 “ResponseWriter”

publ i c ResponseStream creat eResponseSt ream Quput Stream out) ;

Use the provided Qut put St r eamto create a new ResponseSt r eam instance.

publ i ¢ ResponseSt at eManager get ResponseSt at eManager ();

Return an instance of ResponseSt at eManager to handle rendering technology
specific state management decisions.

8.2

Renderer

A Render er instance implements the decoding and encoding functionality of
components, during the Apply Request Values and Render Response phases of the
request processing lifecycle, when the component has a non-nul | value for the
r ender er Type property.

public voi d decode(FacesContext context, Ul Conponent conponent);

For components utilizing the delegated implementation programming model, this
method will be called during the apply request values phase of the request processing
lifecycle, for the purpose of converting the incoming request information for this
component back into a new local value. See the API reference for the

Render er . decode() method for details on its responsibilities.

public void encodeBegi n(FacesCont ext context, U Conponent
conponent) throws | CExcepti on;

public void encodeChil dren(FacesCont ext context, Ul Conponent
conponent) throws | CExcepti on;

public voi d encodeEnd(FacesCont ext cont ext, Ul Conponent conponent)
t hrows | CExcepti on;

Chapter 8 Rendering Model 8-3

For components utilizing the delegated implementation programming model, these
methods will be called during the Render Response phase of the request processing
lifecycle. These methods have the same responsibilities as the corresponding
encodeBegi n(), encodeChi | dren(), and encodeEnd() methods of

U Component (described in Section 3.1.12 “Component Specialization Methods”
and the corresponding Javadocs) when the component implements the direct
implementation programming model.

public String convertdientld(FacesContext context, String
clientld);

Converts a component-generated client identifier into one suitable for transmission
to the client.

public bool ean get RendersChil dren();

Return a flag indicating whether this Renderer is responsible for rendering the
children of the component it is asked to render.

publi ¢ Object getConvertedVal ue(FacesCont ext cont ext,
Ul Conponent conponent, Object subm ttedVal ue) throws
Convert er Excepti on;

Attempt to convert previously stored state information into an object of the type
required for this component (optionally using the registered Convert er for this
component, if there is one). If conversion is successful, the new value should be
returned from this method,; if not, a Convert er Excepti on should be thrown.

8.3 ResponseStateManager

ResponsesSt at eManager is the helper class to

javax. faces. appl i cati on. St at eManager that knows the specific rendering
technology being used to generate the response. It is a singleton abstract class. This
class knows the mechanics of saving state, whether it be in hidden fields, session, or
some combination of the two.

public Object getConponent StateToRestore(FacesContext context);

8-4 JavaServer Faces Specification ¢ February 2004

The implementation must inspect the current request and return the component tree
state Object passed to it on a previous invocation of writeState().

public Object getTreeStructureToRestore(FacesContext context,
String view d);

The implementation must inspect the current request and return the tree structure
Object passed to it on a previous invocation of writeState().

public void writeState(FacesContext context, SerializedViewstate)
t hrows | CExcepti on;

Take the argument content buffer and replace the state markers that we've written
using wr i t eSt at eMar ker () with the appropriate representation of the structure
and state, writing the output to the output writer.

If the structure and state are to be written out to hidden fields, the implementation
must take care to make all necessary character replacements to make the Strings
suitable for inclusion as an HTTP request paramater.

8.4

RenderKitFactory

A single instance of j avax. f aces. r ender . Render Ki t Fact ory must be made
available to each JSF-based web application running in a servlet or portlet container.
The factory instance can be acquired by JSF implementations, or by application code,
by executing

Render Ki t Factory factory = (RenderKitFactory)
Fact or yFi nder. get Fact or y(Fact or yFi nder . RENDER_KI T_FACTORY) ;

The Render Ki t Fact ory implementation class supports the following methods:

public RenderKit getRenderKit (FacesContext context, String
renderKitld);

Return a Render Ki t instance for the specified render kit identifier, possibly
customized based on the dynamic characteristics of the specified, (yet possibly null)
FacesCont ext . For example, an implementation might choose a different

Chapter 8 Rendering Model 8-5

Render Ki t based on the “User-Agent” header included in the request, or the
Local e that has been established for the response view. Note that applications
which depend on this feature are not guaranteed to be portable across JSF
implementations.

Every JSF implementation must provide a Render Ki t instance for a default render
kit identifier that is designated by the St ri ng constant

Render Ki t Fact ory. HTML_BASI C_RENDER_KI T. Additional render kit identifiers,
and corresponding instances, can also be made available.

public Iterator getRenderKitlds();

This method returnsan | t er at or over the set of render kit identifiers supported by
this factory. This set must include the value specified by
Render Ki t Fact ory. HTM._BASI C_RENDER KI T.

public voi d addRenderKit (String renderKitld, RenderKit renderKit);

Register a Render Ki t instance for the specified render kit identifier, replacing any
previous RenderKit registered for that identifier.

8.5

8-6

Standard HTML RenderKit
Implementation

To ensure application portability, all JSF implementations are required to include
support for a Render Ki t, and the associated Render er s, that meet the
requirements defined in this section, to generate textual markup that is compatible
with HTML 4.01. JSF implementors, and other parties, may also provide additional
Render Ki t libraries, or additional Render er s that are added to the standard
Render Ki t at application startup time, but applications must ensure that the
standard Render er s are made available for the web application to utilize them.

The required behavior of the standard HTML RenderKit is specified in a set of
external HTML pages that accompany this specification, entitled “The Standard
HTML RenderKit”. The behavior described in these pages is normative, and are
required to be fulfilled by all implementations of JSF.

JavaServer Faces Specification February 2004

8.6

The Concrete HTML Component Classes

For each valid combination of Ul Conponent subclass and standard renderer given
in the previous section, there is a concrete class in the package

j avax. f aces. conponent . ht ml package. Each class in this package is a subclass
of an corresponding class in the j avax. f aces. conponent package, and adds
strongly typed JavaBeans properties for all of the renderer-dependent properties.

TABLE 8-1 Concrete HTML Component Classes

javax.faces.component
class

renderer-type

javax.faces.component.html
class

UlCommand
UlCommand
UlData
UIForm
UlGraphic
Ullnput
Ullnput
Ullnput
Ullnjput
UlMessage
UlMessages
UlOutput
UlIOutput
UlIOutput
UIOutput
UlPanel
UlPanel

UlSelectBoolean

UlSelectMany

UlSelectMany
UlSelectMany

javax.faces.Button
javax.faces.Link
javax.faces.Table
javax.faces.Form
javax.faces.Image
javax.faces.Hidden
javax.faces.Secret
javax.faces.Text
javax.faces.Textarea
javax.faces.Message
javax.faces.Messages
javax.faces.Format
javax.faces.Label
javax.faces.Link
javax.faces.Text
javax.faces.Grid
javax.faces.Group

javax.faces.Checkbox

javax.faces.Checkbox

javax.faces.Listbox

javax.faces.Menu

HtmlCommandButton
HtmlCommandLink
HtmlDataTable
HtmlForm
HtmlGraphiclmage
HtmlInputHidden
HtmlinputSecret
HtmlInputText
HtmlinputTextarea
HtmlMessage
HtmlMessages
HtmlOutputFormat
HtmlOutputLabel
HtmlOutputLink
HtmlOutputText
HtmlPanelGrid
HtmlIPanelGroup

HtmlSelectBooleanCheck
box

HtmlSelectManyCheckb
ox

HtmlSelectManyListbox

HtmlSelectManyMenu

Chapter 8 Rendering Model 8-7

8-8

TABLE 8-1 Concrete HTML Component Classes

javax.faces.component

javax.faces.component.html

class renderer-type class

UlSelectOne javax.faces.Listbox HtmlSelectOneListbox
UlSelectOne javax.faces.Menu HtmiSelectOneMenu
UlSelectOne javax.faces.Radio HtmlSelectOneRadio

As with the standard components in the j avax. f aces. conponent package, each
HTML component implementation class must define a static public final String
constant named COMPONENT_TYPE, whose value is “j avax. f aces. ” concatenated
with the class name. HTML components, however, must not define a
COMPONENT_FAM LY constant, or override the get Fam | y() method they inherit

from their superclass.

JavaServer Faces Specification February 2004

CHAPTER 9

Integration with JSP

JavaServer Faces implementations must support (although JSF-based applications
need not utilize) using JavaServer Pages (JSP) as the page description language for
JSF pages. This JSP support is provided by providing custom actions so that a JSF
user interface can be easy defined in a JSP page by adding custom actions
corresponding to JSF Ul components. Custom actions provided by a JSF
implementation may be mixed with standard JSP actions and custom actions from
other libraries, as well as template text for layout, in the same JSP page.

For JSP version 2.0 and onward, the file extension “. j sf ” is reserved, and may
optionally be used (typically by authoring tools) to represent JSP pages containing
JSF content!. When running in a JSP 1.2 environment, JSP authors must give their
JSP pages that contain JSF content a filename ending in “. j sp”.

1. Ifthisextension is used, it must be declared in the web application deployment descriptor, as described in the
JSP 2.0 (or later) specification.

9-1

9.1

UlIComponent Custom Actions

A JSP custom action for a JSF Ul Conponent is constructed by combining properties
and attributes of a Java Ul component class with the rendering attributes supported
by a specific Render er from a concrete Render Ki t . For example, assume the
existence of a concrete Render Ki t, HTM_LRender Ki t , which supports three
Render er types for the Ul | nput component:

TABLE9-1 Example Renderer Types

RendererType Render-Dependent Attributes
“Text” “size”

“Secret” “size”, “secretChar”
“Textarea” “size”, “rows”

The tag library descriptor (TLD) file for the corresponding tag library, then, would
define three custom actions—one per Render er. Below is an example of a portion of
the custom action definition for the i nput Text tag?:

<t ag>
<name>i nput Text </ name>
<tag-cl ass>acne. ht m . t ags. | nput Tag</t ag-cl ass>
<bodycont ent >JSP</ bodycont ent >
<attribute>
<nanme>i d</ nane>
<r equi r ed>f al se</ required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nanme>val ue</ nane>
<r equi red>f al se</ required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>
<attribute>
<nane>si ze</ nane>
<r equi red>f al se</ required>
<rtexprval ue>fal se</rtexprval ue>
</attribute>

</ tag>

9-2 JavaServer Faces Specification « February 2004

Note that the si ze attribute is derived from the Render er of type “Text”, while the
i d and val ue attributes are derived from the Ul | nput component class itself.
Render Ki t implementors will generally provide a JSP tag library which includes
component custom actions corresponding to each of the component classes (or
types) supported by each of the Render Ki t ’s Render er s. See Section 8.1
“RenderKit” and Section 8.2 “Renderer” for details on the Render Ki t and

Render er APIs. JSF implementations must provide such a tag library for the
standard HTML RenderKit (see Section 9.5 “Standard HTML RenderKit Tag
Library”).

9.2

9.2.1

Using UlIComponent Custom Actions in
JSP Pages

The following subsections define how a page author utilizes the custom actions
provided by the Render Ki t implementor in the JSP pages that create the user
interface of a JSF-based web application.

Declaring the Tag Libraries

This specification hereby reserves the following Uniform Resource Identifier (URI)
values to refer to the standard tag libraries for the custom actions defined by
JavaServer Faces:

= http://java.sun.com/jsf/core -- URI for the JavaServer Faces Core Tag Library
= http://java.sun.com/jsf/html -- URI for the JavaServer Faces Standard HTML
RenderKit Tag Library

The page author must use the standard JSP t agl i b directive to declare the URI of
each tag library to be utilized, as well as the prefix used (within this page) to identify
custom actions from this library. For example,

<v@taglib uri
<v@taglib uri

"http://java.sun.com jsf/core” prefix="f" %
"http://java.sun.com jsf/htm” prefix="h" %

2. Thisexample illustrates a non-normative convention for naming custom actions based on a combination of
the component name and the renderer type. This convention is useful, but not required; custom actions may
be given any desired custom action name; however the convention is rigorously followed in the Standard
HTML RenderKit Tag Library.

Chapter 9 Integration with JSP 9-3

9.2.2

declares the unique resource identifiers of the tag libraries being used, as well as the
prefixes to be used within the current page for referencing actions from these
libraries3.

Including Components in a Page

A JSF Ul Conponent custom action can be placed at any desired position in a JSP
page that contains the t agl i b directive for the corresponding tag library, subject to
the following restrictions:

= When using a single JSP page to create the entire view, JSF component custom
actions must be nested inside the <f : vi ew> custom action from the JSF Core Tag
Library.

= When using the <j sp: i ncl ude> standard action (or the JSTL <c: i nport >
action) to compose a single view from multiple JSP pages, all JSF component
custom actions in included pages must be nested inside the <f : subvi ew> custom
action from the JSF Core Tag Library (which is itself nested inside the <f: vi ew>
custom action). The <f : subvi ew> action itself may be present in the including
page (i.e. with the <j sp: i ncl ude> or <c: i npor t > action nested inside it), or in
the included page.

= For the current version of this specification, any template text (or non-JSF custom
actions) present in a page that is included with the <j sp: i ncl ude> or
<c: i nmport > action, or any other mechanism that uses
Request Di spat cher. i ncl ude(), must be enclosed in an <f: verbati n>
custom action (see Section 9.4.17 “<f:verbatim>"). This restriction may be lifted in
future versions of this specification.

The following example illustrates the general use of a UIComponent custom action
in a JSP page. In this scenario:

<h:input Text id="usernanme” val ue="#{l ogonBean. user nane}”/ >

represents a Ul | nput field, to be rendered with the “Text” renderer type, and points
to the username property of a backing bean for the actual value. The i d attribute
specifies the component id of a Ul Conponent instance, from within the component
tree, to which this custom action corresponds. If no i d is specified, one will be
automatically generated by the custom action implementation.

3. Consistent with the way that namespace prefixes work in XML, the actual prefix used is totally up to the page
author, and has no semantic meaning. However, the values shown above are the suggested defaults, which
are used consistently in tag library examples throughout this specification.

9-4 JavaServer Faces Specification « February 2004

9.2.3

Custom actions that correspond to JSF Ul Conponent instances must subclass either
j avax. f aces. webapp. U Conponent Tag (see Section 10.2.6.3
“UlComponentTag”) or j avax. f aces. webapp. U Conponent Body Tag (see
Section 10.2.6.4 “UlComponentBodyTag”), depending on whether the custom action
needs to support j avax. servl et. j sp. t agext. BodyTag functionality or not.

During the Render Response phase of the request processing lifecycle, the appropriate
encoding methods of the component (or its associated Render er) will be utilized to
generate the representation of this component in the response page. In addition, the
first time a particular page is rendered, the component tree may also be dynamically
constructed.

All markup other than U Conmponent custom actions is processed by the JSP
container, in the usual way. Therefore, you can use such markup to perform layout
control, or include non-JSF content, in conjunction with the actions that represent Ul
components.

Creating Components and Overriding Attributes

As Ul Conponent custom actions are encountered during the processing of a JSP
page, the custom action implementation must check the component tree for the
existence of a corresponding Ul Conponent , and (if not found) create and configure
a new component instance corresponding to this custom action. The details of this
process (as implemented in the findComponent() method of UIComponentTag, for
easy reuse) are as follows:

= If the component associated with this component custom action has been
identified already, return it unchanged.

= ldentify the component identifier for the component related to this UIComponent
custom action, as follows:

« If the page author has specified a value for the i d attribute, use that value.

« Otherwise, call the cr eat eUni quel d() method of the Ul Vi ewRoot at the
root of the component tree for this view, and use that value.

= If this Ul Conponent custom action is creating a facet (that is, we are nested inside
an <f : f acet > custom action), determine if there is a facet of the component
associated with our parent U Conponent custom action, with the specified facet
name, and proceed as follows:

« If such a facet already exists, take no additional action.

« If no such facet already exists, create a new Ul Conponent (by calling the
cr eat eConponent () method on the Appl i cati on instance for this web
application, passing the value returned by get Conponent Type(), set the
component identifier to the specified value, call set Properti es() passing

Chapter 9 Integration with JSSP 9-5

the new component instance, and add the new component as a facet of the
component associated with our parent Ul Conponent custom action, under the
specified facet name.

= If this Ul Conponent custom action is not creating a facet (that is, we are not
nested inside an <f : f acet > custom action), determine if there is a child
component of the component associated with our parent Ul Conponent custom
action, with the specified component identifier, and proceed as follows:

« If such a child already exists, take no additional action.

« If no such child already exists, create a new Ul Conponent (by calling the
cr eat eConponent () method on the Appl i cati on instance for this web
application, passing the value returned by get Conponent Type(), set the
component identifier to the specified value, call set Properti es() passing
the new component instance, and add the new component as a child of the
component associated with our parent Ul Conponent custom action.

9.2.4 Deleting Components on Redisplay

In addition to the support for dynamically creating new components, as described
above, UIComponent custom actions will also delete child components (and facets)
that are already present in the component tree, but are not rendered on this display
of the page. For example, consider a UIComponent custom action that is nested
inside a JSTL <c: i f > custom action whose condition is true when the page is
initially rendered. As described in this section, a new UlComponent will have been
created and added as a child of the Ul Conponent corresponding to our parent

U Conponent custom action. If the page is re-rendered, but this time the <c: i f >
condition is f al se, the previous child component will be removed.

9-6 JavaServer Faces Specification « February 2004

9.2.5

9.2.6

Representing Component Hierarchies

Nested structures of Ul Conrponent custom actions will generally mirror the
hierarchical relationships of the corresponding Ul Conponent instances in the view
that is associated with each JSP page. For example, assume that a Ul For m
component (whose component id is | ogonFor m) contains a Ul Panel component
used to manage the layout. You might specify the contents of the form like this:

<h: formid="1 ogonForni >
<h: panel Gid col ums="2">
<h: out put Label for="usernane”>
<h: out put Text val ue="Usernane: "/ >
</ h: out put Label >
<h:i nput Text id="username”
val ue=" #{1 ogonBean. user nane} "/ >
<h: out put Label for="password”>
<h: out put Text val ue="Password: "/ >
</ h: out put Label >
<h:i nput Secret id="password”
val ue=" #{1 ogonBean. passwor d} "/ >
<h: commandButt on i d="subm t Button” type="SUBM T”
action="#{| ogonBean. | ogon} "/ >
<h: commandButton id="resetButton” type="RESET"/>
</ h: panel Gi d>
</h:forne

Registering Converters, Event Listeners, and
Validators

Each JSF implementation is required to provide the core tag library (see Section 9.4
“JSF Core Tag Library”), which includes custom actions that (when executed) create
instances of a specified Converter, Val ueChangelLi st ener, Acti onLi st ener or
Val i dat or implementation class, and register the created instance with the

Ul Component associated with the most immediately surrounding U Conponent
custom action.

Chapter 9 Integration with JSSP 9-7

9-8

Using these facilities, the page author can manage all aspects of creating and
configuring values associated with the view, without having to resort to Java code.
For example:

<h:input Text id="usernanme” val ue="#{l ogonBean. user nane}” >
<f:validateLength m ni num="6"/>
</ h:input Text >

associates a validation check (that the value entered by the user must contain at least
six characters) with the username Ul | nput component being described.

Following are usage examples for the val ueChangelLi st ener and
acti onLi st ener custom actions.

<h: i nput Text id="maxUsers”>

<f:convertNunber integerOnly="true"/>

<f: val ueChangelLi st ener

t ype="cust om MyVal ueChangelLi st ener"/ >

</ h:input Text >
<h: commandBut t on | abel ="Logi n">

<f:actionLi stener type="custom MyActi onLi stener"/>
</ h: conmmandBut t on>

This example causes a Convert er and a Val ueChangelLi st ener of the user
specified type to be instantiated and added as to the enclosing Ul | nput
component, and an Act i onLi st ener is instantiated and added to the enclosing
U Conmand component. If the user specified type does not implement the proper
listener interface a JSPExcept i on must be thrown.

JavaServer Faces Specification February 2004

9.2.7

9.2.8

Using Facets

A Facet is a subordinate UIComponent that has a special relationship to its parent
Ul Component , as described in Section 3.1.9 “Facet Management”. Facets can be
defined in a JSP page using the <f: facet > custom action. Each facet action must
have one and only one child UIComponent custom action?. For example:

<h: dat aTable ...>
<f:facet nane="header” >
<h: out put Text val ue="Customer List”/>
</f:facet>
<h: col um>
<f:facet nane="header”>
<h: out put Text val ue="Account 1d"/>
</f:facet>
<h: out put Text id="accountld” val ue=
"#{ cust oner. accountld}”/ >
</ h: col um>

</ h: dat aTabl e>

Interoperability with JSP Template Text and Other
Tag Libraries

It is permissible to use other tag libraries, such as the JSP Standard Tag Library
(JSTL) in the same JSP page with U Conponent custom actions that correspond to
JSF components, subject to certain restrictions. When JSF component actions are
nested inside custom actions from other libraries, or combined with template text,
the following behaviors must be supported:

= JSF component custom actions nested inside a custom action that conditionally
renders its body (such as JSTL’s <c: i f > or <c: choose>) must contain a
manually assigned i d attribute.

= JSF component custom actions may not be nested inside a custom action that
iterates over its body (such as JSTL’s <c:forEach>). Instead, you should use a
Renderer that performs its own iteration (such as the Table renderer used by
<h: dat aTabl e>).

4. If you need multiple components in a facet, nest them inside a <h:panelGroup> custom action that is the
value of the facet.

Chapter 9 Integration with JSP~ 9-9

9.2.9

Components that are added to the component tree programmatically (as opposed
to by being represented by Ul Conponent custom actions) will not be rendered,
unless they are children of a Ul Conponent, or its corresponding Render er,
returns t r ue from the get Render sChi | dren() method, and takes
responsibility for performing the corresponding rendering.

Nesting JSP template text and non-UIComponent custom actions (or
UlIComponent custom actions that buffer their output) inside a UIComponent
custom action for which the rendersChildren property (of the renderer or the
component) is t r ue is not allowed. For most scenarios where this would be
desirable, the <f:verbatim> custom action from the JSF Core Tag Library (see
Section 9.4.17 “<f:verbatim>"") may be used

Interoperation with the JSTL Internationalization-Capable Formatting library
(typically used with the “f nt ” prefix) is restricted as follows:

« The <fnt: parseDat e>and <f nt : par seNunber > custom actions should not
be used. The corresponding JSF facility is to use an <h: i nput Text >
component custom action with an appropriate Dat eTi meConverter or
Nurber Converter.

« The <fnt:request Encodi ng> custom action should not be used. By the time
it is executed, the request parameters will have already been parsed, so any
change in the setting here will have no impact. JSF handles character set issues
automatically in most cases. To use a fixed character set in exceptional
circumstances, use the a “<%@ page cont ent Type="[cont ent -
type];[charset]” %" directive.

« The <fnt:setLocal e/ > custom action should not be used. Even though it
might work in some circumstances, it would result in JSF and JSTL assuming
different locales. If the two locales use different character sets, the results will
be undefined. Applications should use JSF facilities for setting the | ocal e
property on the Ul Vi ewRoot component to change locales for a particular
user.

Composing Pages from Multiple Sources

JSP pages can be composed from multiple sources using several mechanisms:

The <%@ ncl ude% directive performs a compile-time inclusion of a specified
source file into the page being compiled®. From the perspective of JSF, such
inclusions are transparent—the page is compiled as if the inclusions had been
performed before compilation was initiated.

Several mechanisms (including the <j sp: i ncl ude> standard action, the JSTL
<c: i nmport > custom action when referencing a resource in the same webapp, and
a call to Request Di spat cher. i ncl ude() for a resource in the same webapp)

5.

In aJSP 2.0 or later environment, the same effect can be accomplished by using <include-prelude>and
<include-coda>elements in the <jsp-config> element in the web application deployment descriptor.

9-10 JavaServer Faces Specification February 2004

perform a runtime dynamic inclusion of the results of including the response
content of the requested page resource in place of the include action. Any JSF
components created by execution of JSF component custom actions in the
included resource will be grafted onto the component tree, just as if the source
text of the included page had appeared in the calling page at the position of the
include action.

= For mechanisms that aggregate content by other means (such as use of an
Ht t pURLConnect i on, a Request Di spat cher. i ncl ude() on aresource from a
different web application, or accessing an external resource with the JSTL
<c: i nmport > custom action on a resource from a different web application, only
the response content of the aggregation request is available. Therefore, any use of
JSF components in the generation of such a response are not combined with the
component tree for the current page.

9.3

UlIComponent Custom Action
Implementation Requirements

The custom action implementation classes for Ul Conponent custom actions must
conform to all of the requirements defined in the JavaServer Pages Specification. In
addition, they must meet the following JSF-specific requirements:

= Extend the Ul Conponent Tag or Ul Conponent BodyTag base class, so that JSF
implementations can recognize Ul Conponent custom actions versus others.

= Provide a public get Conponent Type() method that returns a String-valued
component type registered with the Appl i cati on instance for this web
application. The value returned by this method will be passed to
Appl i cation. creat eConponent () when a new Ul Conponent instance
associated with this custom action is to be created.

= Provide a public get Render er Type() method that returns a String-valued
renderer type registered with the Render Ki t instance for the currently selected
Render Kit, or null if there should be no associated Render er. The value
returned by this method will be used to set the r ender er Type property of any
UlComponent created by this custom action.

= Provide setter methods taking a String-valued parameter for all set-able (from a
custom action) properties of the corresponding Ul Conponent class, and all
additional set-able (from a custom action) attributes supported by the
corresponding Render er.

= Provide a protected set Properti es() method of type voi d that takes a
Ul Conmponent instance as parameter. The implementation of this method must
perform the following tasks:

Chapter 9 Integration with JSP 9-11

9-12

« Call super. set Properties(), passing the same U Conponent instance
received as a parameter.

« For each non-null custom action attribute that corresponds to a property based
attribute to be set on the underlying component, call either
set Val ueBi ndi ng() or get Attri butes().put(), depending on whether
or not a value binding expression was specified as the custom action attribute
value (performing any required type conversion). For example, assume that
title is the name of a render-dependent attribute for this component:

protected void setProperties(U Conponent conponent) {
super . set Properties(conponent);
if (title !'=null) {
if (isValueReference(title)) {
Val ueBi ndi ng vb =
get FacesCont ext (). get Application().
createVal ueBi nding(title);
conponent . set Val ueBi ndi ng(“title”, vb);
} else {
conponent. getAttributes().put(“title”, title);
}
}

« For each non-null custom action attribute that corresponds to a method based
attribute to be set on the underlying component, the value of the attribute must
be a method reference expression. Call set Met hodBi ndi ng(), or throw a

JavaServer Faces Specification ¢ February 2004

FacesExcept i on if the value of the attribute is not a method reference
exception For example, assume that val ueChangelLi st ener is the name of an
attribute for this component:

protected void setProperties(U Conponent conponent) {
super. set Properties(conponent);
i f (valueChangelListener != null) {
if (isValueReference(val ueChangelLi stener)) {
Class args[] = { ValueChangeEvent. cl ass };
Met hodBi ndi ng vb =
FacesCont ext . get Current I nstance(). get Appli cation().createV
al ueBi ndi ng(val ueChangeli st ener, args);
i nput . set Val ueChangelLi st ener (vb) ;
} else {
Obj ect paranms [] = {val ueChangelLi stener};
t hrow new
javax. faces. FacesException(Uil . get Excepti onMessage(Uti |
. I NVALI D_EXPRESSI ON_| D, parans));

}
}

« Non-null custom action attributes that correspond to a writable property to be
set on the underlying component are handled in a similar fashion. For
example, assume a custom action for the Ul Dat a component is being created
that needs to deal with the r ows property (which is of type i nt):

protected void setProperties(U Conponent conponent) {
super . set Properti es(conmponent);
if (rows !'=null) {
if (isValueReference(rows)) {
Val ueBi ndi ng vb =
FacesCont ext. get Current | nstance(). get Appli cation().
cr eat eVal ueBi ndi ng(rows);
conponent . set Val ueBi ndi ng(“rows”, vb);
} else {
((Ul Data) component). set Rows(| nteger. parselnt(rows));
}
}

Chapter 9 Integration with JSP~ 9-13

= Optionally, provide a public r el ease() method of type voi d, taking no
parameters, to be called when the JSP page handler releases this custom action
instance. If implemented, the method must perform the following tasks:

« Call super.rel ease() to invoke the superclass’s release functionality.

« Clear the instance variables representing the values for set-able custom action
attributes (for example, by setting String values to null).

= Optionally provide overridden implementations for the following methods to fine
tune the behavior of your Ul Conponent custom action implementation class:
encodeBegi n(), encodeChi | dren(), encodeEnd(), get DoEndVal ue(), and
get DoSt art Val ue() .

It is technically possible to override other public and protected methods of the

U Conponent Tag or Ul Conponent BodyTag base class; however, it is likely that
overriding these methods will interfere with the functionality that other portions of
the JSF implementation are assuming to be present, so overriding these methods is
strongly discouraged.

The definition of each Ul Conponent custom action in the corresponding tag library
descriptor (TLD) must conform to the following requirements:
= The <body- cont ent > element for the custom action itself must specify JSP.

= The <rtexprval ue> element for each custom action attribute that is destined to
be passed through to the underlying UIComponent (as a property or a component
attribute) must be set to f al se.

9.4

9-14

JSF Core Tag Library

All JSF implementations must provide a tag library containing core actions
(described below) that are independent of a particular Render Ki t . The
corresponding tag library descriptor must meet the following requirements:

= Must declare a tag library version (<t | i b- ver si on>) value of 1. 0.

= Must declare a JSP version dependency (<j sp- ver si on>) value of 1. 2.

= Must declare a URI (<uri >) value of htt p://j ava. sun. com j sf/core.

= Must be included in the META- | NF directory of a JAR file containing the
corresponding implementation classes, suitable for inclusion with a web
application, such that the tag library descriptor will be located automatically by
the algorithm described in Section 7.3 of the JavaServer Pages Specification (version
1.2).

Each custom action included in the JSF Core Tag Library is documented in a
subsection below, with the following outline for each action:

= Name—The name of this custom action, as used in a JSP page.

JavaServer Faces Specification ¢ February 2004

Short Description—A summary of the behavior implemented by this custom
action.

Syntax—One or more examples of using this custom action, with the required
and optional sets of attributes that may be used together.

Body Content—The type of nested content for this custom action, using one of
the standard values enpt y, JSP, or t agdependent as described in the JSP
specification. This section also describes restrictions on the types of content
(template text, JSF core custom actions, JSF Ul Conponent custom actions, and/or
other custom actions) that can be nested in the body of this custom action.
Attributes—A table containing one row for each defined attribute for this custom
action. The following columns provide descriptive information about each
attribute:

« Name—Name of this attribute, as it must be used in the page. If the name of the
attribute is in italics, it is required.

« Expr—The type of dynamic expression (if any) that can be used in this attribute
value. Legal values are stephane.bastian@otrix.com (this may be a literal or a
value binding expression), MB (this may be a method binding expression), or
NONE (this attribute accepts literal values only).

« Type—Fully qualified Java class or primitive type of this attribute.

« Description—The functional meaning of this attribute’s value.

Constraints—Additional constraints enforced by this action, such as

combinations of attributes that may be used together.

Description—Details about the functionality provided by this custom action.

Chapter 9 Integration with JSP ~ 9-15

94.1

<f:actionListener>

Register an Acti onLi st ener instance on the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

<f:actionListener type="fully-qualified-classname”/>

Body Content

empty.

Attributes

Name Expr Type Description

type VB String Fully qualified Java class name of an
Act i onLi st ener to be created and
registered

Constraints

= Must be nested inside a Ul Conrponent custom action.

= The corresponding Ul Conponent implementation class must implement
Act i onSour ce, and therefore define a public addAct i onLi st ener () method
that accepts an Act i onLi st ener parameter.

= The specified listener class must implement
javax. f aces. event . Acti onLi st ener.

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, instantiate an instance of the specified class, and
register it by calling addAct i onLi st ener ().

As an alternative, you may also register a method in a backing bean class to receive
Act i onEvent notifications, by using the act i onLi st ener attribute on the
corresponding U Conponent custom action.

9-16 JavaServer Faces Specification February 2004

9.4.2

<f:attribute>

Add an attribute on the Ul Conponent associated with the closest parent

Ul Conponent custom action.

Syntax

<f:attribute nane="attribute-nanme”

Body Content

val ue="attri bute-val ue”/>

empty.

Attributes

Name Expr Type Description

name VB String Name of the component attribute to be set
val ue VB bj ect Value of the component attribute to be set

Constraints

= Must be nested inside a Ul Conponent custom action.

Description

Locate the closest parent Ul Conponent custom action instance by calling
Ul Component Tag. get Par ent Ul Conponent Tag() . If the associated component
does not already have a component attribute with a name specified by this custom

action’s namne attribute, create a component attribute with the name and value

specified by this custom action’s attributes.

The implementation class for this action must be, or extend,

j avax. f aces. webapp. Attri but eTag.

Chapter 9

Integration with JSP

9-17

9.4.3 <f:convertDateTime>

Register a Dat eTi neConvert er instance on the U Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

<f:convert Dat eTi me
[dateStyl e="{defaul t| short| mediunlong|full}”]
[l ocal e="{local e” | string}]
[pattern="pattern”]
[timeStyl e="{default|short]| mediunlong|full}”]
[ti meZone="{timeZone| string}”]
[type="{date|tinme|both}"]/>

Body Content

empty.

9-18 JavaServer Faces Specification February 2004

Attributes

Name Expr

Type

Description

dat e- VB
Style

| ocal e VB

pattern VB

tinme- VB
Style

tinme- VB
Zone

type VB

String

Local e
or
String

String

String

ti nezon
e or
String

String

Predefined formatting style which
determ nes how the date conponent
of a date string is to be
formatted and parsed. Applied only
if type is “date” or “both”.

Local e whose predefined styles for
dates and times are used during
formatting or parsing. If not
specified, the Locale returned by
FacesCont ext . get Vi ewRoot (). get Local
e() will be used. Value nust be
either a VB expression that
evaluates to a java.util.Locale
instance, or a String that is valid
to pass as the first argument to
the constructor

java.util.Local e(String |anguage,
String country). The enpty string
is passed as the second argument.

Custom fornatting pattern which
determ nes how the date/time string
should be formatted and parsed.

Predefined formatting style which
determ nes how the tinme conponent
of a date string is to be
formatted and parsed. Applied only
if type is “tine” or “both”.

Time zone in which to interpret any
time information in the date
string. Value nust be either a VB
expression that evaluates to a
java.util.TineVone instance, or a
String that is a timezone ID as
described in the javadocs for
java.util.Ti meZone. get Ti meZone() .

Speci fies whether the string val ue
will contain a date, tinme, or both.

Constraints

= Must be nested inside a Ul Conponent
implements Val ueHol der, and whose value isajava. util. Date (or

appropriate subclass).

Chapter 9 Integration with JSP

custom action whose component class

9-19

= If pat tern is specified, the pattern syntax must use the pattern syntax specified
by j ava. t ext. Si npl eDat eFor nat .

= If pattern is not specified, formatted strings will contain a date value, a time
value, or both depending on the specified t ype. When date or time values are
included, they will be formatted according to the specified dat eSt yl e and
ti meStyl e, respectively.

= if type is not specified:
« ifdateStyleissetandti meStyl e is not, type defaults to dat e
« iftinmeStyleissetand dateStyl eis not, type defaultstoti ne
« ifboth dateStyleandtinmeStyl e are set, t ype defaults to bot h

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eConverter () and register the
returned Converter instance on the associated UlIComponent.

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Convert er Tag.

= The creat eConverter() method must call the cr eat eConverter () method
of the Appl i cat i on instance for this application, passing converter id
“javax.faces.DateTime”. It must then cast the returned instance to
javax. f aces. convert . Dat eTi mreConverter and configure its properties
based on the specified attributes for this custom action, and return the configured
instance.

= If the type attribute is not specified, it defaults as follows:

« If dateStyle is specified but timeStyle is not specified, default to date.
« If dateStyle is not specified but timeStyle is specified, default to time.
« If both dateStyle and timeStyle are specified, default to both.

« Itisanerror if

9-20 JavaServer Faces Specification February 2004

9.4.4 <f:convertNumber>

Register a Nunber Convert er instance on the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

<f:convert Number
[currencyCode="currencyCode”]
[currencySynbol =" currencySynbol "]
[groupi ngUsed="{true| fal se}”]
[integerOnl y="{true|false}"]

[l ocal e="1o0cal e"]

[maxFractionDi gits="maxFractionDigits”]
[maxI ntegerDi gi ts="maxl ntegerDigits”]
[m nFractionDigits="m nFractionDigits”]
[mMnintegerDigits="m nintegerDigits”]
[pattern="pattern”]

[type="{nunber| currency| percent}”]/>

Body Content

empty.

Chapter 9 Integration with JSSP 9-21

Attributes

Name Expr Type Description
currenc VB String 1 SO 4217 currency code, applied
yCode only when formatting currencies.
currenc VB String Currency synbol, applied only when
ySynbol formatting currencies.
groupin VB bool ean Specifies whether formatted out put
gUsed will contain grouping separators.
integer VB bool ean Speci fies whether only the integer
Only part of the value will be parsed.
| ocal e VB j ava. ut Local e whose predefined styles for
il.Loca nunbers are used during formatting
le or parsing. If not specified, the

Local e returned by
FacesCont ext . get Vi ewRoot (). get Local

e() will be used.
maxFrac VB int Maxi mum nunmber of digits that wll
tionDig be formatted in the fractional
its portion of the output.
maxlnte VB int Maxi mum nunmber of digits that wll
ger Di gi be formatted in the in.teger
ts portion of the output
m nFrac VB int M ni num nunber of digits that wll
tionDig be formatted in the fractional
its portion of the output.
mninte VB int M ni num nunber of digits that wll
ger Di gi be formatted in the integer portion
ts of the output.
pattern VB String Custom fornatting pattern which

determ nes how the number string
should be formatted and parsed.

type VB String Speci fi es whether the value will be
parsed and formatted as a nunber,
currency, or percentage.

Constraints

= Must be nested inside a Ul Conponent custom action whose component class
implements Val ueHol der, and whose value is a numeric wrapper class or
primitive.

= If pattern is specified, the pattern syntax must use the pattern syntax specified
by j ava. t ext. Deci mal For mat .

9-22 JavaServer Faces Specification February 2004

« If patt ern is not specified, formatting and parsing will be based on the specified
type.

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eConverter () and register the
returned Converter instance on the associated UlIComponent.

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Convert er Tag.

= The creat eConverter() method must call the cr eat eConverter () method
of the Appl i cat i on instance for this application, passing converter id
“javax.faces.Number”. It must then cast the returned instance to
j avax. f aces. convert . Nurmber Convert er and configure its properties based
on the specified attributes for this custom action, and return the configured

instance.

Chapter 9 Integration with JSP ~ 9-23

9.4.5

<f.converter>

Register a named Convert er instance on the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

<f:converter converterld="converterld’/>

Body Content

empty

Attributes

Name Expr Type Description

convert VB String Converter identifier of the converter to be
erld created.

Constraints

= Must be nested inside a Ul Conponent custom action whose component class
implements Val ueHol der.

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eConverter () and register the
returned Converter instance on the associated UlIComponent.

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Convert er Tag.

= The creat eConverter() method must call the cr eat eConverter () method
of the Appl i cat i on instance for this application, passing converter id specified
by their converterld attribute.

The implementation class for this action must be, or extend,
javax. f aces. webapp. Convert er Tag.

9-24 JavaServer Faces Specification February 2004

9.4.6

<f:facet>

Register a named facet (see Section 3.1.9 “Facet Management”) on the Ul Conponent
associated with the closest parent U Conponent custom action.

Syntax

<f:facet nane="facet-nane”/>

Body Content

JSP. However, only a single UIComponent custom action (and any related nested JSF
custom actions) is allowed; no template text or other custom actions may be present.

Attributes
Name Expr Type Description
name NONE String Name of the facet to be created

Constraints

= Must be nested inside a Ul Conponent custom action.

= Exactly one Ul Conponent custom action must be nested inside this custom
action (although the nested component custom action could itself have nested
children).

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Component Tag. get Par ent Ul Conponent Tag() . If the associated component
does not already have a facet with a name specified by this custom action’s nane
attribute, create a facet with this name from the Ul Conponent custom action that is
nested within this custom action.

The implementation class must be, or extend, j avax. f aces. webapp. Facet Tag.

Chapter 9 Integration with JSP ~ 9-25

9.4.7

<f:loadBundle>

Load a resource bundle localized for the locale of the current view, and expose it (as
a Map) in the request attributes for the current request.

Syntax

<f:l oadBundl e basename="r esour ce-bundl e- nane” var="attri buteKey”/>

Body Content

empty

Attributes

Name Expr Type Description

basenam VB String Base name of the resource bundle to be

e loaded.

var NONE String Name of a request scope attribute under
which the resource bundle will be exposed as
a Map.

Constraints

= Must be nested inside an <f : vi ew> custom action.
Description

Load the resource bundle specified by the basenane attribute, localized for the
Locale of the Ul Vi ewRoot component of the current view, and expose its key-values
pairs as a Map under the attribute key specified by the var attribute. In this way,
value binding expressions may be used to conveniently retrieve localized values.

If the get () method for the Map instance exposed by this custom action is passed a
key value that is not present (that is, there is no underlying resource value for that
key), the literal string “???f00???” (where “foo” is replaced by the key the String
representation of the key that was requested) must be returned, rather than the
standard Map contract return value of nul | .

9-26 JavaServer Faces Specification February 2004

9.4.8 <f:param>

Add a child Ul Par amet er component to the U Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

Syntax 1. Unnamed value
<f:param [i d="conponent | d”] val ue="par aneter-val ue”
[bi ndi ng=" conponent Ref erence”]/ >

Syntax 2: Named value
<f:param [i d="conponent|d”]
[bi ndi ng=" conponent Ref erence”]
nane="par anet er - nane” val ue="par anet er -val ue”/ >

Body Content

empty.

Attributes

Name Expr Type Description

binding VB ValueBind Value binding expression to a backing bean

ing property bound to the component instance for

the UIComponent created by this custom
action

id NONE String Component identifier of a Ul Par anet er
component

name VB String Name of the parameter to be set

val ue VB String Value of the parameter to be set

Constraints

= Must be nested inside a Ul Conponent custom action.

Chapter 9 Integration with JSSP ~ 9-27

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create a new Ul Par amet er component, and attach it
as a child of the associated Ul Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. Ul Conponent Tag.
= The get Conponent Type() method must return “Par anet er .
= The get Render er Type() method must return nul | .

9-28 JavaServer Faces Specification February 2004

9.4.9 <f:selectltem>

Add a child Ul Sel ect | t emcomponent to the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

Syntax 1: Directly Specified Value
<f:selectltem [id="conponent|d”]
[bi ndi ng=" conponent Ref erence”]
[itenDi sabl ed="{true|fal se}"]
i temval ue="it enval ue”
i temLabel ="itenlLabel ”
[itenDescription="itenDescription”]/>

Syntax 2: Indirectly Specified Value
<f:selectltem [id="conponentl|d”]
[bi ndi ng=" conponent Ref erence”]
val ue="sel ect | t enmval ue”/ >

Body Content

empty

Chapter 9 Integration with JSP ~ 9-29

Attributes

Name Expr Type Description
binding VB ValueBind Value binding expression to a backing bean
ing property bound to the component instance for

the UIComponent created by this custom
action.

id NONE String Component identifier of a Ul Sel ect 1t em
component.

itenDes VB String Description of this option (for use in

criptio development tools).

n

itemDisa VB boolean Flag indicating whether the option created by

bled this component is disabled.

itemLabe VB String Label to be displayed to the user for this

| option.

itemValu VB Object Value to be returned to the server if this

e option is selected by the user.

value VB javax.face Value binding pointing at a Selectltem

s.model.S instance containing the information for this
electitem option.

Constraints

= Must be nested inside a Ul Conponent custom action that creates a
Ul Sel ect Many or Ul Sel ect One component instance.

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create a new Ul Sel ect | t emcomponent, and attach it
as a child of the associated Ul Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. Ul Conponent Tag.
= The get Conponent Type() method must return “Sel ect | t eni’.
= The get Render er Type() method must return nul | .

9-30 JavaServer Faces Specification February 2004

9.4.10

<f:selectltems>

Add a child Ul Sel ect | t ens component to the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

<f:selectltens [id="conponentld”]

[bi ndi ng=" conponent Ref erence”]

val ue="sel ect | t ensVal ue”/ >

Body Content

empty
Attributes
Name Expr Type Description
binding VB ValueBind Value binding expression to a backing bean
ing property bound to the component instance for
the UIComponent created by this custom
action.
id NONE String Component identifier of a Ul Sel ect |t em
component.
val ue VB javax.face Value binding expression pointing at one of
s.model.S the following instances:
electitem, 1. an individual javax.faces.model.Selectitem
Zee _ . 2.ajava language array of
nefs(,)crrlptlo javax.faces.model.Selectitem
specific 3. a java.util.Collection of
details javax.faces.model.Seleccltem

4. A java.util.Map where the keys are
converted to Strings and used as labels, and
the corresponding values are converted to
Strings and used as values for newly
created javax.faces.model.Selectltem
instances. The instances are created in the
order of the iterator over the keys provided
by the Map.

Constraints

= Must be nested inside a Ul Conponent custom action that creates a
Ul Sel ect Many or Ul Sel ect One component instance.

Chapter 9 Integration with JSP

9-31

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create a new Ul Sel ect | t ems component, and attach
it as a child of the associated Ul Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. Ul Conponent Tag.
= The get Conponent Type() method must return
“j avax. faces. Sel ectltens”.
= The get Render er Type() method must return nul | .

9-32 JavaServer Faces Specification February 2004

9.4.11

<f:subview>

Container action for all JSF core and component custom actions used on a nested
page included via <j sp: i ncl ude> or any custom action that dynamically includes
another page from the same web application, such as JSTL’s <c: i nport >.

Syntax

<f:subvi ew i d="conponent | d”
[bi ndi ng="conponent Ref erence”]
[rendered="{true|false}"]>

Nested tenplate text and custom actions
</f:subvi ew>

Body Content

JSP. May contain any combination of template text, other JSF custom actions, and
custom actions from other custom tag libraries.

Attributes

Name Expr Type Description

binding VB ValueBind Value binding expression to a backing bean

ing property bound to the component instance for

the UIComponent created by this custom
action.

id NONE String Component identifier of a
Ul Nani ngCont ai ner component

rendere VB Boolean Whether or not this subview should be

d rendered.

Constraints

= Must be nested inside a <f : vi ew> custom action (although this custom action
might be in a page that is including the page containing the <f : subvi ew>
custom action.

= Must not contain an <f: vi ew> custom action.

= Must have an i d attribute whose value is unique within the scope of the parent
naming container.

= May be placed in a parent page (with <j sp: i ncl ude> or <c: i nport > nested
inside), or within the nested page.

Chapter 9 Integration with JSP ~ 9-33

9-34

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create a new Ul Nani ngCont ai ner component, and
attach it as a child of the associated Ul Conponent . Such a component provides a
scope within which child component identifiers must still be unique, but allows
child components to have the same simple identifier as child components nested in
some other naming container. This is useful in several scenarios:

“main.jsp”
<f:view
<c:inport url="foo.jsp"/>
<c:inport url="bar.jsp"/>
</f:view

“foo.jsp”
<f:subvi ew i d="aaa” >

conponents and ot her content
</f:subvi ew>

“bar.jsp”
<f: subvi ew i d="bbb" >

conponents and ot her content
</f:subvi ew>

JavaServer Faces Specification ¢ February 2004

In this scenario, <f : subvi ew> custom actions in imported pages establish a naming
scope for components within those pages. Identifiers for <f : subvi ew> custom
actions nested in a single <f : vi ew> custom action must be unique, but it is difficult
for the page author (and impossible for the JSP page compiler) to enforce this
restriction.

“main.jsp”
<f:view
<f:subvi ew i d="aaa” >
<c:inport url="foo.jsp"/>
</f:subvi ew>
<f:subvi ew i d="bbb" >
<c:inport url="bar.jsp"/>
</f:subvi ew>
</f:view

“foo.jsp”
conponents and ot her content

“bar.jsp”
conponents and ot her content

In this scenario, the <f : subvi ew> custom actions are in the including page, rather
than the included page. As in the previous scenario, the “id” values of the two
subviews must be unique; but it is much easier to verify using this style.

It is also possible to use this approach to include the same page more than once, but
maintain unique identifiers:

“main.jsp”
<f:view
<f:subvi ew i d="aaa” >
<c:inmport url="foo.jsp"/>
</f:subvi ew>
<f:subvi ew i d="bbb" >
<c:inport url="foo.jsp"/>
</f:subvi ew>
</f:view

“foo.jsp”
conponents and ot her content

In all of the above examples, note that f 0o. j sp and bar. j sp may not contain
<f:view.

Chapter 9 Integration with JSP ~ 9-35

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. Ul Conponent Tag.
= The get Conponent Type() method must return “Nani ngCont ai ner ”.
=« The get Render er Type() method must return nul | .

9-36 JavaServer Faces Specification February 2004

9.4.12

<f:validateDoubleRange>

Register a Doubl eRangeVal i dat or instance on the Ul Conponent associated with
the closest parent Ul Conponent custom action.

Syntax

Syntax 1. Maximum only specified

<f:val i dat eDoubl eRange maxi nun¥”543. 21"/ >

Syntax 2: Minimum only specified
<f:val i dat eDoubl eRange m ni nun¥"123. 45"/ >

Syntax 3: Both maximum and minimum are specified

<f:val i dat eDoubl eRange maxi nunm"543. 21" mi ni mun¥” 123. 45"/ >

Body Content

empty.

Attributes

Name Expr Type Description

maxi mum VB doubl e Maximum value allowed for this component
m ni num VB doubl e Minimum value allowed for this component

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is
(or is convertible to) a double.

= Must specify either the maxi numattribute, the m ni numattribute, or both.

= If both limits are specified, the maximum limit must be greater than the minimum
limit.

Chapter 9 Integration with JSP ~ 9-37

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eVal i dat or () and register the
returned Val i dat or instance on the associated U Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Val i dat or Tag.

= The createValidator() method must call the cr eat eVal i dat or () method
of the Appl i cat i on instance for this application, passing validator id
“javax.faces.DoubleRange”. It must then cast the returned instance to
javax. faces. val i dat or . Doubl eRangeVal i dat or and configure its
properties based on the specified attributes for this custom action, and return the

configured instance.

9-38 JavaServer Faces Specification February 2004

9.4.13

<f:validateLength>

Register a Lengt hVval i dat or instance on the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

Syntax 1. Maximum only specified

<f:val i dateLength maxi mum="16"/>

Syntax 2: Minimum only specified

<f:val i dateLength m ni mum="3"/>

Syntax 3: Both maximum and minimum are specified

<f:val i dateLength maxi mum="16" mi ni num="3"/>

Body Content

empty.

Attributes

Name Expr Type Description

maxi mum VB int Maximum length allowed for this component
m ni mum VB int Minimum length allowed for this component

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is a
String.

= Must specify either the maxi mumattribute, the nmi ni mnumattribute, or both.

= If both limits are specified, the maximum limit must be greater than the minimum
limit.

Chapter 9 Integration with JSP ~ 9-39

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eVal i dat or () and register the
returned Val i dat or instance on the associated U Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Val i dat or Tag.

= The createValidator() method must call the cr eat eVal i dat or () method
of the Appl i cat i on instance for this application, passing validator id
“javax.faces.Length”. It must then cast the returned instance to
javax. faces. val i dat or. Lengt hVal i dat or and configure its properties
based on the specified attributes for this custom action, and return the configured
instance.

9-40 JavaServer Faces Specification February 2004

9.4.14

<f.validateLongRange>

Register a LongRangeVal i dat or instance on the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

Syntax 1. Maximum only specified

<f:val i dat eLongRange naxi mum="543"/>

Syntax 2: Minimum only specified

<f:val i dat eLongRange ni ni mum="123"/>

Syntax 3: Both maximum and minimum are specified

<f:val i dat eLongRange nexi munm=" 543" mi ni num=" 123"/ >

Body Content

empty.

Attributes

Name Expr Type Description

maxi mum VB | ong Maximum value allowed for this component
m ni mum VB | ong Minimum value allowed for this component

Constraints

= Must be nested inside a Edi t abl eVal ueHol der custom action whose value is

(or is convertible to) a long.

= Must specify either the maxi numattribute, the m ni numattribute, or both.
= If both limits are specified, the maximum limit must be greater than the minimum

limit.

Chapter 9 Integration with JSP 9-41

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eVal i dat or () and register the
returned Val i dat or instance on the associated U Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Val i dat or Tag.

= The createValidator() method must call the cr eat eVal i dat or () method
of the Appl i cat i on instance for this application, passing validator id
“javax.faces.LongRange”. It must then cast the returned instance to
javax. faces. val i dat or. LongRangeVal i dat or and configure its properties
based on the specified attributes for this custom action, and return the configured
instance.

9-42 JavaServer Faces Specification February 2004

9.4.15

<f:validator>

Register a named Val i dat or instance on the Ul Conponent associated with the
closest parent Ul Conponent custom action.

Syntax

<f:validator validatorld="validatorld"/>

Body Content

empty

Attributes

Name Expr Type Description

validat VB String Validator identifier of the validator to be
orld created.

Constraints

= Must be nested inside a Ul Conponent custom action whose component class
implements Edi t abl eVal ueHol der.

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, create, call cr eat eVal i dat or () and register the
returned Val i dat or instance on the associated U Conponent .

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. webapp. Val i dat or Tag.

= The createValidator() method must call the cr eat eVal i dat or () method
of the Appl i cat i on instance for this application, passing validator id specified
by the val i dat or | d attribute, and return the configured instance.

Chapter 9 Integration with JSP ~ 9-43

9.4.16

<f:valueChangeListener>

Register a Val ueChangeli st ener instance on the Ul Conponent associated with
the closest parent Ul Conponent custom action.

Syntax

<f:val ueChangelLi stener type="fully-qualified-classname”/>

Body Content

empty.

Attributes

Name Expr Type Description

type VB String Fully qualified Java class name of a
Val ueChangeli st ener to be created and
registered

Constraints

= Must be nested inside a Ul Conrponent custom action.
= The corresponding Ul Conponent implementation class must implement
Edi t abl eVal ueHol der, and therefore define a public
addVal ueChangeli st ener () method that accepts an Val ueChangeli st ener
parameter.
= The specified listener class must implement
javax. faces. event . Val ueChangelLi st ener.

Description

Locate the closest parent Ul Conponent custom action instance by calling

U Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, instantiate an instance of the specified class, and
register it by calling addVal ueChangelLi st ener ().

As an alternative, you may also register a method in a backing bean class to receive
Val ueChangeEvent notifications, by using the val ueChangelLi st ener attribute
on the corresponding Ul Conponent custom action.

9-44 JavaServer Faces Specification February 2004

9.4.17

<f:verbatim>

Register a child Ul Qut put instance on the Ul Conponent associated with the closest
parent Ul Conponent custom action which renders nested body content.

Syntax

<f:verbatim[escape="{true|false}"]/>

Body Content

JSP. However, no UIComponent custom actions, or custom actions from the JSF Core
Tag Library, may be nested inside this custom action.

Attributes
Name Expr Type Description
escape VB bool ean If t rue, generated markup is escaped in a

manner appropriate for the markup language
being rendered. Default value is false.

Constraints

= Must be implemented as a Ul Conponent BodyTag.

Description

Locate the closest parent Ul Conponent custom action instance by calling

Ul Conponent Tag. get Par ent Ul Conponent Tag() . If the get Cr eat ed() method
of this instance returns t r ue, creates a new Ul Qut put component, and add it as a
child of the Ul Conponent associated with the located instance. The r ender er Type
property of this Ul Qut put component must be set to “javax.faces.Text”, and the

t ransi ent property must be set to tr ue. Also, the value (or value binding, if it is
an expression) of the escape attribute must be passed on to the renderer as the
value the escape attribute on the Ul Qut put component.

Chapter 9 Integration with JSP ~ 9-45

9.4.18

<fview>
Container for all JSF core and component custom actions used on a page.

Syntax

<f:view [l ocal e="1 ocal e”">
Nested tenplate text and custom actions
</f:view>

Body Content

JSP. May contain any combination of template text, other JSF custom actions, and
custom actions from other custom tag libraries.

Attributes

Name Expr Type Description

| ocal e VB String Name of a Locale to use for localizing this
or page (such as en_uk), or value binding
Local e expression that returns a Local e instance

Constraints

= Any JSP-created response using actions from the JSF Core Tag Library, as well as
actions extending j avax. f aces. webapp. U Conponent Tag from other tag
libraries, must be nested inside an occurrence of the <f : vi ew> action.

= JSP page fragments included via the standard <%@ i ncl ude 9% directive need
not have their JSF actions embedded in a <f : vi ew> action, because the included
template text and custom actions will be processed as part of the outer page as it
is compiled, and the <f : vi ew> action on the outer page will meet the nesting
requirement.

= JSP pages included via <j sp: i ncl ude> or any custom action that dynamically
includes another page from the same web application, such as JSTL'’s
<c: i mport >, must use an <f : subvi ew> (either inside the included page itself,
or surrounding the <jsp:include> or custom action that is including the page).

= If the | ocal e attribute is present, its value overrides the Local e stored in
U Vi ewRoot , normally set by the Vi ewHandl er, and the doStartTag()
nmet hod nmust store it by calling U ViewRoot. setLocal e().

= The doStart Tag() method must call
javax.servlet.jsp.jstl.core.Config.set(), passing the
Ser vl et Request instance for this request, the constant
javax. servlet.jsp.jstl.core.Config. FMI_LOCALE, and the Local e
returned by calling U Vi ewRoot . get Local e() .

9-46 JavaServer Faces Specification February 2004

Description

Provides the JSF implementation a convenient place to perform state saving during
the render response phase of the request processing lifecycle, if the implementation
elects to save state as part of the response.

The implementation class for this action must meet the following requirements:

= Must extend j avax. f aces. Ul Conponent BodyTag.

= The get Conmponent Type() method must return “ViewRoot”.

= The get Render er Type() method must return nul | .

Please refer to the javadocs for j avax. f aces. appl i cati on. St at eManager for
details on what the tag handler for this tag must do to implement state saving.

Chapter 9 Integration with JSSP ~ 9-47

9.5

9-48

Standard HTML RenderKit Tag Library

All JSF implementations must provide a tag library containing actions that
correspond to each valid combination of a supported component class (see Chapter 4
“Standard User Interface Components”) and a Render er from the Standard HTML
RenderKit (see Section 8.5 “Standard HTML RenderKit Implementation”) that
supports that component type. The tag library descriptor for this tag library must
meet the following requirements:

= Must declare a tag library version (<t | i b- ver si on>) value of 1. 0.

= Must declare a JSP version dependency (<j sp- ver si on>) value of 1. 2.

= Must declare a URI (<uri >) value of htt p://j ava. sun.com jsf/htm .

= Must be included in the META- | NF directory of a JAR file containing the
corresponding implementation classes, suitable for inclusion with a web
application, such that the tag library descriptor will be located automatically by
the algorithm described in Section 7.3 of the JavaServer Pages Specification (version
1.2).

The custom actions defined in this tag library must specify the following return
values for the get Conponent Type() and get Render er Type() methods,
respectively:.

TABLE 9-2 Standard HTML RenderKit Tag Library

getComponentType() getRendererType() custom action name
javax.faces.Column (nulh* column
javax.faces.HtmIComma javax.faces.Button commandButton
ndButton

javax.faces.HtmIComma javax.faces.Link commandLink
ndLink

javax.faces.HtmlIDataTab javax.faces.Table dataTable

le

javax.faces.HtmIForm javax.faces.Form form
javax.faces.HtmlGraphicl javax.faces.Image graphiclmage
mage

javax.faces.HtmlInputHi javax.faces.Hidden inputHidden
dden

javax.faces.HtmlInputSec javax.faces.Secret inputSecret

ret

javax.faces.HtmlInputTe javax.faces.Text inputText

xt

JavaServer Faces Specification ¢ February 2004

TABLE 9-2

Standard HTML RenderKit Tag Library

getComponentType()

getRendererType()

custom action name

javax.faces.HtmlInputTe
xtarea

javax.faces.HtmIMessage

javax.faces.HtmlIMessage
S

javax.faces.HtmIOutputF
ormat

javax.faces.HtmIOutputL
abel

javax.faces.HtmIOutputL
ink
javax.faces.HtmIOutputT
ext

javax.faces.HtmlPanelGri
d

javax.faces.HtmlIPanelGr
oup

javax.faces.HtmlSelectBo
oleanCheckbox

javax.faces.HtmlSelectM
anyCheckbox

javax.faces.HtmlSelectM
anyL.istbox

javax.faces.HtmlSelectM
anyMenu

javax.faces.HtmlSelectOn
eListbox

javax.faces.HtmlSelectOn
eMenu

javax.faces.HtmlSelectOn
eRadio

javax.faces.Textarea

javax.faces.Message

javax.faces.Messages

javax.faces.Format

javax.faces.Label

javax.faces.Link

javax.faces.Text

javax.faces.Grid

javax.faces.Group

javax.faces.Checkbox

javax.faces.Checkbox

javax.faces.Listbox

javax.faces.Menu

javax.faces.Listbox

javax.faces.Menu

javax.faces.Radio

inputTextarea

message

messages

outputFormat

outputLabel

outputLink

outputText

panelGrid

panelGroup

selectBooleanCheckbox

selectManyCheckbox

selectManyListbox

selectManyMenu

selectOneListbox

selectOneMenu

selectOneRadio

* This component has no associated Renderer, so the getRendererType() method must return null

instead of a renderer type.

The tag library descriptor for this tag library (and the corresponding tag handler
implementation classes) must meet the following requirements:

Chapter 9 Integration with JSP ~ 9-49

9-50

The tag library descriptor must provide attribute declarations, and a the tag
handler implementation class must provide a public setter method taking a
St ri ng parameter, for the render-independent properties of the corresponding
components, and render-dependent properties of the corresponding renderers.

The tag library descriptor entry for each attribute must specify an
<rtexprval ue> of f al se.

For a non-nul | acti on attribute on custom actions related to U Conmand
components (conmandBut t on, commandLi nk), the set Properties() method
of the tag handler implementation class must:

« If the specified St ri ng value is not a value binding expression, create a
Met hodBi ndi ng instance that will return this value when its i nvoke()
method is called, and store it as the value of the act i on attribute on the
underlying component.

« Otherwise, create a Met hodBi ndi ng instance for the specified expression, and
store that instance as the value of the action attribute on the underlying
component.

For other non-nul | attributes that correspond to Met hodBi ndi ng attributes on
the underlying components (act i onLi st ener, val i dat or,

val ueChangelLi st ener), the set Properti es() method of the tag handler
implementation class must:

« Throw an exception if the specified St ri ng value is not a value binding
expression.

« Create a Met hodBi ndi ng instance for the specified expression, and store that
instance as the value of the corresponding component property.

For any non-nul | id, scope, orvar attribute, the set Properti es() method of
the tag handler implementation class must simply set the value of the
corresponding component attribute.

For all other non-nul | attributes, the set Properti es() of the tag handler
implementation class method must:

« If the specified Stri ng value is not a value binding expression, set the
corresponding attribute on the underlying component (after performing any
necessary type conversion).

« If the specified Stri ng value is a value binding expression, create a
Val ueBi ndi ng instance for that expression, and call the
set Val ueBi ndi ng() method on the underlying component, passing the
attribute name and the Val ueBi ndi ng instance as parameters.

JavaServer Faces Specification ¢ February 2004

CHAPTERlO

Using JSF in Web Applications

This specification provides JSF implementors significant freedom to differentiate
themselves through innovative implementation techniques, as well as value-added
features. However, to ensure that web applications based on JSF can be executed
unchanged across different JSF implementations, the following additional
requirements, defining how a JSF-based web application is assembled and
configured, must be supported by all JSF implementations.

10.1

Web Application Deployment Descriptor

JSF-based applications are web applications that conform to the requirements of the
Java Servlet Specification (version 2.3 or later), and also use the facilities defined in
this specification. Conforming web applications are packaged in a web application
archive (WAR), with a well-defined internal directory structure. A key element of a
WAR is the web application deployment descriptor, an XML document that describes the
configuration of the resources in this web application. This document is included in
the WAR file itself, at resource path / VEB- | NF/ web. xni .

Portable JSF-based web applications must include the following configuration
elements, in the appropriate portions of the web application deployment descriptor.
Element values that are rendered in italics represent values that the application
developer is free to choose. Element values rendered in bold represent values that
must be utilized exactly as shown.

Executing the request processing lifecycle via other mechanisms is also allowed (for
example, an MVC-based application framework can incorporate calling the correct

phase implementations in the correct order); however, all JSF implementations must
support the functionality described in this chapter to ensure application portability.

10-1

10.1.1

10.1.2

Servlet Definition

JSF implementations must provide request processing lifecycle services through a
standard servlet, defined by this specification. This servlet must be defined, in the
deployment descriptor of an application that wishes to employ this portable
mechanism, as follows:

<servl et>
<servl et-nane> faces-servl et-name </servl et-nane>
<servlet-cl ass>
j avax. f aces. webapp. FacesSer vl et
</servl et-cl ass>
</servlet>

The servlet name, denoted as f aces- ser vl et - nane above, may be any desired
value; however, the same value must be used in the servlet mapping (see
Section 10.1.2 “Servlet Mapping™).

In addition to FacesSer vl et , JSF implementations may support other ways to
invoke the JavaServer Faces request processing lifecycle, but applications that rely
on these mechanisms will not be portable.

Servlet Mapping

All requests to a web application are mapped to a particular servlet based on
matching a URL pattern (as defined in the Java Servlet Specification) against the
portion of the request URL after the context path that selected this web application.
JSF implementations must support web application that define a <ser vl et -

mappi ng> that maps any valid ur | - pat t er n to the FacesSer vl et . Prefix or
extension mapping may be used. When using prefix mapping, the following
mapping is recommended, but not required:

<servl et - mappi ng>
<servl et-nane> faces-servl et-name </servl et-nane>
<url-pattern>/faces/*</url-pattern>

</ servl et - nappi ng>

10-2 JavaServer Faces Specification February 2004

10.1.3

When using extension mapping the following mapping is recommended, but not
required:

<servl et - mappi ng>
<servl et-nanme> faces-servl et-nane </servl et-nane>
<url-pattern>*. faces</url-pattern>

</ servl et - mappi ng>

In addition to FacesSer vl et , JSF implementations may support other ways to
invoke the JavaServer Faces request processing lifecycle, but applications that rely
on these mechanisms will not be portable.

Application Configuration Parameters

Servlet containers support application configuration parameters that may be
customized by including <cont ext - par an® elements in the web application
deployment descriptor. All JSF implementations are required to support the
following application configuration parameter names:

= javax. faces. CONFI G_FI LES -- Comma-delimited list of context-relative
resource paths under which the JSF implementation will look for application
configuration resources (see Section 10.3.3 “Application Configuration Resource
Format”), before loading a configuration resource named “/ V\EB- | NF/ f aces-
confi g. xm ” (if such a resource exists).

= javax. faces. DEFAULT_SUFFI X -- The default suffix for extension-mapped
resources that contain JSF components. If not specified, the default value “.jsp”
must be used.

= javax. faces. LI FECYCLE | D -- Lifecycle identifier of the Li f ecycl e instance
to be used when processing JSF requests for this web application. If not specified,
the JSF default instance, identified by
Li f ecycl eFact ory. DEFAULT_LI FECYCLE, must be used.

= javax. faces. STATE_SAVI NG_METHOD -- The location where state information
is saved. Valid values are “server” (typically saved in Ht t pSessi on) and “client
(typically saved as a hidden field in the subsequent form submit). If not specified,
the default value “server” must be used.

JSF implementations may choose to support additional configuration parameters, as
well as additional mechanisms to customize the JSF implementation; however,
applications that rely on these facilities will not be portable to other JSF
implementations.

Chapter 10 Using JSF in Web Applications 10-3

10.2

10.2.1

10.2.2

10.2.3

Included Classes and Resources

A JSF-based application will rely on a combination of APls, and corresponding
implementation classes and resources, in addition to its own classes and resources.
The web application archive structure identifies two standard locations for classes
and resources that will be automatically made available when a web application is
deployed:

» /VEEB-| NF/ cl asses -- A directory containing unpacked class and resource files.

= /VEB-I NF/1ib -- A directory containing JAR files that themselves contain class
files and resources.

In addition, servlet and portlet containers typically provide mechanisms to share
classes and resources across one or more web applications, without requiring them
to be included inside the web application itself.

The following sections describe how various subsets of the required classes and
resources should be packaged, and how they should be made available.

Application-Specific Classes and Resources

Application-specific classes and resources should be included in / VEB-
I NF/ cl asses or / V\EB- | NF/ | i b, so that they are automatically made available
upon application deployment.

Servlet and JSP API Classes (javax.servlet.*)

These classes will typically be made available to all web applications using the
shared class facilities of the servlet container. Therefore, these classes should not be
included inside the web application archive.

JSP Standard Tag Library (JSTL) API Classes
(javax.servlet.jsp.jstl.*)

These classes describe the APIs for the JSP Standard Tag Library. They are generally
packaged in a JAR file named j st . j ar (although this name is not required). The
JSTL API classes should be installed using the shared class facility of your servlet
container; however, they may also be included inside the web application archive (in
the / VEEB- | NF/ | i b directory).

10-4 JavaServer Faces Specification February 2004

10.2.4

10.2.5

10.2.6

10.2.6.1

At some future time, JSP Standard Tag Library might become part of the Java2
Enterprise Edition (J2EE) platform, at which time the container will be required to
provide these classes through a shared class facility.

JSP Standard Tag Library (JSTL) Implementation
Classes

These classes and resources comprise the implementation of the JSTL APIs that is
provided by a JSTL implementor. Typically, such classes will be provided in the form
of one or more JAR files, which can be either installed with the container’s shared
class facility, or included inside the web application archive (in the / WEB- I NF/ | i b
directory).

JavaServer Faces API Classes (javax.faces.*)

These classes describe the fundamental APIs provided by all JSF implementations.
They are generally packaged in a JAR file named j sf - api . j ar (although this name
is not required). The JSF API classes should be installed using the shared classes
facility of your servlet container; however, they may also be included inside the web
application archive (in the / WEB- | NF/ | i b directory).

At some future time, JavaServer Faces might become part of the Java2 Enterprise
Edition (J2EE) platform, at which time the container will be required to provide
these classes through a shared class facility.

JavaServer Faces Implementation Classes

These classes and resources comprise the implementation of the JSF APIs that is
provided by a JSF implementor. Typically, such classes will be provided in the form of
one or more JAR files, which can be either installed with the container’s shared class
facility, or included in the / VEB- | NF/ | i b directory of a web application archive.

FactoryFinder

j avax. f aces. Fact or yFi nder implements the standard discovery algorithm for
all factory objects specified in the JavaServer Faces APIs. For a given factory class
name, a corresponding implementation class is searched for based on the following
algorithm. Items are listed in order of decreasing search precedence:

Chapter 10 Using JSF in Web Applications 10-5

10-6

1. If a default JavaServer Faces configuration file (/WEB-INF/faces-config.xml) is
bundled into the web application, and it contains a factory entry of the
given factory class name, that factory class is used.

2. If the JavaServer Faces configuration resource(s) hamed by the
javax. faces. CONFI G_FI LES Ser vl et Cont ext init parameter (if any) contain
any factory entries of the given factory class name, those factories are used, with
the last one taking precedence.

3. If there are any META-INF/faces-config.xml resources bundled any JAR files in
the web Servl et Context’s resource pat hs, the factory entries of the given
factory class name in those files are used, with the last one taking precedence.

4. If a META- | NF/ servi ces/ {fact ory-cl ass- nanme} resource is visible to the
web application class loader for the calling application (typically as a result of
being present in the manifest of a JAR file), its first line is read and assumed to be
the name of the factory implementation class to use.

5. If none of the above steps yield a match, the JavaServer Faces implementation
specific class is used.

If any of the factories found on any of the steps above happen to have a one-
argument constructor, with argument the type being the abstract factory class, that
constructor is invoked, and the previous match is passed to the constructor. For
example, say the container vendor provided an implementation of

FacesCont ext Fact ory, and identified it in META-

I NF/ services/javax. faces. cont ext. FacesCont ext Factory in ajar on the
webapp ClassLoader. Also say this implementation provided by the container
vendor had a one argument constructor that took a FacesCont ext Fact ory
instance. The Fact or yFi nder system would call that one-argument constructor,
passing the implementation of FacesCont ext Fact ory provided by the JavaServer
Faces implementation.

If a Factory implementation does not provide a proper one-argument constructor, it
must provide a zero-arguments constructor in order to be successfully instantiated.

Once the name of the factory implementation class is located, the web application
class loader for the calling application is requested to load this class, and a
corresponding instance of the class will be created. A side effect of this rule is that
each web application will receive its own instance of each factory class, whether the
JavaServer Faces implementation is included within the web application or is made
visible through the container's facilities for shared libraries.

public static Object getFactory(String factoryNane);

Create (if necessary) and return a per-web-application instance of the appropriate
implementation class for the specified JavaServer Faces factory class, based on the
discovery algorithm described above.

JavaServer Faces Specification ¢ February 2004

10.2.6.2

JSF implementations must also include implementations of the several factory
classes. In order to be dynamically instantiated according to the algorithm defined
above, the factory implementation class must include a public, no-arguments
constructor. Factory class implementations must be provided for the following
factory names:

= javax.faces. application. ApplicationFactory
(Fact or yFi nder . APPLI CATI ON_FACTORY)—Factory for Appl i cati on
instances.
= javax. faces. context.FacesCont ext Factory
(Fact or yFi nder . FACES_CONTEXT_FACTORY)—Factory for FacesCont ext
instances.
= javax.faces.lifecycle.Lifecycl eFactory
(Fact or yFi nder . LI FECYCLE_FACTORY)—Factory for Li f ecycl e instances.
= javax. faces.render. RenderKitFactory
(Fact or yFi nder . RENDER_KI T_FACTORY)—Factory for Render Ki t instances.

FacesServlet

FacesSer vl et is an implementation of j avax. servl et. Ser vl et that accepts
incoming requests and passes them to the appropriate Li f ecycl e implementation
for processing. This servlet must be declared in the web application deployment
descriptor, as described in Section 10.1.1 “Servlet Definition”, and mapped to a
standard URL pattern as described in Section 10.1.2 “Servlet Mapping”.

public void init(ServletConfig config) throws ServletException;

Acquire and store references to the FacesCont ext Fact ory and Li f ecycl e
instances to be used in this web application.

public void destroy();

Release the FacesCont ext Fact ory and Li f ecycl e references that were acquired
during execution of the i ni t () method.

public void service(Servl et Request request, ServletResponse
response) throws | OException, ServletException;

For each incoming request, the following processing is performed:

= Using the FacesCont ext Fact ory instance stored during the i ni t () method,
call the get FacesCont ext () method to acquire a FacesCont ext instance with
which to process the current request.

Chapter 10 Using JSF in Web Applications 10-7

10.2.6.3

10.2.6.4

= Call the execut e() method of the saved Li f ecycl e instance, passing the
FacesCont ext instance for this request as a parameter. If the execut e()
method throws a FacesExcepti on, re-throw it as a Ser vl et Excepti on with
the FacesExcept i on as the root cause.

= Call the render () method of the saved Li f ecycl e instance, passing the
FacesCont ext instance for this request as a parameter. If the r ender () method
throws a FacesExcepti on, re-throw it as a Ser vl et Except i on with the
FacesExcepti on as the root cause.

= Call the r el ease() method on the FacesCont ext instance, allowing it to be
returned to a pool if the JSF implementation uses one.

The FacesServlet implementation class must also declare two static public final

String constants whose value is a context initialization parameter that affects the

behavior of the servlet:

= CONFI G_FI LES_ATTR -- the context initialization attribute that may optionally
contain a comma-delimited list of context relative resources (in addition to / \\EB-
I NF/ faces-config. xm which is always processed if it is present) to be
processed. The value of this constant must be “j avax. f aces. CONFI G_FI LES”.

= LI FECYCLE | D_ATTR -- the lifecycle identifier of the Li f ecycl e instance to be
used for processing requests to this application, if an instance other than the
default is required. The value of this constant must be
“j avax. f aces. LI FECYCLE | D".

UlComponentTag

U Component Tag is an implementation of j avax. servl et . j sp. tagext. Tag,
and must be the base class for any JSP custom action that corresponds to a JSF

U Conponent . See Chapter 9 “Integration with JSP, and the Javadocs for

U Component Tag, for more information about using this class as the base class for
your own Ul Conponent custom action classes.

UlComponentBodyTag

U Conponent BodyTag is a subclass of Ul Conponent Tag, so it inherits all of the
functionality described in the preceding section. In addition, this class implements
the standard functionality provided by j avax. servl et . j sp. BodyTagSupport,
so it is useful as the base class for JSF custom action implementations that must
process their body content. See Chapter 9 “Integration with JSP, and the Javadocs for
U Component Body Tag, for more information about using this class as the base class
for your own Ul Conponent custom action classes

10-8 JavaServer Faces Specification February 2004

10.2.6.5

10.2.6.6

10.2.6.7

10.2.6.8

AttributeTag

JSP custom action that adds a named attribute (if necessary) to the Ul Conponent
associated with the closest parent U Conponent custom action. See Section 9.4.2
“<f.attribute>".

ConverterTag

JSP custom action (and convenience base class) that creates and registers a
Convert er instance on the U Conponent associated with the closest parent

Ul Conponent custom action. See Section 9.4.3 “<f.convertDateTime>", Section 9.4.4
“<f.convertNumber>”, and Section 9.4.5 “<f.converter>".

FacetTag

JSP custom action that adds a named facet (see Section 3.1.9 “Facet Management”) to
the UlIComponent associated with the closest parent UIComponent custom action.
See Section 9.4.6 “<f.facet>".

ValidatorTag

JSP custom action (and convenience base class) that creates and registers a

Val i dat or instance on the Ul Conponent associated with the closest parent

Ul Component custom action. See Section 9.4.12 “<f:validateDoubleRange>",
Section 9.4.13 “<f:validateLength>", Section 9.4.14 “<f:validateLongRange>", and
Section 9.4.15 “<f:validator>".

10.3

Application Configuration Resources

This section describes the JSF support for portable application configuration
resources used to configure application components.

Chapter 10 Using JSF in Web Applications 10-9

10.3.1

10.3.2

Overview

JSF defines a portable configuration resource format (as an XML document) for
standard configuration information. One or more such application resources will be
loaded automatically, at application startup time, by the JSF implementation. The
information parsed from such resources will augment the information provided by
the JSF implementation, as described below.

In addition to their use during the execution of a JSF-based web application,
configuration resources provide information that is useful to development tools
created by Tool Providers. The mechanism by which configuration resources are
made available to such tools is outside the scope of this specification.

Application Startup Behavior

At application startup time, before any requests are processed, the JSF
implementation must process zero or more application configuration resources,
located according to the following algorithm:

= Search for all resources named “META- | NF/ f aces- confi g. xm” in the
Ser vl et Cont ext resource paths for this web application, and load each as a JSF
configuration resource (in reverse order of the order in which they are returned
by get Resources()).

= Check for the existence of a context initialization parameter named
javax. faces. CONFI G_FI LES. If it exists, treat it as a comma-delimited list of
context relative resource paths (starting with a “/”), and load each of the specfied
resources.

= Check for the existence of a web application configuration resource named
“/ WEB- | NF/ f aces- confi g. xm ”, and load it if the resource exists.

This algorithm provides considerable flexibility for developers that are assembling
the components of a JSF-based web application. For example, an application might
include one or more custom Ul Conponent implementations, along with associated
Render er s, so it can declare them in an application resource named ““/ \\EB-

I NF/ faces-confi g. xm ” with no need to programmatically register them with
Appl i cati on instance. In addition, the application might choose to include a
component library (packaged as a JAR file) that includes a “META- | NF/ f aces-
config. xm ” resource. The existence of this resource causes components, renderers,
and other JSF implementation classes that are stored in this library JAR file to be
automatically registered, with no action required by the application.

10-10 JavaServer Faces Specification ¢ February 2004

10.3.3

XML parsing errors detected during the loading of an application resource file are
fatal to application startup, and must cause the application to not be made available
by the container. Whether or not a validating parse is performed is up to the JSF
implementation; it is recommended that the JSF implementation provide a
configuration parameter to control whether or not validation occurs.

Application Configuration Resource Format

Application configuration resources must conform to the XML document description
shown below. In addition, they must include the one of the following DOCTYPE
declarations:

<! DOCTYPE faces-config PUBLIC
“-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN
“http://java.sun.com dt d/ web-facesconfig_1_0.dtd">

<! DOCTYPE faces-config PUBLIC
“-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.1//EN
“http://java.sun.com dt d/ web-facesconfig_1_1.dtd">

The only difference between the 1.0 and 1.1 DTDs is the presence of facet support in
1.1. 1.1 is backwards compatible with 1.0. The actual Document Type Description
that corresponds to the 1.1 DOCTYPE declaration is as follows. Please see the binary
distribution for the 1.0 DTD:

<l--
Copyright 2004 Sun M crosystenms, Inc. Al rights reserved.

SUN PROPRI ETARY/ CONFI DENTI AL. Use is subject to license terns.

-->

<I--

DTD for the JavaServer Faces Application Configuration File
(Version 1.1)

Chapter 10 Using JSF in Web Applications 10-11

To support validation of your configuration file(s),
include the follow ng

DOCTYPE el ement at the beginning (after the “xm”
decl aration):

<! DOCTYPE faces-config PUBLIC

“-//Sun M crosystens, Inc.//DTD JavaServer Faces Config
1.1/ /EN

“http://java. sun. com dt d/ web-facesconfig 1 1.dtd">

$ld: web-facesconfig_ 1 1.dtd,v 1.2 2004/04/09 18:11:35
eburns Exp $

<I--
An “Action” is a String that represents a nethod binding

expression that points at a nethod with no argunents that
returns a

String. It rmust be bracketed with “#{}”, for exanple,
“#{cardeno. buyCar}”.
-->

<IENTITY % Action *“CDATA’>

JavaServer Faces Specification « February 2004

<l--

A “ClassNanme” is the fully qualified name of a Java class
that is

instantiated to provide the functionality of the enclosing
el ement .

-->

<IENTITY % Cl assNane “ CDATA’>

<I--

An “ldentifier” is a string of characters that conforns to
the variabl e

nam ng conventions of the Java programm ng | anguage (JLS
Section ?.7?.7).

-->

<IENTITY % | dentifier “CDATA’>

<l--

A “JavaType” is either the fully qualified name of a Java
class that is

instantiated to provide the functionality of the enclosing
el ement, or

the name of a Java prinitive type (such as int or char)
The cl ass nanme

or primtive type may optionally be followed by “[]” to
i ndi cate that

the underlying data nmust be an array, rather than a scal ar
vari abl e.

-->

<IENTITY % JavaType “CDATA’>

Chapter 10 Using JSF in Web Applications 10-13

<l--

A “Language” is a |l ower case two-letter code for a | anguage
as defined

by 1SL-639.
-->

<IENTITY % Language *“CDATA">

<l--

A “ResourcePath” is the relative or absolute path to a
resource file

(such as a logo inmmge).
-->

<IENTITY % ResourcePath “CDATA">

<l--

A “Scope” is the well-known nane of a scope in which
managed beans may

optionally be defined to be created in.

-->

<IENTITY % Scope “(request|session|application)”>

<l--

A “ScopeOrNone” elenment defines the legal values for the

10-14 JavaServer Faces Specification ¢ February 2004

<managed- bean-scope> el enment’ s body content, which includes

all of the scopes respresented by the “Scope” type, plus
t he

“none” value indicating that a created bean should not be
stored into any scope
-->

<IENTITY % ScopeOrNone “(request|session|application|none)”>

<I--

A “ViewldPattern” is a pattern for matching view
identifiers in

order to determ ne whether a particular navigation rule
shoul d be

fired. It nmust contain one of the follow ng values

- The exact match for a view identifier that is recognized
by the the ViewHandl er inplenentation being used (such as

“/index.jsp” if you are using the default ViewHandl er)

- A proper prefix of a viewidentifier, plus a trailing “*”

character. This pattern indicates that all view
identifiers that

match the portion of the pattern up to the asterisk will
mat ch the

surroundi ng rule. When nore than one match exists, the
mat ch with

the longest pattern is selected.

- An “*" character, which neans that this pattern applies
to al

Chapter 10 Using JSF in Web Applications 10-15

view identifiers.
-->

<IENTITY % Viewl dPattern “CDATA">

<l -- =Z==m=====oom==m=—o—=m== Top Level El enments ==================

<l--

The “faces-config” elenent is the root of the configuration
i nformation

hi erarchy, and contains nested elenents for all of the
ot her configuration

settings.
-->

<! ELEMENT f aces-config
((application|factory| component| converter| managed-
bean| navi gati on-rul e| r ef er enced- bean| render -
kit|lifecycle|validator)*)>

<I ATTLI ST faces-config

xm ns CDATA #FI XED
“http://java. sun. com JSF/ Confi gurati on”>

<l--

10-16 JavaServer Faces Specification ¢ February 2004

The “application” el enent provides a nmechanism to define
t he various

per-application-singleton inplementation artifacts for a
particul ar web

application that is utilizing JavaServer Faces. For nested
el ement s

that are not specified, the JSF inplenentation nust provide
a suitable

defaul t.

-->

<! ELEMENT application ((action-listener|default-render-kit-
i d| message- bundl e| navi gati on- handl er | vi ew- handl er| st at e-
manager | property-resol ver | vari abl e-resol ver| | ocal e-config)*)>

<l--

The “factory” element provides a nmechanism to define the
vari ous

Factories that conprise parts of the inplenentation of
JavaServer

Faces. For nested elenments that are not specified, the JSF
i npl ementati on nmust provide a suitable default.
-->

<l ELEMENT f actory ((application-factory]|faces-context-
factory|lifecycle-factory|render-kit-factory)*)>

<l--

The “attribute” elenment represents a nanmed, typed, value
associated with

the parent Ul Conponent via the generic attributes
mechani sm

Chapter 10 Using JSF in Web Applications ~ 10-17

Attribute nanes nust be unique within the scope of the
parent (or related)

conponent .
-->

<l ELEMENT attribute (description*, display-name*, icon*,
attribute-nane, attribute-class, default-value?, suggested-
val ue?, attribute-extension*)>

<l--

Extension elenment for attribute. May contain
i mpl ement ati on

specific content.
-->

<! ELEMENT attri but e-extensi on ANY>

<l--

The “component” el enment represents a concrete U Conponent
i mpl ementati on

class that should be registered under the specified type
identifier,

along with its associated properties and attri butes.
Conponent types nust

be unique within the entire web application.

Nested “attribute” elements identify generic attributes
that are recognized

by the inplementation |logic of this conponent. Nest ed
“property” elenments

identify JavaBeans properties of the conponent class that
may be exposed

10-18 JavaServer Faces Specification ¢ February 2004

for manipulation via tools.
-->

<! ELEMENT conponent (description*, display-nane*, icon*,
conmponent -type, conponent-class, facet*, attribute*, property*,
conponent - ext ensi on*) >

<l--

Ext ensi on el ement for conponent. May contain
i mpl ementati on

specific content.
-->

<! ELEMENT conponent - ext ensi on ANY>

<l--

Define the nane and other design-tine information for a
facet that is

associated with a renderer or a conponent.

<! ELEMENT f acet (description*, display-nanme*, icon*,
facet-nane, facet-extension*)>

<I--
Ext ensi on el enment for facet. May contain inplenentation

specific content.

-->

<! ELEMENT f acet - ext ensi on ANY>

<I--

Chapter 10 Using JSF in Web Applications ~ 10-19

10-20

The “facet-nane” elenment represents the facet nane under
which a

U Component will be added to its parent. It nust be of
type

“ldentifier”.

-->

<! ELEMENT f acet - name (#PCDATA) >

<l--

The “converter” element represents a concrete Converter
i mpl emrent ati on

class that should be registered under the specified
converter identifier.

Converter identifiers nmust be unique within the entire web
appl i cation.

Nested “attribute” elements identify generic attributes
that may be

configured on the correspondi ng U Conponent in order to
affect the

operation of the Converter. Nested “property” elements
identify JavaBeans

properties of the Converter inplenmentation class that may
be configured

to affect the operation of the Converter.
-->

<! ELEMENT converter (description*, display-name*, icon*,
(converter-id | converter-for-class), converter-class,
attribute*, property*)>

<l--

JavaServer Faces Specification « February 2004

The “icon” elenment contains “snall-icon” and “large-icon”
el ements that

specify the resoruce paths for small and large G F or JPG
i con images

used to represent the parent elenment in a GU tool

-->

<! ELEMENT i con (smal |l -icon?, large-icon?)>

<I ATTLI ST icon xm ;1 ang %.anguage

#| MPLI ED>

<l--
The “lifecycle” element provides a mechanism to specify
nodi fications to the behaviour of the default Lifecycle
impl ementation for this web application.

-->

<IELEMENT | ifecycle (phase-listener*)>

<l--

The “local e-config” elenent allows the app devel oper to
decl are the

supported locales for this application.
-->

<! ELEMENT | ocal e-config (default-locale?, supported-I|ocale*)>

<I--

The “managed- bean” elenment represents a JavaBean, of a
particul ar cl ass,

that will be dynamically instantiated at runtime (by the
def aul t

Vari abl eResol ver inplenentation) if it is referenced as the
first elenent

Chapter 10 Using JSF in Web Applications ~ 10-21

10-22

of a value binding expression, and no correspondi ng bean
can be

identified in any scope. In addition to the creation of
the managed bean

and the optional storing of it into the specified scope
the nested

managed- property elenents can be used to initialize the
contents of

settabl e JavaBeans properties of the created instance
-->

<! ELEMENT managed- bean (description*, display-nane*, icon*,
managed- bean- name, managed- bean-cl ass, nanaged-bean-scope
(managed-property* | map-entries | list-entries))>

<l--

The “managed-property” elenent represents an individua
property of a

managed bean that will be configured to the specified val ue
(or val ue set)

if the corresponding managed bean is automatically created
-->

<! ELEMENT managed- property (description*, display-name*, icon*,
property-name, property-class?, (map-entries|null-
val ue| value| list-entries))>

<l--

The “map-entry” elenent reprsents a single key-entry pair
t hat

will be added to the conputed val ue of a nanaged property
of type

java.util. Map.

JavaServer Faces Specification « February 2004

-->

<l ELEMENT map-entry (key, (null-val ue|value))>

<I--

The “map-entries’ elenent represents a set of key-entry
pai rs that

will be added to the computed value of a managed property
of type
java.util. Map. In addition, the Java class types of the

key and entry
val ues may be optionally declared

-->

<l ELEMENT map-entries (key-class?, value-class?, map-entry*)>

<I--

The base nane of a resource bundle representing the nmessage
resour ces

for this application. See the JavaDocs for the
“java. util.ResourceBundl e”

class for nmore information on the syntax of resource bundle
names.

-->

<! ELEMENT nessage-bundl e (#PCDATA) >

<I--

The “navi gation-case” elenent describes a particul ar
conbi nation of

Chapter 10 Using JSF in Web Applications 10-23

10-24

conditions that nust match for this case to be executed
and the

view id of the conmponent tree that should be sel ected next.
-->

<! ELEMENT navi gati on-case (description*, display-name*, icon*,
fromaction?, fromoutconme?, to-viewid, redirect?)>

<l--

The “navigation-rule” elenment represents an individua
decision rule

that will be utilized by the default NavigationHandl er

i mpl ementation to make decisions on what view should be
di spl ayed

next, based on the view id being processed
-->

<! ELEMENT navi gation-rule (description*, display-name*, icon*,
fromviewid? navigation-case*)>

<l--

The “property” elenment represents a JavaBean property of
the Java cl ass

represented by our parent el enent.

Property nanmes nust be unique within the scope of the Java
cl ass

that is represented by the parent element, and nust
correspond to

property names that will be recognized when perforning
i nt rospection

JavaServer Faces Specification « February 2004

agai nst that class via java.beans.|ntrospector
-->

<! ELEMENT property (description*, display-name*, icon*,
property-name, property-class, default-val ue?, suggested-val ue?
property-extension*)>

<l--
Ext ension el enent for property. May contain inplenmentation
specific content.

-->

<l ELEMENT property-extension ANY>

<I--

The “referenced-bean” el ement represents at design tinme the
proni se

that a Java object of the specified type will exist at
runtime in sone

scope, under the specified key. This can be used by design
time tools

to construct user interface dial ogs based on the properties
of the

speci fied cl ass. The presence or absence of a referenced
bean

el ement has no inmpact on the JavaServer Faces runtine
envi ronment

inside a web application.
-->

<! ELEMENT ref erenced-bean (description*, display-name*, icon*,
r ef erenced- bean- name, referenced-bean-cl ass) >

Chapter 10 Using JSF in Web Applications 10-25

10-26

<l--

The “render-kit” element represents a concrete RenderKit
i mpl ement ati on

that should be registered under the specified render-Kkit-
id. If no

render-kit-id is specified, the identifier of the default
Render Ki t

(Render Ki t Fact ory. DEFAULT_RENDER_KI T) is assumned.
-->

<! ELEMENT render-Kkit (description*, display-nane*, icon*,
render-kit-id?, render-kit-class?, renderer*)>

<l--

The “renderer” elenment represents a concrete Renderer
i mpl emrent ati on

class that should be registered under the specified
conponent famly

and renderer type identifiers, in the RenderKit associated
with the

parent “render-kit” el enent. Conmbi nati ons of conponent
fam |y and renderer

type must be unique within the RenderKit associated with
the parent

“render-kit” elenment.

Nested “attribute” elements identify generic conponent
attributes that

are recognized by this renderer.
-->

<! ELEMENT render er (description*, display-nane*, icon*,
conmponent-fam |y, renderer-type, renderer-class, facet*,
attribute*, renderer-extension*)>

JavaServer Faces Specification « February 2004

<l--
Extension el enent for renderer. May contain inplenmentation
specific content.

-->

<! ELEMENT render er -ext ensi on ANY>

<l--

The “validator” element represents a concrete Validator
i mpl ementati on

class that should be registered under the specified
val i dator identifier.

Validator identifiers nust be unique within the entire web
appl i cation.

Nested “attribute” elements identify generic attributes
that may be

configured on the correspondi ng U Conponent in order to
affect the

operation of the Validator. Nested “property” elements
identify JavaBeans

properties of the Validator inplenmentation class that may
be configured

to affect the operation of the Validator.
-->

<! ELEMENT val i dat or (description*, display-nane*, icon*,
val i dator-id, validator-class, attribute*, property*)>

<l--

Chapter 10 Using JSF in Web Applications ~ 10-27

10-28

The “list-entries” elenment represents a set of
initialization

el enents for a managed property that is a java.util.List or
an

array. In the former case, the “value-class” elenent can
optionally

be used to declare the Java type to which each val ue shoul d

be

converted before adding it to the Collection.
-->
<IELEMENT list-entries (val ue-class?, (null-val ue|value)*)>
<l -- ==================== Sybordinate E enents ================
—====—======= -->
<l--

The “action-listener” elenment contains the fully qualified
cl ass nane

of the concrete ActionListener inplenentation class that
will be called

during the Invoke Application phase of the request
processing lifecycle

It rmust be of type “ClassNane”
-->

<! ELEMENT action-|istener (#PCDATA)>

<l--

The “application-factory” elenent contains the fully
gualified class

JavaServer Faces Specification « February 2004

name of the concrete ApplicationFactory inplenentation
class that

will be called when
Fact or yFi nder . get Fact or y(APPLI CATI ON_FACTORY) is

called. It nust be of type “d assNane”.
-->

<l ELEMENT application-factory (#PCDATA)>

<I--

The “attribute-class” elenent represents the Java type of
t he val ue

associated with this attribute nane. It rmust be of type
“Cl assNane”.

-->

<IELEMENT attribute-class (#PCDATA) >

<l--

The “attribute-nane” elenment represents the nane under
whi ch the

corresponding value will be stored, in the generic
attributes of the

U Conponent we are related to.
-->

<IELEMENT attribute-nane (#PCDATA) >

<l--

The “conponent-class” elenment represents the fully
qgualified class nane

Chapter 10 Using JSF in Web Applications 10-29

of a concrete Ul Conponent inplenmentation class. It nust be
of

type “ClassNane”.
-->

<! ELEMENT conponent-cl ass (#PCDATA) >

<l--

The “conponent-famil|ly” element represents the conmponent
famly for

whi ch the Renderer represented by the parent “renderer”
element will be

used.
-->

<! ELEMENT conponent-fanily (#PCDATA) >

<l--

The “conponent-type” elenent represents the nane under
whi ch the

correspondi ng U Conmponent class shoul d be registered.
-->

<! ELEMENT conponent-type (#PCDATA) >

<l--

The “converter-class” element represents the fully
gualified class nane

of a concrete Converter inplenmentation class. It must be
of

type “ClassNane”.

10-30 JavaServer Faces Specification ¢ February 2004

-->

<l ELEMENT converter-class (#PCDATA) >

<I--

The “converter-for-class” elenent represents the fully
qgualified class nane

for which a Converter class will be registered. It rmust
be of

type “ClassNane”.
-->

<l ELEMENT converter-for-class (#PCDATA)>

<I--

The “converter-id” elenment represents the identifier under
whi ch the

correspondi ng Converter class should be registered.
-->

<! ELEMENT converter-id (#PCDATA) >

<I--

The “default-render-kit-id” elenment allows the application
to define

a renderkit to be used other than the standard one.

-->

<! ELEMENT default-render-kit-id (#PCDATA) >

<l--

Chapter 10 Using JSF in Web Applications ~ 10-31

The “default-locale” elenent declares the default |ocale
for this

application instance. It nmust be specified as

:language: [_:country:[_:variant:]] w thout the col ons, for
exanpl e

“ja_JP_SJIS". The separators between the segnents may be

<! ELEMENT defaul t-1ocal e (#PCDATA) >

<l--

The “default-value” contains the value for the property or
attribute

in which this elenent resides. This value differs fromthe

“suggested-value” in that the property or attribute nust
take the

val ue, whereas in “suggested-value” taking the value is
opti onal .

-->

<! ELEMENT def aul t-val ue (#PCDATA) >

<l--

The “description” element contains a textual description of
the el enent

it is nested in, optionally flagged with a | anguage code
using the

“xm :lang” attribute
-->

<! ELEMENT descri ption ANY>

10-32 JavaServer Faces Specification ¢ February 2004

<I ATTLI ST description xm : 1 ang %.anguage
#1 MPLI ED>

<I--

The “display-name” element is a short descriptive nane
descri bing the

entity associated with the elenent it is nested in,
i ntended to be

di spl ayed by tools, and optionally flagged with a | anguage
code using

the “xm:lang” attribute.

-->
<! ELEMENT di spl ay- nane (#PCDATA) >

<I ATTLI ST di spl ay- nane xm ;1 ang %.anguage
#1 MPLI ED>

<I--

The “faces-context-factory” element contains the fully
qualified

class nane of the concrete FacesContextFactory
i mpl ementation class

that will be called when

Fact oryFi nder . get Fact or y(FACES_CONTEXT_FACTORY) is called
It must

be of type “d assNane”

-->

<l ELEMENT f aces-context-factory (#PCDATA) >

<I--

Chapter 10 Using JSF in Web Applications 10-33

The “fromaction” elenment contains an action reference
expr essi on

that must have been executed (by the default ActionListener
for handling

application |level events) in order to select this
navi gati on rule. | f

not specified, this rule will be relevant no nmatter which
action reference

was executed (or if no action reference was executed)

This value nust be of type “Action”.
-->

<! ELEMENT fromaction (#PCDATA)>

<l--

The “from outcone” elenment contains a |ogical outcone
string returned

by the execution of an application action method selected
via an

“actionRef” property (or a literal value specified by an

“action”
property) of a U Conmmand conponent. If specified, this
rule will be

relevant only if the outcone value matches this elenent’s
val ue. | f

not specified, this rule will be relevant no matter what
the outcone

val ue was.
-->

<! ELEMENT from out cone (#PCDATA) >

10-34 JavaServer Faces Specification ¢ February 2004

<I--

The “fromviewid’ elenment contains the view identifier of
the view

for which the containing navigation rule is relevant. | f
no

“fromview elenent is specified, this rule applies to
navi gati on

decisions on all views. |If this element is not specified
a val ue

of “*” is assumed, meaning that this navigation rule
applies to all

Vi ews.

This value nust be of type “View dPattern”.

-->

<IELEMENT fromviewid (#PCDATA) >

<I--

The “key” element is the String representation of a map key
t hat

will be stored in a managed property of type java.util.Mp
-->

<! ELEMENT key (#PCDATA) >

<I--

The “key-class” el ement defines the Java type to which each
“ keyn

Chapter 10 Using JSF in Web Applications 10-35

10-36

element in a set of “map-entry” elenments will be converted
to. It

must be of type “ClassNane”. If omtted,
“java.lang. String”

is assuned.
-->

<! ELEMENT Kkey-cl ass (#PCDATA) >

<l--

The “large-icon” element contains the resource path to a
| arge (32x32)

icon imge. The inmage may be in either G F or JPG format.
-->

<! ELEMENT | ar ge-i con (#PCDATA) >

<l--

The “lifecycle-factory” elenent contains the fully
qgqualified class nane

of the concrete LifecycleFactory inplenmentation class that
will be called

when FactoryFi nder. get Fact ory(LI FECYCLE_FACTORY) is call ed.
[t must be

of type “C assNane”.
-->

<l ELEMENT | ifecycle-factory (#PCDATA)>

<l--

The “managed- bean-cl ass” el ement represents the fully
qgualified class

JavaServer Faces Specification « February 2004

nane of the Java class that will be used to instantiate a
new i nstance

if creation of the specified managed bean is requested. It
must be of

type “Cl assNane”

The specified class must conform to standard JavaBeans
conventi ons.

In particular, it nust have a public zero-argunments
constructor, and

zero or nmore public property setters.
-->

<! ELEMENT nmnaged- bean-cl ass (#PCDATA) >

<I--

The “managed- bean-name” el enent represents the attribute
name under

whi ch a managed bean will be searched for, as well as
stored (unless

t he “managed-bean-scope” value is “none”). It must be of
type

“Identifier”.
-->

<! ELEMENT nanaged- bean- nanme (#PCDATA) >

<I--

The “managed- bean-scope” el enment represents the scope into
which a newy

Chapter 10 Using JSF in Web Applications 10-37

10-38

created instance of the specified managed bean will be
stored (unless

the value is “none”). It nmust be of type “ScopeOrNone”
-->

<! ELEMENT nanaged- bean-scope (#PCDATA) >

<l--

The “navi gation-handler” element contains the fully
gualified class nane

of the concrete NavigationHandl er inplenentation class that
will be called

during the Invoke Application phase of the request
processing lifecycle

if the default ActionListener (provided by the JSF
i mpl ementation) is used.

It rmust be of type “ClassNane”
-->

<! ELEMENT navi gati on-handl er (#PCDATA) >

<I--
The “phase-listener” elenment contains the fully qualified class

name of the concrete Phaselistener inplenmentation class that
will be

registered on the Lifecycle. It nust be of type “Cl assNanme”
-->

<! ELEMENT phase-1listener (#PCDATA) >

<l--

The “redirect” elenent indicates that navigation to the
specified

JavaServer Faces Specification « February 2004

“to-viewid" should be acconplished by performng an HITP
redirect

rat her than the usual ViewHandl er nechani sns.
-->

<! ELEMENT redirect EMPTY>

<l--

The “suggested-value” contains the value for the property
or

attribute in which this elenent resides. This value is
advi sory

only and is intended for tools to use when popul ating
pal | ettes.

-->

<! ELEMENT suggest ed-val ue (#PCDATA) >

<l--

The “viewhandler” elenment contains the fully qualified
cl ass nane

of the concrete ViewHandl er inplenentation class that will
be called

during the Restore View and Render Response phases of the
request

processing lifecycle. The faces inplenentation nust
provide a

default inplementation of this class
-->

<! ELEMENT vi ew- handl er (#PCDATA) >

Chapter 10 Using JSF in Web Applications ~ 10-39

<l--

The “state-nmanager” elenent contains the fully qualified

cl ass nanme

of the concrete StateManager inplenentation class that wll

be called

during the Restore View and Render Response phases of the

request

processing lifecycle. The faces inplenentation nust

provide a

default inplementation of this class

-->

<! ELEMENT st at e- manager (#PCDATA) >

<l--

The “null-value” elenment indicates that the nanaged

property in which we

are nested will be explicitly set to nul

bean is

i f our managed

automatically created. This is different fromonitting the

managed

property elenment entirely, which will cause no property

setter to be

called for this property.

The “null-value” element can only be used when the

associ at ed

“property-class” identifies a Java cl ass,
primtive

-->

<! ELEMENT nul | -val ue EMPTY>

10-40 JavaServer Faces Specification ¢ February 2004

not a Java

<I--

The “property-class” elenment represents the Java type of
t he val ue

associated with this property nane. It rmust be of type
“JavaType”.

If not specified, it can be inferred from existing classes;
however,

this element should be specified if the configuration file
i s going

to be the source for generating the corresponding classes.
-->

<!l ELEMENT property-class (#PCDATA) >

<l--

The “property-nane” elenment represents the JavaBeans
property name

under which the correspondi ng value may be stored
-->

<! ELEMENT property-nane (#PCDATA) >

<I--

The “property-resolver” elenent contains the fully
qgqualified class nane

of the concrete PropertyResol ver inplenentation class that
will be used

during the processing of value binding expressions.

It rmust be of type “ClassNane”

Chapter 10 Using JSF in Web Applications ~ 10-41

10-42

<! ELEMENT property-resol ver (#PCDATA)>

<l--

The “referenced-bean-class” elenment represents the fully
qgual ified class

nane of the Java class (either abstract or concrete) or
Java interface

i npl emrented by the corresponding referenced bean. |t nust
be of type

“Cl assNane”.
-->

<! ELEMENT ref erenced-bean-cl ass (#PCDATA) >

<l--

The “referenced-bean-nane” el enent represents the attribute
name under

which the corresponding referenced bean may be assuned to
be st ored,

in one of the scopes defined by the “Scope” type. It nust
be of type
“Identifier”.

-->

<! ELEMENT r ef erenced- bean-nanme (#PCDATA) >

<l--

The “render-kit-id” element represents an identifier for
the

RenderKit represented by the parent “render-kit” el enment

JavaServer Faces Specification « February 2004

-->

<!l ELEMENT render-kit-id (#PCDATA) >

<I--

The “render-kit-class” elenment represents the fully
qgualified class nane

of a concrete RenderKit inplenentation class. It nust be
of

type “ClassNane”.
-->

<l ELEMENT render-kit-class (#PCDATA)>

<I--

The “renderer-class” el enment represents the fully qualified
class nane

of a concrete Renderer inplenentation class. It nmust be of
type “ClassNane”.
-->

<l ELEMENT renderer-class (#PCDATA) >

<I--

The “render-kit-factory” element contains the fully
qgualified class nane

of the concrete RenderKitFactory inplenmentation class that
will be called

when Fact oryFi nder. get Fact or y(RENDER_KI T_FACTORY) is
called. It must be

of type “C assNane”.

Chapter 10 Using JSF in Web Applications ~ 10-43

-->

<! ELEMENT render-kit-factory (#PCDATA)>

<l--

The “renderer-type” elenent represents a renderer type
identifier for the

Renderer represented by the parent “renderer” el enent.
-->

<! ELEMENT renderer-type (#PCDATA) >

<l--

The “small-icon” element contains the resource path to a
| arge (16x16)

icon image. The inmage may be in either G F or JPG format.
-->

<! ELEMENT smal | -icon (#PCDATA) >

<l--

The “supported-locale” elenment allows authors to declare
whi ch

| ocal es are supported in this application instance.

It nust be specified as :language:[_:country:[_:variant:]]
wi t hout

the colons, for exanple “ja_JP_SJIS". The separators
bet ween t he

segnents may be ‘-’ or ‘.

-->

<! ELEMENT supported-I|ocal e (#PCDATA) >

JavaServer Faces Specification « February 2004

<l--

The “to-view element contains the view identifier of the
next view

that should be displayed if this navigation rule is
mat ched. It

nmust be of type “View d”.
-->

<!l ELEMENT to-viewid (#PCDATA) >

<l--

The “validator-class” element represents the fully
qgualified class nane

of a concrete Validator inplenentation class. It nust be
of

type “ClassNane”.
-->

<l ELEMENT val i dator-cl ass (#PCDATA) >

<I--

The “validator-id” elenment represents the identifier under
whi ch the

correspondi ng Validator class should be registered.
-->

<! ELEMENT validator-id (#PCDATA) >

<I--

Chapter 10 Using JSF in Web Applications ~ 10-45

10-46

The “value” elenent is the String representation of
litera

value to which a scalar nmanaged property will be set,

val ue

bi nding expression (“#{...}") that will be used to
cal cul ate the

a

or a

required value. It will be converted as specified for the

act ual

property type

-->

<! ELEMENT val ue (#PCDATA) >

<l--

The “val ue-cl ass” el enment defines the Java type to which

each

“value” elenent’s value will be converted to, prior

adding it to

the “list-entries” list for a managed property that

java.util.List, or a “map-entries” map for a managed

property that

is a java.util. Map. It nust be of type “Cl assNanme”

omtted
“java.lang. String” is assuned.
-->

<! ELEMENT val ue-cl ass (#PCDATA) >

<l--

The “vari abl e-resolver” elenent contains the fully
qgualified class nane

to

is a

of the concrete Variabl eResol ver inplenmentation class that

wll be used

JavaServer Faces Specification « February 2004

during the processing of value binding expressions.

It rmust be of type “ClassNane”

-->

<! ELEMENT vari abl e-resol ver

<I ATTLI ST
< ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

action-1listener
application
application-factory
attribute
attribute-cl ass
attribut e- extension
attribut e-nane
conponent
conponent - cl ass
component - ext ensi on
conponent-famly
conmponent -t ype
converter
converter-cl ass
converter-for-class
converter-id

default-1ocal e

default-render-kit-id

(#PCDATA) >

ldentifier Attributes =======

id ID #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id I D #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id I D # MPLI ED>
id I D #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>

Using JSF in Web Applications 10-47

<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST
<! ATTLI ST

defaul t - val ue
descri ption
di spl ay- nane

faces-config

faces-context-factory

facet
facet - extension
facet - name
factory
fromaction
from out conme
fromviewid

i con

key

key-cl ass

| arge-icon
lifecycle
lifecycle-factory
list-entries

| ocal e-config
managed- bean
managed- bean-cl ass
managed- bean- name
managed- bean- scope
managed- property
map-entries
map-entry

nmessage- bundl e

JavaServer Faces Specification « February 2004

id I D #l MPLI ED>
id ID #l MPLI ED>
id I D # MPLI ED>
id I D # MPLI ED>
id I D # MPLI ED>
id | D # MPLI ED>
id ID #l MPLI ED>
id | D #l MPLI ED>
id | D # MPLI ED>
id ID #l MPLI ED>
id I D # MPLI ED>
id I D # MPLI ED>
id | D # MPLI ED>
id | D # MPLI ED>
id ID #l MPLI ED>
id | D #l MPLI ED>
id ID #l MPLI ED>
d I D #l WPLI ED>

id I D # MPLI ED>
id I D # MPLI ED>
id I D # MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D # MPLI ED>
id ID #l MPLI ED>
id ID #l MPLI ED>
id I D #l MPLI ED>

<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<I ATTLI ST
<I ATTLI ST
< ATTLI ST
<I ATTLI ST
< ATTLI ST
< ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST
<I ATTLI ST

navi gati on- case
navi gati on- handl er
navi gati on-rul e
nul | -val ue
phase-|i st ener
property
property-cl ass
property-extension
property-nanme
property-resol ver
redirect

r ef erenced- bean
ref erenced- bean-cl as
r ef erenced- bean- nane
render - kit
render-kit-class
render-kit-factory
render-kit-id
render er
renderer-cl ass
render er - ext ensi on
renderer-type
smal | -icon

st at e- manager
suggest ed- val ue
supported-1 ocal e
to-viewid

val i dat or

S

Chapter 10

id ID #l MPLI ED>
id I D #l MPLI ED>
id ID #l MPLI ED>
id | D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D # MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id ID #l MPLI ED>
id I D #l MPLI ED>
id I D # MPLI ED>
id | D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D # MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D #l MPLI ED>
id I D # MPLI ED>
id | D #l MPLI ED>
id I D # MPLI ED>
id ID #l MPLI ED>
id I D # MPLI ED>
id | D #l MPLI ED>
id ID #l MPLI ED>

Using JSF in Web Applications 10-49

<! ATTLI ST val i dator-cl ass id | D #l MPLI ED>

<! ATTLI ST validator-id id | D #l WPLI ED>
<! ATTLI ST val ue id | D # WPLI ED>
<! ATTLI ST val ue-cl ass id I D #l MPLI ED>
<! ATTLI ST vari abl e-resol ver id | D #l MPLI ED>

<I ATTLI ST vi ew- handl er id | D #l WPLI ED>

10.3.4 Configuration Impact on JSF Runtime

The following XML elements! in application configuration resources cause
registration of JSF objects into the corresponding factories or properties. It is an error
if the value of any of these elements cannot be correctly parsed, loaded, set, or
otherwise used by the implementation.

= /faces-config/component -- Create or replace a component type / component
class pair with the Appl i cat i on instance for this web application.

» /faces-config/converter -- Create or replace a converter id / converter class or
target class / converter class pair with the Appl i cat i on instance for this web
application.

= /faces-config/render-kit -- Create and register a new Render Ki t instance with
the Render Ki t Fact ory, if one does not already exist for the specified r ender -
kit-id.

= /faces-config/render-Kkit/renderer -- Create or replace a component family +
renderer id / renderer class pair with the Render Ki t associated with the render-
kit element we are nested in.

» /faces-config/validator -- Create or replace a validator id / validator class pair
with the Appl i cati on instance for this web application.

For components, converters, and validators, it is legal to replace the implementation
class that is provided (by the JSF implementation) by default. This is accomplished
by specifying the standard value for the <conponent -t ype>, <converter-i d>, or
<val i dat or - i d> that you wish to replace, and specifying your implementation
class. To avoid class cast exceptions, the replacement implementation class must be a
subclass of the standard class being replaced. For example, if you declare a custom

1. Identified by XPath selection expressions.

10-50 JavaServer Faces Specification ¢ February 2004

Convert er implementation class for the standard converter identifier
j avax. f aces. | nt eger, then your replacement class must be a subclass of
j avax. faces. convert. | nt eger Converter.

For replacement Render er s, your implementation class must extend

j avax. f aces. render . Render er. However, to avoid unexpected behavior, your
implementation should recognize all of the render-dependent attributes supported
by the Renderer class you are replacing, and provide equivalent decode and encode
behavior.

The following XML elements cause the replacement of the default implementation
class for the corresponding functionality, provided by the JSF implementation. See
Section 10.3.5 “Delegating Implementation Support” for more information about the
classes referenced by these elements:

» /faces-config/application/action-listener -- Replace the default Act i onLi st ener
used to process Acti onEvent events wth an instance with the class
specified. The contents of this element must be a fully qualified Java class name
that, when instantiated, is an Acti onLi st ener.

= /faces-config/application/navigation-handler -- Replace the default
Navi gat i onHandl er instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
Navi gat i onHandl er.

» [faces-config/application/property-resolver -- Replace the default
PropertyResol ver instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
PropertyResol ver.

» /faces-config/application/state-manager -- Replace the default St at eManager
instance with the one specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is a St at eManager.

» /faces-config/application/variable-resolver -- Replace the default
Vari abl eResol ver instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
Vari abl eResol ver.

» /faces-config/application/view-manager -- Replace the default Vi ewManager
instance with the one specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is a Vi ewivanager.

The following XML elements cause the replacement of the default implementation
class for the corresponding functionality, provided by the JSF implementation. Each
of the referenced classes must have a public zero-arguments constructor:

» /faces-config/factory/application-factory -- Replace the default
Appl i cati onFact ory instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is an
Appl i cationFactory.

Chapter 10 Using JSF in Web Applications ~ 10-51

10.3.5

» /faces-config/factory/faces-context-factory -- Replace the default
FacesCont ext Fact or y instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
FacesCont ext Factory.

» /faces-config/factory/lifecycle-factory -- Replace the default Li f ecycl eFactory
instance with the one specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is a Li f ecycl eFact ory.

» [faces-config/factory/render-kit-factory -- Replace the default
Render Ki t Fact or y instance with the one specified. The contents of this element
must be a fully qualified Java class name that, when instantiated, is a
Render Ki t Fact ory.

The following XML elements cause the addition of event listeners to standard JSF
implementation objects, as follows. Each of the referenced classes must have a public
zero-arguments constructor.

= /faces-config/lifecycle/phase-listener -- Instantiate a new instance of the specified
class, which must implement PhaseLi st ener, and register it with the
Li f ecycl e instance for the current web application.

In addition, the following XML elements influence the runtime behavior of the JSF
implementation, even though they do not cause registration of objects that are
visible to a JSF-based application.

» /faces-config/managed-bean -- Make the characteristics of a managed bean with
the specified managed- bean- name available to the default Var i abl eResol ver
implementation.

= /faces-config/navigation-rule -- Make the characteristics of a havigation rule
available to the default Navi gat i onHandl er implementation.

Delegating Implementation Support

When providing a replacement for the default Propert yResol ver,

Vari abl eResol ver, Acti onLi st ener, Navi gat i onHandl| er, Vi ewHand| er, or
St at eManager, the decorator design pattern is leveraged, so that if you provide a
constructor that takes a single argument of the appropriate type, the custom
implementation receives a reference to the implementation that was previously
fulfilling the role. In this way, the custom implementation is able to override just a
subset of the functionality (or provide only some additional functionality) and
delegate the rest to the existing implementation.

10-52 JavaServer Faces Specification ¢ February 2004

For example, say you wanted to provide a custom Vi ewHandl er that was the same

as the default one, but provided a different implementation of the
cal cul at eLocal e() method. Consider this code excerpt from a custom
Vi ewHandl er:

public class MyVi ewHandl er extends Vi ewHandl er {
public MyViewHandler() { }

public MyVi ewHandl er (Vi ewHandl er handl er) {
super () ;
ol dVi ewHandl er = handl er;

}

private Vi ewHandl er ol dVi ewHandl er = nul | ;

/1 Del egate the renderView() nethod to the old handl er
public void renderVi ew(FacesCont ext context, Ul ViewRoot view)
throws | CException, FacesException {
ol dVi ewHandl er. render Vi ew(cont ext, view);

}

/| Del egate other nmethods in the sane nanner

/1 Overridden version of calcul atelLocal e()

public Local e cal cul ateLocal e(FacesCont ext context) {
Locale locale = ... // Custom cal cul ation
return | ocal e;

}

The second constructor will get called as the application is initially configured by the
JSF implementation, and the previously registered Vi ewHandl er will get passed to

It.

Chapter 10 Using JSF in Web Applications

10-53

10.3.6

Example Application Configuration Resource

The following example application resource file defines a custom Ul Conponent of
type Dat e, plus a number of Render er s that know how to decode and encode such
a component:

<?xm version="1.0"7?>

<! DOCTYPE faces-config PUBLIC
“-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN
“http://java.sun.com dt d/ web-facesconfig_1_1.dtd">

<faces-config>

<!-- Define our custom conponent -->
<conponent >
<descri pti on>
A cust om conponent for rendering user-selectable dates in
various formats.
</ descri ption>
<di spl ay- name>My Cust om Dat e</ di spl ay- nane>
<conponent -t ype>Dat e</ conponent -t ype>
<conponent - cl ass>
com exanpl e. conponent s. Dat eConponent
</ conponent - cl ass>
</ conponent >

<I-- Define two renderers that know how to deal with dates -->
<render-Kkit>
<l-- No render-kit-id, so add themto default RenderKit -->
<renderer>
<di spl ay- name>Cal endar W dget </ di spl ay- name>
<conponent - f am | y>MyConponent </ conponent - f am | y>
<renderer-type>M/Cal endar </ renderer-type>
<renderer-cl ass>
com exanpl e. renderers. MyCal endar Render er
</ renderer-cl ass>
</renderer>
<renderer>
<di spl ay- name>Mont h/ Day/ Year </ di spl ay- nanme>
<r ender er - t ype>Mont hDay Year </ r ender er - t ype>
<renderer-cl ass>
com exanpl e. render ers. Mont hDayYear Render er
</ renderer-cl ass>
</renderer>
</render-kit>

</ faces-config>

10-54 JavaServer Faces Specification ¢ February 2004

Additional examples of configuration elements that might be found in application
configuration resources are in Section 5.3.1.4 “Managed Bean Configuration
Example” and Section 7.4.3 “Example NavigationHandler Configuration™.

Chapter 10 Using JSF in Web Applications ~ 10-55

10-56 JavaServer Faces Specification ¢ February 2004

CHAPTER 11

Lifecycle Management

In Chapter 2 “Request Processing Lifecycle,” the required functionality of each phase
of the request processing lifecycle was described. This chapter describes the standard
APIs used by JSF implementations to manage and execute the lifecycle. Each of these
classes and interfaces is part of the j avax. faces. | i f ecycl e package.

Page authors, component writers, and application developers, in general, will not
need to be aware of the lifecycle management APls—they are primarily of interest to
tool providers and JSF implementors.

11.1

Lifecycle

Upon receipt of each JSF-destined request to this web application, the JSF
implementation must acquire a reference to the Li f ecycl e instance for this web
application, and call its execut e() and r ender () methods to perform the request
processing lifecycle. The Li f ecycl e instance invokes appropriate processing logic
to implement the required functionality for each phase of the request processing
lifecycle, as described in Section 2.2 “Standard Request Processing Lifecycle Phases”.

public voi d execute(FacesContext context) throws FacesException;

public void render (FacesContext context) throws FacesException;

The execut e() method performs phases up to, but not including, the Render
Response phase. The r ender () method performs the Render Response phase. This
division of responsibility makes it easy to support JavaServer Faces processing in a
portlet-based environment.

As each phase is processed, registered PhaselLi st ener instances are also notified.
The general processing for each phase is as follows:

11-1

= From the set of registered PhaseLi st ener instances, select the relevant ones for
the current phase, where “relevant” means that calling get Phasel d() on the
Phaseli st ener instance returns the phase identifier of the current phase, or the
special value Phasel d. ANY_PHASE.

= Call the bef or ePhase() method of each relevant listener, in the order that the
listeners were registered.

= If no called listener called the FacesCont ext . r ender Response() or
FacesCont ext . responseConpl et e() method, execute the functionality
required for the current phase.

= Call the aft er Phase() method of each relevant listener, in the reverse of the
order that the listeners were registered.

» Ifthe FacesCont ext . responseConpl et e() method has been called during the
processing of the current request, or we have just completed the Render Response
phase, perform no further phases of the request processing lifecycle.

= If the FacesCont ext.render Response() method has been called during the
processing of the current request, and we have not yet executed the Render
Response phase of the request processing lifecycle, ensure that the next executed
phase will be Render Response

public voi d addPhaseLi st ener(PhaseLi stener |istener);

public void removePhaseli st ener (PhaseLi stener i stener);

These methods register or deregister a PhaselLi st ener that wishes to be notified
before and after the processing of each standard phase of the request processing
lifecycle. The webapp author can declare a PhaselLi st ener to be added using the
phase- | i st ener element of the application configuration resources file. Please see
Section 11.3 “PhaseListener”.

11.2

PhaseEvent

This class represents the beginning or ending of processing for a particular phase of
the request processing lifecycle, for the request encapsulated by the FacesCont ext
instance passed to our constructor.

publ i c PhaseEvent (FacesCont ext context, Phaseld phaseld);

11-2 JavaServer Faces Specification February 2004

Construct a new PhaseEvent representing the execution of the specified phase of
the request processing lifecycle, on the request encapsulated by the specified
FacesRequest instance.

public FacesCont ext get FacesContext();

public Phaseld get Phasel d();

Return the properties of this event instance. The specified FacesCont ext instance
will also be returned if get Sour ce() (inherited from the base Event Cbj ect class)
is called.

11.3

PhaseListener

This interface must be implemented by objects that wish to be notified before and
after the processing for a particular phase of the request processing lifecycle, on a
particular request. Implementations of PhaseLi st ener must be programmed in a
thread-safe manner.

public Phaseld get Phaseld();

The Phaseli st ener instance indicates for which phase of the request processing
lifecycle this listener wishes to be notified. If Phasel d. ANY_PHASE is returned, this
listener will be notified for all standard phases of the request processing lifecycle.

public voi d beforePhase(PhaseEvent event);

public void afterPhase(PhaseEvent event);

The beforePhase() method is called before the standard processing for a particular
phase is performed, while the afterPhase() method is called after the standard
processing has been completed. The JSF implementation must guarantee that, if
bef or ePhase() has been called on a particular instance, then af t er Phase() will
also be called.

Phaseli st ener implementations may affect the remainder of the request
processing lifecycle in several ways, including:

Chapter 11 Lifecycle Management 11-3

= Calling render Response() on the FacesCont ext instance for the current
request, which will cause control to transfer to the Render Response phase of the
request processing lifecycle, once processing of the current phase is complete.

» Calling responseComplete() on the FacesContext instance for the current request,
which causes processing of the request processing lifecycle to terminate once the
current phase is complete.

11.4

LifecycleFactory

A single instance of j avax. faces. | ifecycl e. Li f ecycl eFact ory must be
made available to each JSF-based web application running in a servlet or portlet
container. The factory instance can be acquired by JSF implementations or by
application code, by executing:

Li fecycl eFactory factory = (Lifecycl eFactory)
Fact oryFi nder . get Fact ory(Fact oryFi nder. LI FECYCLE_FACTORY) ;

The Li f ecycl eFact ory implementation class supports the following methods:

public voi d addLi fecycle(String lifecycleld, Lifecycle lifecycle);

Register a new Li f ecycl e instance under the specified lifecycle identifier, and
make it available via calls to the get Li f ecycl e method for the remainder of the
current web application’s lifetime.

public Lifecycle getLifecycle(String lifecycleld);

The Li f ecycl eFact ory implementation class provides this method to create (if
necessary) and return a Li f ecycl e instance. All requests for the same lifecycle
identifier from within the same web application will return the same Li f ecycl e
instance, which must be programmed in a thread-safe manner.

11-4 JavaServer Faces Specification February 2004

Every JSF implementation must provide a Li f ecycl e instance for a default lifecycle
identifier that is designated by the St ri ng constant

Li f ecycl eFact ory. DEFAULT_LI FECYCLE. For advanced uses, a JSF
implementation may support additional lifecycle instances, named with unique
lifecycle identifiers.

public Iterator getlLifecyclelds();

This method returns an iterator over the set of lifecycle identifiers supported by this
factory. This set must include the value specified by
Li fecycl eFact ory. DEFAULT_LI FECYCLE.

Chapter 11 Lifecycle Management 11-5

11-6 JavaServer Faces Specification February 2004

	JavaServer™ Faces Specification
	Contents
	Preface
	What’s Changed Since the Last Release
	Major changes/features in this release
	General changes
	Standard HTML RenderKit changes
	Spec document changes

	Other Java™ Platform Specifications
	Related Documents and Specifications
	Terminology
	Providing Feedback
	Acknowledgements

	Overview
	1.1 Solving Practical Problems of the Web
	1.2 Specification Audience
	1.2.1 Page Authors
	1.2.2 Component Writers
	1.2.3 Application Developers
	1.2.4 Tool Providers
	1.2.5 JSF Implementors

	1.3 Introduction to JSF APIs
	1.3.1 package javax.faces
	1.3.2 package javax.faces.application
	1.3.3 package javax.faces.component
	1.3.4 package javax.faces.component.html
	1.3.5 package javax.faces.context
	1.3.6 package javax.faces.convert
	1.3.7 package javax.faces.el
	1.3.8 package javax.faces.lifecycle
	1.3.9 package javax.faces.event
	1.3.10 package javax.faces.render
	1.3.11 package javax.faces.validator
	1.3.12 package javax.faces.webapp

	Request Processing Lifecycle
	2.1 Request Processing Lifecycle Scenarios
	2.1.1 Non-Faces Request Generates Faces Response
	2.1.2 Faces Request Generates Faces Response
	2.1.3 Faces Request Generates Non-Faces Response

	2.2 Standard Request Processing Lifecycle Phases
	2.2.1 Restore View
	2.2.2 Apply Request Values
	2.2.3 Process Validations
	2.2.4 Update Model Values
	2.2.5 Invoke Application
	2.2.6 Render Response

	2.3 Common Event Processing
	2.4 Common Application Activities
	2.4.1 Acquire Faces Object References
	2.4.1.1 Acquire and Configure Lifecycle Reference
	2.4.1.2 Acquire and Configure FacesContext Reference

	2.4.2 Create And Configure A New View
	2.4.2.1 Create A New View
	2.4.2.2 Configure the Desired RenderKit
	2.4.2.3 Configure The View’s Components
	2.4.2.4 Store the new View in the FacesContext

	2.5 Concepts that impact several lifecycle phases
	2.5.1 Value Handling
	2.5.1.1 Apply Request Values Phase
	2.5.1.2 Process Validators Phase
	2.5.1.3 Executing Validation
	2.5.1.4 Update Model Values Phase

	2.5.2 Localization and Internationalization (L10N/I18N)
	2.5.2.1 Determining the active Locale
	2.5.2.2 Determining the Character Encoding
	2.5.2.3 Localized Text
	2.5.2.4 Localized Application Messages

	2.5.3 State Management
	2.5.3.1 State Management Considerations for the Custom Component Author
	2.5.3.2 State Management Considerations for the JSF Implementor

	User Interface Component Model
	3.1 UIComponent and UIComponentBase
	3.1.1 Component Identifiers
	3.1.2 Component Type
	3.1.3 Component Family
	3.1.4 Value Binding Expressions
	3.1.5 Component Bindings
	3.1.6 Client Identifiers
	3.1.7 Component Tree Manipulation
	3.1.8 Component Tree Navigation
	3.1.9 Facet Management
	3.1.10 Generic Attributes
	3.1.11 Render-Independent Properties
	3.1.12 Component Specialization Methods
	3.1.13 Lifecycle Management Methods
	3.1.14 Utility Methods

	3.2 Component Behavioral Interfaces
	3.2.1 ActionSource
	3.2.1.1 Properties
	3.2.1.2 Methods
	3.2.1.3 Events

	3.2.2 NamingContainer
	3.2.3 StateHolder
	3.2.3.1 Properties
	3.2.3.2 Methods
	3.2.3.3 Events

	3.2.4 ValueHolder
	3.2.4.1 Properties
	3.2.4.2 Methods
	3.2.4.3 Events

	3.2.5 EditableValueHolder
	3.2.5.1 Properties
	3.2.5.2 Methods
	3.2.5.3 Events

	3.3 Conversion Model
	3.3.1 Overview
	3.3.2 Converter
	3.3.3 Standard Converter Implementations

	3.4 Event and Listener Model
	3.4.1 Overview
	3.4.2 Event Classes
	3.4.3 Listener Classes
	3.4.4 Phase Identifiers
	3.4.5 Listener Registration
	3.4.6 Event Queueing
	3.4.7 Event Broadcasting

	3.5 Validation Model
	3.5.1 Overview
	3.5.2 Validator Classes
	3.5.3 Validation Registration
	3.5.4 Validation Processing
	3.5.5 Standard Validator Implementations

	Standard User Interface Components
	4.1 Standard User Interface Components
	4.1.1 UIColumn
	4.1.1.1 Component Type
	4.1.1.2 Properties
	4.1.1.3 Methods
	4.1.1.4 Events

	4.1.2 UICommand
	4.1.2.1 Component Type
	4.1.2.2 Properties
	4.1.2.3 Methods
	4.1.2.4 Events

	4.1.3 UIData
	4.1.3.1 Component Type
	4.1.3.2 Properties
	4.1.3.3 Methods
	4.1.3.4 Events

	4.1.4 UIForm
	4.1.4.1 Component Type
	4.1.4.2 Properties
	4.1.4.3 Methods.
	4.1.4.4 Events

	4.1.5 UIGraphic
	4.1.5.1 Component Type
	4.1.5.2 Properties
	4.1.5.3 Methods
	4.1.5.4 Events

	4.1.6 UIInput
	4.1.6.1 Component Type
	4.1.6.2 Properties
	4.1.6.3 Methods
	4.1.6.4 Events

	4.1.7 UIMessage
	4.1.7.1 Component Type
	4.1.7.2 Properties
	4.1.7.3 Methods.
	4.1.7.4 Events

	4.1.8 UIMessages
	4.1.8.1 Component Type
	4.1.8.2 Properties
	4.1.8.3 Methods.
	4.1.8.4 Events

	4.1.9 UIOutput
	4.1.9.1 Component Type
	4.1.9.2 Properties
	4.1.9.3 Methods
	4.1.9.4 Events

	4.1.10 UIPanel
	4.1.10.1 Component Type
	4.1.10.2 Properties
	4.1.10.3 Methods
	4.1.10.4 Events

	4.1.11 UIParameter
	4.1.11.1 Component Type
	4.1.11.2 Properties
	4.1.11.3 Methods
	4.1.11.4 Events

	4.1.12 UISelectBoolean
	4.1.12.1 Component Type
	4.1.12.2 Properties
	4.1.12.3 Methods
	4.1.12.4 Events

	4.1.13 UISelectItem
	4.1.13.1 Component Type
	4.1.13.2 Properties
	4.1.13.3 Methods
	4.1.13.4 Events

	4.1.14 UISelectItems
	4.1.14.1 Component Type
	4.1.14.2 Properties
	4.1.14.3 Methods
	4.1.14.4 Events

	4.1.15 UISelectMany
	4.1.15.1 Component Type
	4.1.15.2 Properties
	4.1.15.3 Methods
	4.1.15.4 Events

	4.1.16 UISelectOne
	4.1.16.1 Component Type
	4.1.16.2 Properties
	4.1.16.3 Methods
	4.1.16.4 Events

	4.1.17 UIViewRoot
	4.1.17.1 Component Type
	4.1.17.2 Properties
	4.1.17.3 Methods
	4.1.17.4 Events

	4.2 Standard UIComponent Model Beans
	4.2.1 DataModel
	4.2.1.1 Properties
	4.2.1.2 Methods
	4.2.1.3 Events
	4.2.1.4 Concrete Implementations

	4.2.2 SelectItem
	4.2.2.1 Properties
	4.2.2.2 Methods
	4.2.2.3 Events

	4.2.3 SelectItemGroup
	4.2.3.1 Properties
	4.2.3.2 Methods
	4.2.3.3 Events

	Value Binding and Method Binding Expression Evaluation
	5.1 Value Binding Expressions
	5.1.1 Overview
	5.1.2 Value Binding Expression Syntax
	5.1.3 Get Value Semantics
	5.1.4 Set Value Semantics

	5.2 Method Binding Expressions
	5.2.1 Method Binding Expression Syntax
	5.2.2 Method Binding Expression Semantics

	5.3 Expression Evaluation APIs
	5.3.1 VariableResolver
	5.3.1.1 Overview
	5.3.1.2 Default VariableResolver Implementation
	5.3.1.3 The Managed Bean Facility
	5.3.1.4 Managed Bean Configuration Example

	5.3.2 PropertyResolver
	5.3.3 ValueBinding
	5.3.4 MethodBinding
	5.3.5 Expression Evaluation Exceptions

	Per-Request State Information
	6.1 FacesContext
	6.1.1 Application
	6.1.2 ExternalContext
	6.1.3 ViewRoot
	6.1.4 Message Queue
	6.1.5 RenderKit
	6.1.6 ResponseStream and ResponseWriter
	6.1.7 Flow Control Methods
	6.1.8 Access To The Current FacesContext Instance

	6.2 FacesMessage
	6.3 ResponseStream
	6.4 ResponseWriter
	6.5 FacesContextFactory

	Application Integration
	7.1 Application
	7.1.1 ActionListener Property
	7.1.2 DefaultRenderKitId Property
	7.1.3 NavigationHandler Property
	7.1.4 PropertyResolver Property
	7.1.5 StateManager Property
	7.1.6 VariableResolver Property
	7.1.7 ViewHandler Property
	7.1.8 Acquiring ValueBinding Instances
	7.1.9 Acquiring MethodBinding Instances
	7.1.10 Object Factories
	7.1.11 Internationalization Support

	7.2 ApplicationFactory
	7.3 Application Actions
	7.4 NavigationHandler
	7.4.1 Overview
	7.4.2 Default NavigationHandler Implementation
	7.4.3 Example NavigationHandler Configuration

	7.5 ViewHandler
	7.5.1 Overview
	7.5.2 Default ViewHandler Implementation

	7.6 StateManager
	7.6.1 Overview
	7.6.2 State Saving Alternatives and Implications
	7.6.3 State Saving Methods.
	7.6.4 State Restoring Methods

	Rendering Model
	8.1 RenderKit
	8.2 Renderer
	8.3 ResponseStateManager
	8.4 RenderKitFactory
	8.5 Standard HTML RenderKit Implementation
	8.6 The Concrete HTML Component Classes

	Integration with JSP
	9.1 UIComponent Custom Actions
	9.2 Using UIComponent Custom Actions in JSP Pages
	9.2.1 Declaring the Tag Libraries
	9.2.2 Including Components in a Page
	9.2.3 Creating Components and Overriding Attributes
	9.2.4 Deleting Components on Redisplay
	9.2.5 Representing Component Hierarchies
	9.2.6 Registering Converters, Event Listeners, and Validators
	9.2.7 Using Facets
	9.2.8 Interoperability with JSP Template Text and Other Tag Libraries
	9.2.9 Composing Pages from Multiple Sources

	9.3 UIComponent Custom Action Implementation Requirements
	9.4 JSF Core Tag Library
	9.4.1 <f:actionListener>
	9.4.2 <f:attribute>
	9.4.3 <f:convertDateTime>
	9.4.4 <f:convertNumber>
	9.4.5 <f:converter>
	9.4.6 <f:facet>
	9.4.7 <f:loadBundle>
	9.4.8 <f:param>
	9.4.9 <f:selectItem>
	9.4.10 <f:selectItems>
	9.4.11 <f:subview>
	9.4.12 <f:validateDoubleRange>
	9.4.13 <f:validateLength>
	9.4.14 <f:validateLongRange>
	9.4.15 <f:validator>
	9.4.16 <f:valueChangeListener>
	9.4.17 <f:verbatim>
	9.4.18 <f:view>

	9.5 Standard HTML RenderKit Tag Library

	Using JSF in Web Applications
	10.1 Web Application Deployment Descriptor
	10.1.1 Servlet Definition
	10.1.2 Servlet Mapping
	10.1.3 Application Configuration Parameters

	10.2 Included Classes and Resources
	10.2.1 Application-Specific Classes and Resources
	10.2.2 Servlet and JSP API Classes (javax.servlet.*)
	10.2.3 JSP Standard Tag Library (JSTL) API Classes (javax.servlet.jsp.jstl.*)
	10.2.4 JSP Standard Tag Library (JSTL) Implementation Classes
	10.2.5 JavaServer Faces API Classes (javax.faces.*)
	10.2.6 JavaServer Faces Implementation Classes
	10.2.6.1 FactoryFinder
	10.2.6.2 FacesServlet
	10.2.6.3 UIComponentTag
	10.2.6.4 UIComponentBodyTag
	10.2.6.5 AttributeTag
	10.2.6.6 ConverterTag
	10.2.6.7 FacetTag
	10.2.6.8 ValidatorTag

	10.3 Application Configuration Resources
	10.3.1 Overview
	10.3.2 Application Startup Behavior
	10.3.3 Application Configuration Resource Format
	10.3.4 Configuration Impact on JSF Runtime
	10.3.5 Delegating Implementation Support
	10.3.6 Example Application Configuration Resource

	Lifecycle Management
	11.1 Lifecycle
	11.2 PhaseEvent
	11.3 PhaseListener
	11.4 LifecycleFactory

