
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Submit comments about this document to jsr-127-comments@jcp.org

JavaServer™ Faces Specification

Version 20040513 Expert Draft

Craig McClanahan, Ed Burns, Roger Kitain, editors

February 2004, Revision 01

SUN MICROSYSTEMS, INC. IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE CONDITION THAT YOU
ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE AGREEMENT ("AGREEMENT"). PLEASE READ THE TERMS AND
CONDITIONS OF THIS LICENSE CAREFULLY. BY DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND
CONDITIONS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY ITS TERMS, SELECT THE "DECLINE"
BUTTON AT THE BOTTOM OF THIS PAGE AND THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-127, JavaServer(TM) Faces Specification ("Specification")

Version: 1.1

Status: Maintenance Release

Release: MAY 28, 2004

Copyright 2004 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. ("Sun") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to
sublicense), under the Sun's applicable intellectual property rights to view, download, use and reproduce the Specification only for the purpose
of internal evaluation, which shall be understood to include developing applications intended to run on an implementation of the Specification
provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under
any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent Implementation of the
Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset, superset or
otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (iii) passes the TCK
(including satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing license is expressly conditioned
on your not acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular "pass through" requirements in any license You
grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to implementations of
the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or
otherwise pass through to your licensees any licenses under Sun's applicable intellectual property rights; nor (b) authorize your licensees to
make any claims concerning their implementation's compliance with the Spec in question.

For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification that neither derives from
any of Sun's source code or binary code materials nor, except with an appropriate and separate license from Sun, includes any of Sun's source
code or binary code materials; and "Licensor Name Space" shall mean the public class or interface declarations whose names begin with "java",
"javax", "com.sun" or their equivalents in any subsequent naming convention adopted by Sun through the Java Community Process, or any
recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside the
scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun, Sun's licensors, Specification Lead or the Specification
Lead's licensors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2SE, J2EE, J2ME Java Compatible, the Java Compatible Logo,
and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
Please
Recycle

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR
OTHER RIGHTS. This document does not represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification;
(ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later versions or
releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Specification and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary
and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to
the Specification and future versions, implementations, and test suites thereof.

(Sun.CfcsSpec.license.11.14.2003)

Contents

Preface 1

What’s Changed Since the Last Release 1

Major changes/features in this release 1

General changes 1

Standard HTML RenderKit changes 2

Spec document changes 3

Other Java™ Platform Specifications 4

Related Documents and Specifications 4

Terminology 4

Providing Feedback 5

Acknowledgements 5

1. Overview 1–7

1.1 Solving Practical Problems of the Web 1–7

1.2 Specification Audience 1–8

1.2.1 Page Authors 1–8

1.2.2 Component Writers 1–9

1.2.3 Application Developers 1–10

1.2.4 Tool Providers 1–10

1.2.5 JSF Implementors 1–11
iv

1.3 Introduction to JSF APIs 1–11

1.3.1 package javax.faces 1–12

1.3.2 package javax.faces.application 1–12

1.3.3 package javax.faces.component 1–12

1.3.4 package javax.faces.component.html 1–12

1.3.5 package javax.faces.context 1–12

1.3.6 package javax.faces.convert 1–13

1.3.7 package javax.faces.el 1–13

1.3.8 package javax.faces.lifecycle 1–13

1.3.9 package javax.faces.event 1–13

1.3.10 package javax.faces.render 1–13

1.3.11 package javax.faces.validator 1–14

1.3.12 package javax.faces.webapp 1–14

2. Request Processing Lifecycle 2–1

2.1 Request Processing Lifecycle Scenarios 2–2

2.1.1 Non-Faces Request Generates Faces Response 2–2

2.1.2 Faces Request Generates Faces Response 2–2

2.1.3 Faces Request Generates Non-Faces Response 2–3

2.2 Standard Request Processing Lifecycle Phases 2–4

2.2.1 Restore View 2–4

2.2.2 Apply Request Values 2–5

2.2.3 Process Validations 2–6

2.2.4 Update Model Values 2–7

2.2.5 Invoke Application 2–7

2.2.6 Render Response 2–8

2.3 Common Event Processing 2–9

2.4 Common Application Activities 2–10

2.4.1 Acquire Faces Object References 2–10
v JavaServer Faces Specification • January 2004

2.4.1.1 Acquire and Configure Lifecycle Reference 2–10

2.4.1.2 Acquire and Configure FacesContext Reference 2–11

2.4.2 Create And Configure A New View 2–11

2.4.2.1 Create A New View 2–12

2.4.2.2 Configure the Desired RenderKit 2–12

2.4.2.3 Configure The View’s Components 2–13

2.4.2.4 Store the new View in the FacesContext 2–13

2.5 Concepts that impact several lifecycle phases 2–14

2.5.1 Value Handling 2–14

2.5.1.1 Apply Request Values Phase 2–14

2.5.1.2 Process Validators Phase 2–14

2.5.1.3 Executing Validation 2–14

2.5.1.4 Update Model Values Phase 2–15

2.5.2 Localization and Internationalization (L10N/I18N) 2–15

2.5.2.1 Determining the active Locale 2–15

2.5.2.2 Determining the Character Encoding 2–16

2.5.2.3 Localized Text 2–17

2.5.2.4 Localized Application Messages 2–17

2.5.3 State Management 2–19

2.5.3.1 State Management Considerations for the Custom
Component Author 2–19

2.5.3.2 State Management Considerations for the JSF
Implementor 2–20

3. User Interface Component Model 3–1

3.1 UIComponent and UIComponentBase 3–2

3.1.1 Component Identifiers 3–2

3.1.2 Component Type 3–3

3.1.3 Component Family 3–3

3.1.4 Value Binding Expressions 3–3
Contents vi

3.1.5 Component Bindings 3–4

3.1.6 Client Identifiers 3–4

3.1.7 Component Tree Manipulation 3–5

3.1.8 Component Tree Navigation 3–6

3.1.9 Facet Management 3–6

3.1.10 Generic Attributes 3–7

3.1.11 Render-Independent Properties 3–8

3.1.12 Component Specialization Methods 3–9

3.1.13 Lifecycle Management Methods 3–10

3.1.14 Utility Methods 3–11

3.2 Component Behavioral Interfaces 3–12

3.2.1 ActionSource 3–12

3.2.1.1 Properties 3–13

3.2.1.2 Methods 3–13

3.2.1.3 Events 3–13

3.2.2 NamingContainer 3–14

3.2.3 StateHolder 3–15

3.2.3.1 Properties 3–15

3.2.3.2 Methods 3–15

3.2.3.3 Events 3–16

3.2.4 ValueHolder 3–16

3.2.4.1 Properties 3–17

3.2.4.2 Methods 3–17

3.2.4.3 Events 3–17

3.2.5 EditableValueHolder 3–18

3.2.5.1 Properties 3–18

3.2.5.2 Methods 3–19

3.2.5.3 Events 3–19
vii JavaServer Faces Specification • January 2004

3.3 Conversion Model 3–20

3.3.1 Overview 3–20

3.3.2 Converter 3–20

3.3.3 Standard Converter Implementations 3–22

3.4 Event and Listener Model 3–24

3.4.1 Overview 3–24

3.4.2 Event Classes 3–26

3.4.3 Listener Classes 3–27

3.4.4 Phase Identifiers 3–28

3.4.5 Listener Registration 3–28

3.4.6 Event Queueing 3–29

3.4.7 Event Broadcasting 3–29

3.5 Validation Model 3–30

3.5.1 Overview 3–30

3.5.2 Validator Classes 3–30

3.5.3 Validation Registration 3–30

3.5.4 Validation Processing 3–31

3.5.5 Standard Validator Implementations 3–31

4. Standard User Interface Components 4–1

4.1 Standard User Interface Components 4–1

4.1.1 UIColumn 4–5

4.1.1.1 Component Type 4–5

4.1.1.2 Properties 4–5

4.1.1.3 Methods 4–5

4.1.1.4 Events 4–5

4.1.2 UICommand 4–6

4.1.2.1 Component Type 4–6

4.1.2.2 Properties 4–6
Contents viii

4.1.2.3 Methods 4–6

4.1.2.4 Events 4–6

4.1.3 UIData 4–7

4.1.3.1 Component Type 4–7

4.1.3.2 Properties 4–7

4.1.3.3 Methods 4–8

4.1.3.4 Events 4–9

4.1.4 UIForm 4–10

4.1.4.1 Component Type 4–10

4.1.4.2 Properties 4–10

4.1.4.3 Methods. 4–10

4.1.4.4 Events 4–11

4.1.5 UIGraphic 4–12

4.1.5.1 Component Type 4–12

4.1.5.2 Properties 4–12

4.1.5.3 Methods 4–12

4.1.5.4 Events 4–12

4.1.6 UIInput 4–13

4.1.6.1 Component Type 4–13

4.1.6.2 Properties 4–13

4.1.6.3 Methods 4–13

4.1.6.4 Events 4–14

4.1.7 UIMessage 4–15

4.1.7.1 Component Type 4–15

4.1.7.2 Properties 4–15

4.1.7.3 Methods. 4–15

4.1.7.4 Events 4–16

4.1.8 UIMessages 4–17
ix JavaServer Faces Specification • January 2004

4.1.8.1 Component Type 4–17

4.1.8.2 Properties 4–17

4.1.8.3 Methods. 4–17

4.1.8.4 Events 4–17

4.1.9 UIOutput 4–18

4.1.9.1 Component Type 4–18

4.1.9.2 Properties 4–18

4.1.9.3 Methods 4–18

4.1.9.4 Events 4–18

4.1.10 UIPanel 4–19

4.1.10.1 Component Type 4–19

4.1.10.2 Properties 4–19

4.1.10.3 Methods 4–19

4.1.10.4 Events 4–19

4.1.11 UIParameter 4–20

4.1.11.1 Component Type 4–20

4.1.11.2 Properties 4–20

4.1.11.3 Methods 4–20

4.1.11.4 Events 4–20

4.1.12 UISelectBoolean 4–21

4.1.12.1 Component Type 4–21

4.1.12.2 Properties 4–21

4.1.12.3 Methods 4–21

4.1.12.4 Events 4–21

4.1.13 UISelectItem 4–22

4.1.13.1 Component Type 4–22

4.1.13.2 Properties 4–22

4.1.13.3 Methods 4–23
Contents x

4.1.13.4 Events 4–23

4.1.14 UISelectItems 4–24

4.1.14.1 Component Type 4–24

4.1.14.2 Properties 4–24

4.1.14.3 Methods 4–24

4.1.14.4 Events 4–24

4.1.15 UISelectMany 4–25

4.1.15.1 Component Type 4–25

4.1.15.2 Properties 4–25

4.1.15.3 Methods 4–25

4.1.15.4 Events 4–26

4.1.16 UISelectOne 4–27

4.1.16.1 Component Type 4–27

4.1.16.2 Properties 4–27

4.1.16.3 Methods 4–27

4.1.16.4 Events 4–27

4.1.17 UIViewRoot 4–28

4.1.17.1 Component Type 4–28

4.1.17.2 Properties 4–28

4.1.17.3 Methods 4–28

4.1.17.4 Events 4–29

4.2 Standard UIComponent Model Beans 4–30

4.2.1 DataModel 4–30

4.2.1.1 Properties 4–30

4.2.1.2 Methods 4–31

4.2.1.3 Events 4–31

4.2.1.4 Concrete Implementations 4–31

4.2.2 SelectItem 4–32
xi JavaServer Faces Specification • January 2004

4.2.2.1 Properties 4–32

4.2.2.2 Methods 4–32

4.2.2.3 Events 4–32

4.2.3 SelectItemGroup 4–33

4.2.3.1 Properties 4–33

4.2.3.2 Methods 4–33

4.2.3.3 Events 4–33

5. Value Binding and Method Binding Expression Evaluation 5–1

5.1 Value Binding Expressions 5–1

5.1.1 Overview 5–1

5.1.2 Value Binding Expression Syntax 5–2

5.1.3 Get Value Semantics 5–3

5.1.4 Set Value Semantics 5–4

5.2 Method Binding Expressions 5–4

5.2.1 Method Binding Expression Syntax 5–6

5.2.2 Method Binding Expression Semantics 5–6

5.3 Expression Evaluation APIs 5–7

5.3.1 VariableResolver 5–7

5.3.1.1 Overview 5–7

5.3.1.2 Default VariableResolver Implementation 5–8

5.3.1.3 The Managed Bean Facility 5–9

5.3.1.4 Managed Bean Configuration Example 5–13

5.3.2 PropertyResolver 5–15

5.3.3 ValueBinding 5–16

5.3.4 MethodBinding 5–17

5.3.5 Expression Evaluation Exceptions 5–18

6. Per-Request State Information 6–1
Contents xii

6.1 FacesContext 6–1

6.1.1 Application 6–1

6.1.2 ExternalContext 6–2

6.1.3 ViewRoot 6–5

6.1.4 Message Queue 6–6

6.1.5 RenderKit 6–6

6.1.6 ResponseStream and ResponseWriter 6–7

6.1.7 Flow Control Methods 6–7

6.1.8 Access To The Current FacesContext Instance 6–8

6.2 FacesMessage 6–9

6.3 ResponseStream 6–10

6.4 ResponseWriter 6–10

6.5 FacesContextFactory 6–12

7. Application Integration 7–1

7.1 Application 7–1

7.1.1 ActionListener Property 7–2

7.1.2 DefaultRenderKitId Property 7–2

7.1.3 NavigationHandler Property 7–3

7.1.4 PropertyResolver Property 7–3

7.1.5 StateManager Property 7–3

7.1.6 VariableResolver Property 7–4

7.1.7 ViewHandler Property 7–4

7.1.8 Acquiring ValueBinding Instances 7–4

7.1.9 Acquiring MethodBinding Instances 7–5

7.1.10 Object Factories 7–5

7.1.11 Internationalization Support 7–7

7.2 ApplicationFactory 7–7

7.3 Application Actions 7–8
xiii JavaServer Faces Specification • January 2004

7.4 NavigationHandler 7–9

7.4.1 Overview 7–9

7.4.2 Default NavigationHandler Implementation 7–9

7.4.3 Example NavigationHandler Configuration 7–12

7.5 ViewHandler 7–15

7.5.1 Overview 7–15

7.5.2 Default ViewHandler Implementation 7–17

7.6 StateManager 7–19

7.6.1 Overview 7–20

7.6.2 State Saving Alternatives and Implications 7–20

7.6.3 State Saving Methods. 7–21

7.6.4 State Restoring Methods 7–22

8. Rendering Model 8–1

8.1 RenderKit 8–1

8.2 Renderer 8–3

8.3 ResponseStateManager 8–4

8.4 RenderKitFactory 8–5

8.5 Standard HTML RenderKit Implementation 8–6

8.6 The Concrete HTML Component Classes 8–7

9. Integration with JSP 9–1

9.1 UIComponent Custom Actions 9–2

9.2 Using UIComponent Custom Actions in JSP Pages 9–3

9.2.1 Declaring the Tag Libraries 9–3

9.2.2 Including Components in a Page 9–4

9.2.3 Creating Components and Overriding Attributes 9–5

9.2.4 Deleting Components on Redisplay 9–6

9.2.5 Representing Component Hierarchies 9–6
Contents xiv

9.2.6 Registering Converters, Event Listeners, and Validators 9–7

9.2.7 Using Facets 9–8

9.2.8 Interoperability with JSP Template Text and Other Tag Libraries
9–8

9.2.9 Composing Pages from Multiple Sources 9–9

9.3 UIComponent Custom Action Implementation Requirements 9–10

9.4 JSF Core Tag Library 9–13

9.4.1 <f:actionListener> 9–14

Syntax 9–14

Body Content 9–14

Attributes 9–14

Constraints 9–14

Description 9–14

9.4.2 <f:attribute> 9–15

Syntax 9–15

Body Content 9–15

Attributes 9–15

Constraints 9–15

Description 9–15

9.4.3 <f:convertDateTime> 9–16

Syntax 9–16

Body Content 9–16

Attributes 9–17

Constraints 9–17

Description 9–18

9.4.4 <f:convertNumber> 9–19

Syntax 9–19

Body Content 9–19

Attributes 9–20
xv JavaServer Faces Specification • January 2004

Constraints 9–20

Description 9–21

9.4.5 <f:converter> 9–22

Syntax 9–22

Body Content 9–22

Attributes 9–22

Constraints 9–22

Description 9–22

9.4.6 <f:facet> 9–23

Syntax 9–23

Body Content 9–23

Attributes 9–23

Constraints 9–23

Description 9–23

9.4.7 <f:loadBundle> 9–24

Syntax 9–24

Body Content 9–24

Attributes 9–24

Constraints 9–24

Description 9–24

9.4.8 <f:param> 9–25

Syntax 9–25

Body Content 9–25

Attributes 9–25

Constraints 9–25

Description 9–26

9.4.9 <f:selectItem> 9–27

Syntax 9–27
Contents xvi

Body Content 9–27

Attributes 9–28

Constraints 9–28

Description 9–28

9.4.10 <f:selectItems> 9–29

Syntax 9–29

Body Content 9–29

Attributes 9–29

Constraints 9–29

Description 9–30

9.4.11 <f:subview> 9–31

Syntax 9–31

Body Content 9–31

Attributes 9–31

Constraints 9–31

Description 9–32

9.4.12 <f:validateDoubleRange> 9–35

Syntax 9–35

Body Content 9–35

Attributes 9–35

Constraints 9–35

Description 9–35

9.4.13 <f:validateLength> 9–37

Syntax 9–37

Body Content 9–37

Attributes 9–37

Constraints 9–37

Description 9–37
xvii JavaServer Faces Specification • January 2004

9.4.14 <f:validateLongRange> 9–39

Syntax 9–39

Body Content 9–39

Attributes 9–39

Constraints 9–39

Description 9–39

9.4.15 <f:validator> 9–41

Syntax 9–41

Body Content 9–41

Attributes 9–41

Constraints 9–41

Description 9–41

9.4.16 <f:valueChangeListener> 9–42

Syntax 9–42

Body Content 9–42

Attributes 9–42

Constraints 9–42

Description 9–42

9.4.17 <f:verbatim> 9–43

Syntax 9–43

Body Content 9–43

Attributes 9–43

Constraints 9–43

Description 9–43

9.4.18 <f:view> 9–44

Syntax 9–44

Body Content 9–44

Attributes 9–44
Contents xviii

Constraints 9–44

Description 9–45

9.5 Standard HTML RenderKit Tag Library 9–46

10. Using JSF in Web Applications 10–1

10.1 Web Application Deployment Descriptor 10–1

10.1.1 Servlet Definition 10–2

10.1.2 Servlet Mapping 10–2

10.1.3 Application Configuration Parameters 10–3

10.2 Included Classes and Resources 10–3

10.2.1 Application-Specific Classes and Resources 10–4

10.2.2 Servlet and JSP API Classes (javax.servlet.*) 10–4

10.2.3 JSP Standard Tag Library (JSTL) API Classes
(javax.servlet.jsp.jstl.*) 10–4

10.2.4 JSP Standard Tag Library (JSTL) Implementation Classes 10–5

10.2.5 JavaServer Faces API Classes (javax.faces.*) 10–5

10.2.6 JavaServer Faces Implementation Classes 10–5

10.2.6.1 FactoryFinder 10–5

10.2.6.2 FacesServlet 10–7

10.2.6.3 UIComponentTag 10–8

10.2.6.4 UIComponentBodyTag 10–8

10.2.6.5 AttributeTag 10–8

10.2.6.6 ConverterTag 10–9

10.2.6.7 FacetTag 10–9

10.2.6.8 ValidatorTag 10–9

10.3 Application Configuration Resources 10–9

10.3.1 Overview 10–9

10.3.2 Application Startup Behavior 10–10

10.3.3 Application Configuration Resource Format 10–10
xix JavaServer Faces Specification • January 2004

10.3.4 Configuration Impact on JSF Runtime 10–50

10.3.5 Delegating Implementation Support 10–52

10.3.6 Example Application Configuration Resource 10–54

11. Lifecycle Management 11–1

11.1 Lifecycle 11–1

11.2 PhaseEvent 11–2

11.3 PhaseListener 11–3

11.4 LifecycleFactory 11–4
Contents xx

xxi JavaServer Faces Specification • January 2004

Preface

This is the JavaServer Faces 1.0 (JSF 1.0) specification, developed by the JSR-127
expert group under the Java Community Process (see <http://www.jcp.org> for
more information about the JCP).

What’s Changed Since the Last Release

Major changes/features in this release
There have been a few changes since the initial release of JavaServer technology.
Here is a summary of the most important ones. Many thanks to Hans Bergsten and
Adam Winer of the JSR127 Expert Group for these changes. Thanks also to Ryan
Lubke of the TCK team for several changes.

General changes
■ New 1.1 version of the DTD, backwards compatible with the 1.0 version. The only

difference is that components and renderers can declare what facets they support.
Please See Section 10.3.3 “Application Configuration Resource Format”.

■ Introduce the concept of "no value" for SelectOne and SelectMany. class
com.sun.faces.component.UIInput:

■ modify isEmpty() method to consider values that are zero length array or
List instances to be empty.
1

■ Refactor validation implementation in class
com.sun.faces.component.UIInput to prevent spurious
ValueChangeEvent instances from being fired from UISelectOne and
UISelectMany classes. See the javadocs for UIInput.validate().

■ Method com.sun.faces.component.UIViewRoot.getRenderKitId() now
returns null unless the setter has been explicitly called. See the javadocs for that
method.

■ DoubleRangeValidator, Lengthvalidator, and LongRangeValidator
now require that any validation parameters passed to the validation error
message be converted by the javax.faces.Number converter.

■ The JavaDocs description ResultSetDataModel.getRowData() specifies that
the returned Map must use a case-insensitive Comparator.

■ DataModelEvent.getRowIndex() now returns -1 to indicate that no row is
selected.

■ Fix the JavaDoc description of the defaults for showDetail and showSummary
for UIMessage to match the code.

■ Fix JavaDoc description of EditableValueHoldergetSubmittedValue() to
correctly say when this method is called.

■ Fix JavaDoc for UIComponentTag.setProperties() to correctly describe
which parameters are set.

■ The implementation now allows nesting <h:dataTable> tags. Previously this
didn’t work.

■ Fix bug where multiple action events could be generated in the case of multiple
<h:commandLink> tags on page that is visited as a result of going “back” in the
browser history.

Standard HTML RenderKit changes
■ Made the "for" attribute no longer required for the outputLabel tag. This is

necessary when tools want to allow the user to stick the label on the page before
associating the component with it.

■ RenderKit changes for SelectManyMenu, SelectManyList, SelectOneRadio,
SelectManyCheckboxlist

■ Remove span around "select" tags in SelectManyMenu, SelectManyList,
SelectOneMenu and SelectOneList.

■ Remove span around SelectOne radio buttons and SelectMany checkboxes.
Render "id", "style", "styleclass" as part of outer table.

■ The SelectManyCheckbox and SelectOneRadio renderers now do not render a
“for” attribute on their nested <label> elements.

■ The SelectOneRadio renderer description is more explicit about the use of the
<label> element.
2 JavaServer Faces Specification • February 2004

■ The description of the “size” attribute in the SelectMany renderers is more correct
with respect to the actual attributes exposed.

■ The OutputLabel renderer is now able to handle the case where the compnent to
which this label points hasn’t been created yet, as long as the component and the
label are both in the same form.

■ The “enabledClass” and “disabledClass” attributes are now specified for all
select* renderers.

Spec document changes
■ 2.5.2.4 LIMIT messages not used, remove LIMIT messages.

■ 5.2 Table 5.1, modify action method signature to return String, not void.

■ 5.3.1.3

■ In the section describing how to set a list-entries property, added a step
describing what to do if the property is an array, yet the property getter had
returned null.

■ Assign scopes to the implicit variables, so we can determine if a bean is able to
refer to an implicit variable, dependeng on its scope. For example, a session
scoped bean cannot refer to something in request scope.

■ Add a rule dealing with the net scope of mixed expressions: The net scope of
mixed expressions is considered to be the scope of the narrowest expression in
the mixed expression, excluding expressions with the none scope.

■ 5.3.1.13 clarify that errors described in this section occurr at runtime, not
deploytime.

■ 9.4.3 Data type for "timeZone".

■ The "timeZone" attribute for <f:convertDateTime> in 9.4.3 is described to only
accept a TimeZone instance, but must also accepts a String.

■ The "locale" attribute for <f:convertDateTime> and <f:convertNumber> in 9.4.3
and 9.4.4 is described to only accept a Locale instance, but must also accepts a
String.

■ 9.4.12 - 9.4.14 Correct validator and converter IDs

■ 9.4.9 Incorrect data type for "itemValue"

■ The attributes table for <f:selectItem> in 9.4.9 states that the "itemValue"
attribute takes a String but it should be Object to match the type of the
UISelectItem property.

■ The syntax section in 9.4.9 for <f:selectItem> is missing a couple of right square
brackets to mark the end for optional attributes.

■ 9.4.10 contains a number of errors: The description of the getComponentType()
return value omits the "javax.faces" prefix. The list of acceptable data types for the
"value" attribute doesn't match the data type for UISelectItems.
Preface 3

■ 9.4.8 <f:param> syntax section missing "binding"

■ 10.2.6.1 Correct classnames for LifecycleFactory and RenderKitFactory.

Other Java™ Platform Specifications
JSF is based on the following Java API specifications:

■ JavaServer Pages™ Specification, version 1.2 (JSP™)
<http://java.sun.com/products/jsp/>

■ Java™ Servlet Specification, version 2.3 (Servlet)
<http://java.sun.com/products/servlet/>

■ Java™2 Platform, Standard Edition, version 1.3 <http://java.sun.com/j2se/>
■ JavaBeans™ Specification, version 1.0.1

<http://java.sun.com/products/javabeans/docs/spec.html>

■ JavaServer Pages™ Standard Tag Library, version 1.0 (JSTL)
<http://java.sun.com/products/jsp/jstl/>

Therefore, a JSF container must support all of the above specifications. This
requirement allows faces applications to be portable across a variety of JSF
implementations.

In addition, JSF is designed to work synergistically with other web-related Java
APIs, including:
■ Portlet Specification, under development in JSR-168

<http://www.jcp.org/jsr/detail/168.jsp>

Related Documents and Specifications
The following documents and specifications of the World Wide Web Consortium will
be of interest to JSF implementors, as well as developers of applications and
components based on JavaServer Faces.

■ Hypertext Markup Language (HTML), version 4.01
<http://www.w3.org/TR/html4/>

■ Extensible HyperText Markup Language (XHTML), version 1.0
<http://www.w3.org/TR/xhtml1>

■ Extensible Markup Language (XML), version 1.0 (Second Edition)
<http://www.w3.org/TR/REC-xml>

The class and method Javadoc documentation for the classes and interfaces in
javax.faces (and its subpackages) are incorporated by reference as requirements
of this Specification.
4 JavaServer Faces Specification • February 2004

Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in

■ Key words for use in RFCs to Indicate Requirement Levels (RFC 2119)
<http://www.rfc-editor.org/rfc/rfc2119.txt>

Providing Feedback
We welcome any and all feedback about this specification. Please email your
comments to <jsr127-comments@sun.com>.

Please note that, due to the volume of feedback that we receive, you will not
normally receive a reply from an engineer. However, each and every comment is
read, evaluated, and archived by the specification team.

Acknowledgements
The JavaServer Faces Specification (version 1.0) is the result of the diligent efforts of
the JSR-127 Expert Group, working under the auspices of the Java Community
Process. We would like to thank all of the members of the Expert Group: Peter
Abraham, Shawn Bayern, Hans Bergsten, Joseph Berkovitz, Mathias Bogaert, David
Bosshaert, Pete Carapetyan, Renaud Demeur, Karl Ewald, Mike Frisino, David
Geary, Antonio Hill, Kevin Jones, Amit Kishnani, Tom Lane, Eric Lazarus, Bart
Leeten, Takahide Matsutsaka, Kumara Swamy Reddy Mettu, Kris Meukens, Steve
Meyfroidt, Brendan Murray, Michael Nash, Daryl Olander, Steve Reiner, Brian
Robinson, Michael Stapp, James Strachan, Kai Toedter, Ana Von Klopp, Adam Winer,
Johanna Voolich Wright, John Zukowski, and Jason van Zyl.

Hans Bergsten and Adam Winer deserve special recognition for not only being
actively involved in every detail of the development of the specification, and the
corresponding APIs, but also for tirelessly contributing time to test, and patch bugs
in, the reference implementation. Joe Berkovitz, David Geary, Brendan Murray, and
Ana Von Klopp also made significant contributions.

Our thanks also go to Amy Fowler and Hans Muller, who were the original
specification leads when JSR-127 was originally submitted to the JCP, and developed
some of the key architectural ideas, and to Graham Hamilton, who had the idea to
have this JSR in the first place.
Preface 5

6 JavaServer Faces Specification • February 2004

CHAPTER 1

Overview

JavaServer Faces (JSF) is a user interface (UI) framework for Java web applications. It
is designed to significantly ease the burden of writing and maintaining applications
that run on a Java application server and render their UIs back to a target client. JSF
provides ease-of-use in the following ways:

■ Makes it easy to construct a UI from a set of reusable UI components
■ Simplifies migration of application data to and from the UI
■ Helps manage UI state across server requests
■ Provides a simple model for wiring client-generated events to server-side

application code
■ Allows custom UI components to be easily built and re-used

Most importantly, JSF establishes standards which are designed to be leveraged by
tools to provide a developer experience which is accessible to a wide variety of
developer types, ranging from corporate developers to systems programmers. A
“corporate developer” is characterized as an individual who is proficient in writing
procedural code and business logic, but is not necessarily skilled in object-oriented
programming. A “systems programmer” understands object-oriented fundamentals,
including abstraction and designing for re-use. A corporate developer typically
relies on tools for development, while a system programmer may define his or her
tool as a text editor for writing code.

Therefore, JSF is designed to be tooled, but also exposes the framework and
programming model as APIs so that it can be used outside of tools, as is sometimes
required by systems programmers.

1.1 Solving Practical Problems of the Web
JSF’s core architecture is designed to be independent of specific protocols and
markup. However it is also aimed directly at solving many of the common problems
encountered when writing applications for HTML clients that communicate via
1-7

HTTP to a Java application server that supports servlets and JavaServer Pages (JSP)
based applications. These applications are typically form-based, and are comprised
of one or more HTML pages with which the user interacts to complete a task or set
of tasks. JSF tackles the following challenges associated with these applications:

■ Managing UI component state across requests
■ Supporting encapsulation of the differences in markup across different browsers

and clients
■ Supporting form processing (multi-page, more than one per page, and so on)
■ Providing a strongly typed event model that allows the application to write

server-side handlers (independent of HTTP) for client generated events
■ Validating request data and providing appropriate error reporting
■ Enabling type conversion when migrating markup values (Strings) to and from

application data objects (which are often not Strings)
■ Handling error and exceptions, and reporting errors in human-readable form

back to the application user
■ Handling page-to-page navigation in response to UI events and model

interactions.

1.2 Specification Audience
The JavaServer Faces Specification, and the technology that it defines, is addressed to
several audiences that will use this information in different ways. The following
sections describe these audiences, the roles that they play with respect to JSF, and
how they will use the information contained in this document. As is the case with
many technologies, the same person may play more than one of these roles in a
particular development scenario; however, it is still useful to understand the
individual viewpoints separately.

1.2.1 Page Authors
A page author is primarily responsible for creating the user interface of a web
application. He or she must be familiar with the markup and scripting languages
(such as HTML and JavaScript) that are understood by the target client devices, as
well as the rendering technology (such as JavaServer Pages) used to create dynamic
content. Page authors are often focused on graphical design and human factors
engineering, and are generally not familiar with programming languages such as
Java or Visual Basic (although many page authors will have a basic understanding of
client side scripting languages such as JavaScript).
1-8 JavaServer Faces Specification • February 2004

Page authors will generally assemble the content of the pages being created from
libraries of prebuilt user interface components that are provided by component
writers, tool providers, and JSF implementors. The components themselves will be
represented as configurable objects that utilize the dynamic markup capabilities of
the underlying rendering technology. When JavaServer Pages are in use, for
example, components will be represented as JSP custom actions, which will support
configuring the attributes of those components as custom action attributes in the JSP
page. In addition, the pages produced by a page author will be the used by the JSF
framework to create component tree hierarchies, called “views”, that represent the
components on those pages.

Page authors will generally utilize development tools, such as HTML editors, that
allow them to deal directly with the visual representation of the page being created.
However, it is still feasible for a page author that is familiar with the underlying
rendering technology to construct pages “by hand” using a text editor.

1.2.2 Component Writers
Component writers are responsible for creating libraries of reusable user interface
objects. Such components support the following functionality:

■ Convert the internal representation of the component’s properties and attributes
into the appropriate markup language for pages being rendered (encoding).

■ Convert the properties of an incoming request—parameters, headers, and
cookies—into the corresponding properties and attributes of the component
(decoding)

■ Utilize request-time events to initiate visual changes in one or more components,
followed by redisplay of the current page.

■ Support validation checks on the syntax and semantics of the representation of
this component on an incoming request, as well as conversion into the internal
form that is appropriate for this component.

■ Saving and restoring component state across requests

As discussed in Chapter 8 “Rendering Model,” the encoding and decoding
functionality may optionally be delegated to one or more Render Kits, which are
responsible for customizing these operations to the precise requirements of the client
that is initiating a particular request (for example, adapting to the differences
between JavaScript handling in different browsers, or variations in the WML
markup supported by different wireless clients).

The component writer role is sometimes separate from other JSF roles, but is often
combined. For example, reusable components, component libraries, and render kits
might be created by:

■ A page author creating a custom “widget” for use on a particular page
■ An application developer providing components that correspond to specific data

objects in the application’s business domain
Chapter 1 Overview 1-9

■ A specialized team within a larger development group responsible for creating
standardized components for reuse across applications

■ Third party library and framework providers creating component libraries that
are portable across JSF implementations

■ Tool providers whose tools can leverage the specific capabilities of those libraries
in development of JSF-based applications

■ JSF implementors who provide implementation-specific component libraries as
part of their JSF product suite

Within JSF, user interface components are represented as Java classes that follow the
design patterns outlined in the JavaBeans Specification. Therefore, new and existing
tools that facilitate JavaBean development can be leveraged to create new JSF
components. In addition, the fundamental component APIs are simple enough for
developers with basic Java programming skills to program by hand.

1.2.3 Application Developers
Application Developers are responsible for providing the server-side functionality of a
web application that is not directly related to the user interface. This encompasses
the following general areas of responsibility:

■ Define mechanisms for persistent storage of the information required by JSF-
based web applications (such as creating schemas in a relational database
management system)

■ Create a Java object representation of the persistent information, such as Entity
Enterprise JavaBeans (Entity EJBs), and call the corresponding beans as necessary
to perform persistence of the application’s data.

■ Encapsulate the application’s functionality, or business logic, in Java objects that
are reusable in web and non-web applications, such as Session EJBs.

■ Expose the data representation and functional logic objects for use via JSF, as
would be done for any servlet- or JSP-based application.

Only the latter responsibility is directly related to JavaServer Faces APIs. In
particular, the following steps are required to fulfill this responsibility:

■ Expose the underlying data required by the user interface layer as objects that are
accessible from the web tier (such as via request or session attributes in the
Servlet API), via value reference expressions, as described in Chapter 4 “Standard
User Interface Components.”

■ Provide application-level event handlers for the events that are enqueued by JSF
components during the request processing lifecycle, as described in Section 2.2.5
“Invoke Application”.

Application modules interact with JSF through standard APIs, and can therefore be
created using new and existing tools that facilitate general Java development. In
addition, application modules can be written (either by hand, or by being generated)
in conformance to an application framework created by a tool provider.
1-10 JavaServer Faces Specification • February 2004

1.2.4 Tool Providers
Tool providers, as their name implies, are responsible for creating tools that assist in
the development of JSF-based applications, rather than creating such applications
directly. JSF APIs support the creation of a rich variety of development tools, which
can create applications that are portable across multiple JSF implementations.
Examples of possible tools include:

■ GUI-oriented page development tools that assist page authors in creating the user
interface for a web application

■ IDEs that facilitate the creation of components (either for a particular page, or for
a reusable component library)

■ Page generators that work from a high level description of the desired user
interface to create the corresponding page and component objects

■ IDEs that support the development of general web applications, adapted to
provide specialized support (such as configuration management) for JSF

■ Web application frameworks (such as MVC-based and workflow management
systems) that facilitate the use of JSF components for user interface design, in
conjunction with higher level navigation management and other services

■ Application generators that convert high level descriptions of an entire
application into the set of pages, UI components, and application modules needed
to provide the required application functionality

Tool providers will generally leverage the JSF APIs for introspection of the features
of component libraries and render kit frameworks, as well as the application
portability implied by the use of standard APIs in the code generated for an
application.

1.2.5 JSF Implementors
Finally, JSF implementors will provide runtime environments that implement all of
the requirements described in this specification. Typically, a JSF implementor will be
the provider of a Java 2 Platform, Enterprise Edition (J2EE) application server,
although it is also possible to provide a JSF implementation that is portable across
J2EE servers.

Advanced features of the JSF APIs allow JSF implementors, as well as application
developers, to customize and extend the basic functionality of JSF in a portable way.
These features provide a rich environment for server vendors to compete on features
and quality of service aspects of their implementations, while maximizing the
portability of JSF-based applications across different JSF implementations.
Chapter 1 Overview 1-11

1.3 Introduction to JSF APIs
This section briefly describes major functional subdivisions of the APIs defined by
JavaServer Faces. Each subdivision is described in its own chapter, later in this
specification.

1.3.1 package javax.faces
This package contains top level classes for the JavaServer(tm) Faces API. The most
important class in the package is FactoryFinder, which is the mechanism by
which users can override many of the key pieces of the implementation with their
own.

Please see Section 10.2.6.1 “FactoryFinder”.

1.3.2 package javax.faces.application
This package contains APIs that are used to link an application’s business logic
objects to JavaServer Faces, as well as convenient pluggable mechanisms to manage
the execution of an application that is based on JavaServer Faces. The main class in
this package is Application.

Please see Section 7.1 “Application”.

1.3.3 package javax.faces.component
This package contains fundamental APIs for user interface components.

Please see Chapter 3 “User Interface Component Model.

1.3.4 package javax.faces.component.html
This package contains concrete base classes for each valid combination of component
+ renderer.
1-12 JavaServer Faces Specification • February 2004

1.3.5 package javax.faces.context
This package contains classes and interfaces defining per-request state information.
The main class in this package is FacesContext, which is the access point for all
per-request information, as well as the gateway to several other helper classes.

Please see Section 6.1 “FacesContext”.

1.3.6 package javax.faces.convert
This package contains classes and interfaces defining converters. The main class in
this package is Converter.

Please see Section 3.3 “Conversion Model”.

1.3.7 package javax.faces.el
This package contains classes and interfaces for evaluating and processing reference
expressions.

Please see Chapter 5 “Value Binding and Method Binding Expression Evaluation.

1.3.8 package javax.faces.lifecycle
This package contains classes and interfaces defining lifecycle management for the
JavaServer Faces implementation. The main class in this package is Lifecycle.
Lifecycle is the gateway to executing the request processing lifecycle.

Please see Chapter 2 “Request Processing Lifecycle.

1.3.9 package javax.faces.event
This package contains interfaces describing events and event listeners, and concrete
event implementation classes. All component-level events extend from
FacesEvent and all component-level listeners extend from FacesListener.

Please see Section 3.4 “Event and Listener Model”.
Chapter 1 Overview 1-13

1.3.10 package javax.faces.render
This package contains classes and interfaces defining the rendering model. The main
class in this package is RenderKit. RenderKit vends a set of Renderer instances
which provide rendering capability for a specific client device type.

Please see Chapter 8 “Rendering Model.

1.3.11 package javax.faces.validator
Interface defining the validator model, and concrete validator implementation
classes.

Please see Section 3.5 “Validation Model”

1.3.12 package javax.faces.webapp
Classes required for integration of JavaServer Faces into web applications, including
a standard servlet, base classes for JSP custom component tags, and concrete tag
implementations for core tags.

Please see Chapter 10 “Using JSF in Web Applications.
1-14 JavaServer Faces Specification • February 2004

CHAPTER 2

Request Processing Lifecycle

Each request that involves a JSF component tree (also called a “view”) goes through
a well-defined request processing lifecycle made up of phases. There are three different
scenarios that must be considered, each with its own combination of phases and
activities:

■ Non-Faces Request generates Faces Response
■ Faces Request generates Faces Response
■ Faces Request generates Non-Faces Response

Where the terms being used are defined as follows:

■ Faces Response—A response that was created by the execution of the Render
Response phase of the request processing lifecycle.

■ Non-Faces Response—A response that was not created by the execution of the
render response phase of the request processing lifecycle. Examples would be a
servlet-generated or JSP-rendered response that does not incorporate JSF
components, or a response that sets an HTTP status code other than the usual 200
(such as a redirect).

■ Faces Request—A request that was sent from a previously generated Faces response.
Examples would be a hyperlink or form submit from a rendered user interface
component, where the request URI was crafted (by the component or renderer
that created it) to identify the view to use for processing the request.

■ Non-Faces Request—A request that was sent to an application component (e.g. a
servlet or JSP page), rather than directed to a Faces view.

In addition, of course, your web application may receive non-Faces requests that
generate non-Faces responses. Because such requests do not involve JavaServer
Faces at all, their processing is outside the scope of this specification, and will not be
considered further.

READER NOTE: The dynamic behavior descriptions in this Chapter make forward
references to the sections that describe the individual classes and interfaces. You will
probably find it useful to follow the reference and skim the definition of each new
2-1

class or interface as you encounter them, then come back and finish the behavior
description. Later, you can study the characteristics of each JSF API in the
subsequent chapters.

2.1 Request Processing Lifecycle Scenarios
Each of the scenarios described above has a lifecycle that is composed of a particular
set of phases, executed in a particular order. The scenarios are described individually
in the following subsections.

2.1.1 Non-Faces Request Generates Faces Response
An application that is processing a non-Faces request may use JSF to render a Faces
response to that request. In order to accomplish this, the application must perform
the common activities that are described in the following sections:

■ Acquire Faces object references, as described in Section 2.4.1 “Acquire Faces
Object References”, below.

■ Create a new view, as described in Section 2.4.2 “Create And Configure A New
View”, below.

■ Store the view into the FacesContext by calling the setViewRoot() method
on the FacesContext.

■ Call the render() method on the Lifecycle instance that was acquired. This
signals the JSF implementation to begin processing at the Render Response phase of
the request processing lifecycle.

2.1.2 Faces Request Generates Faces Response
The most common lifecycle will be the case where a previous Faces response
includes user interface controls that will submit a subsequent request to this web
application, utilizing a request URI that is mapped to the JSF implementation’s
controller, as described in Section 10.1.2 “Servlet Mapping”. Because such a request
will be initially handled by the JSF implementation, the application need not take
2-2 JavaServer Faces Specification • February 2004

any special steps—its event listeners, validators, and application actions will be
invoked at appropriate times as the standard request processing lifecycle, described
in the following diagram, is invoked.

The behavior of the individual phases of the request processing lifecycle are
described in individual subsections of Section 2.2 “Standard Request Processing
Lifecycle Phases”. Note that, at the conclusion of several phases of the request
processing lifecycle, common event processing logic (as described in Section 2.3
“Common Event Processing”) is performed to broadcast any FacesEvents
generated by components in the component tree to interested event listeners.

2.1.3 Faces Request Generates Non-Faces Response
Normally, a JSF-based application will utilize the Render Response phase of the
request processing lifecycle to actually create the response that is sent back to the
client. In some circumstances, however, this behavior might not be desirable. For
example:

■ A Faces Request needs to be redirected to a different web application resource
(via a call to HttpServletResponse.sendRedirect).

■ A Faces Request causes the generation of a response using some other technology
(such as a servlet, or a JSP page not containing JSF components).

In any of these scenarios, the application will have used the standard mechanisms of
the servlet or portlet API to create the response headers and content. It is then
necessary to tell the JSF implementation that the response has already been created,
Chapter 2 Request Processing Lifecycle 2-3

so that the Render Response phase of the request processing lifecycle should be
skipped. This is accomplished by calling the responseComplete() method on the
FacesContext instance for the current request, prior to returning from event
handlers or application actions.

2.2 Standard Request Processing Lifecycle
Phases
The standard phases of the request processing lifecycle are described in the
following subsections.

2.2.1 Restore View
The JSF implementation must perform the following tasks during the Restore View
phase of the request processing lifecycle:

■ Examine the FacesContext instance for the current request. If it already
contains a UIViewRoot:

■ Set the locale on this UIViewRoot to the value returned by the
getRequestLocale() method on the ExternalContext for this request.

■ For each component in the component tree, determine if a ValueBinding for
“binding” is present. If so, call the setValue() method on this
ValueBinding, passing the component instance on which it was found.

■ Take no further action during this phase.

■ Derive the view identifier that corresponds to this request, as follows:

■ If prefix mapping (such as “/faces/*”) is used for FacesServlet, the viewId
is set from the extra path information of the request URI.

■ If suffix mapping (such as “*.faces”) is used for FacesServlet, the viewId is
set from the servlet path information of the request URI, after replacing the
suffix with the value of the context initialization parameter named by the
symbolic constant ViewHandler.DEFAULT_SUFFIX_NAME (if no such context
initialization parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_SUFFIX as the replacement suffix).

■ If no view identifier can be derived, throw an exception.

■ Call ViewHandler.restoreView(), passing the FacesContext instance for
the current request and the derived view identifier, and returning a UIViewRoot
for the restored view (if any).
2-4 JavaServer Faces Specification • February 2004

■ If restoreView() returns null, call ViewHandler.createView() and
FacesContext.renderResponse().

■ If the incoming request contains no POST data or query parameters, call
renderResponse() on the FacesContext instance for this request.

■ Store the restored or created UIViewRoot in the FacesContext.

■ For each component in the component tree, determine if a ValueBinding for
“binding” is present. If so, call the setValue() method on this ValueBinding,
passing the component instance on which it was found.

At the end of this phase, the viewRoot property of the FacesContext instance for
the current request will reflect the saved configuration of the view generated by the
previous Faces Response (if any), or a new view returned by
ViewHandler.createView() for the derived view identifier.

2.2.2 Apply Request Values
The purpose of the Apply Request Values phase of the request processing lifecycle is to
give each component the opportunity to update its current state from the
information included in the current request (parameters, headers, cookies, and so
on).

During the Apply Request Values phase, the JSF implementation must call the
processDecodes() method of the UIViewRoot of the component tree. This will
normally cause the processDecodes() method of each component in the tree to be
called recursively, as described in the Javadocs for the
UIComponent.processDecodes() method. For UIInput components, data
conversion must occur as described in the UIInput Javadocs.

During the decoding of request values, some components perform special
processing, including:

■ Components that implement ActionSource (such as UICommand), which
recognize that they were activated, will queue an ActionEvent. The event will
be delivered at the end of Apply Request Values phase, or at the end of Invoke
Application phase, depending upon the state of the immediate property on the
activated component.

■ Components that implement EditableValueHolder (such as UIInput), and
whose immediate property is set to true, will cause the conversion and
validation processing (including the potential to fire ValueChangeEvent events)
that normally happens during Process Validations phase to occur during Apply
Request Values phase instead.

As described in Section 2.3 “Common Event Processing”, the processDecodes()
method on the UIViewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.
Chapter 2 Request Processing Lifecycle 2-5

At the end of this phase, all EditableValueHolder components in the component
tree will have been updated with new submitted values included in this request (or
enough data to reproduce incorrect input will have been stored, if there were
conversion errors). In addition, conversion and validation will have been performed
on EditableValueHolder components whose immediate property is set to true.
Conversions and validations that failed will have caused messages to be enqueued
via calls to the addMessage() method of the FacesContext instance for the
current request, and the valid property on the corresponding component(s) will be
set to false.

If any of the decode() methods that were invoked, or an event listener that
processed a queued event, called responseComplete() on the FacesContext
instance for the current request, lifecycle processing of the current request must be
immediately terminated. If any of the decode() methods that were invoked, or an
event listener that processed a queued event, called renderResponse() on the
FacesContext instance for the current request, control must be transferred to the
Render Response phase of the request processing lifecycle. Otherwise, control must
proceed to the Process Validations phase.

2.2.3 Process Validations
As part of the creation of the view for this request, zero or more Validator
instances may have been registered for each component. In addition, component
classes themselves may implement validation logic in their validate() methods.

During the Process Validations phase of the request processing lifecycle, the JSF
implementation must call the processValidators() method of the UIViewRoot
of the tree. This will normally cause the processValidators() method of each
component in the tree to be called recursively, as described in the API reference for
the UIComponent.processValidators() method. Note that
EditableValueHolder components whose immediate property is set to true
will have had their conversion and validation processing performed during Apply
Request Values phase.

During the processing of validations, events may have been queued by the
components and/or Validators whose validate() method was invoked. As
described in Section 2.3 “Common Event Processing”, the processValidators()
method on the UIViewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.

At the end of this phase, all conversions and configured validations will have been
completed. Conversions and Validations that failed will have caused messages to be
enqueued via calls to the addMessage() method of the FacesContext instance for
the current request, and the valid property on the corresponding components will
have been set to false.
2-6 JavaServer Faces Specification • February 2004

If any of the validate() methods that were invoked, or an event listener that
processed a queued event, called responseComplete() on the FacesContext
instance for the current request, lifecycle processing of the current request must be
immediately terminated. If any of the validate() methods that were invoked, or
an event listener that processed a queued event, called renderResponse() on the
FacesContext instance for the current request, control must be transferred to the
Render Response phase of the request processing lifecycle. Otherwise, control must
proceed to the Update Model Values phase.

2.2.4 Update Model Values
If this phase of the request processing lifecycle is reached, it is assumed that the
incoming request is syntactically and semantically valid (according to the validations
that were performed), that the local value of every component in the component tree
has been updated, and that it is now appropriate to update the application's model
data in preparation for performing any application events that have been enqueued.

During the Update Model Values phase, the JSF implementation must call the
processUpdates() method of the UIViewRoot component of the tree. This will
normally cause the processUpdates() method of each component in the tree to be
called recursively, as described in the API reference for the
UIComponent.processUpdates() method. The actual model update for a
particular component is done in the updateModel() method for that component.

During the processing of model updates, events may have been queued by the
components whose updateModel() method was invoked. As described in
Section 2.3 “Common Event Processing”, the processUpdates() method on the
UIViewRoot component at the root of the component tree will have caused any
queued events to be broadcast to interested listeners.

At the end of this phase, all appropriate model data objects will have had their
values updated to match the local value of the corresponding component, and the
component local values will have been cleared.

If any of the updateModel() methods that were invoked, or an event listener that
processed a queued event, called responseComplete() on the FacesContext
instance for the current request, lifecycle processing of the current request must be
immediately terminated. If any of the updateModel() methods that was invoked,
or an event listener that processed a queued event, called renderResponse() on
the FacesContext instance for the current request, control must be transferred to
the Render Response phase of the request processing lifecycle. Otherwise, control
must proceed to the Invoke Application phase.
Chapter 2 Request Processing Lifecycle 2-7

2.2.5 Invoke Application
If this phase of the request processing lifecycle is reached, it is assumed that all
model updates have been completed, and any remaining event broadcast to the
application needs to be performed. The implementation must ensure that the
processApplication() method of the UIViewRoot instance is called. The default
behavior of this method will be to broadcast any queued events that specify a phase
identifier of PhaseId.INVOKE_APPLICATION.

Advanced applications (or application frameworks) may replace the default
ActionListener instance by calling the setActionListener() method on the
Application instance for this application. However, the JSF implementation must
provide a default ActionListener instance that behaves as described in
Section 7.1.1 “ActionListener Property”.

2.2.6 Render Response
This phase accomplishes two things:

1. Causes the response to be rendered to the client

2. Causes the state of the response to be saved for processing on subsequent
requests.

The reason for bundling both of these responsibilities into this phase is that in JSP
applications, the act of rendering the response may cause the view to be built, as the
page renders. Thus, we can’t save the state until the view is built, and we have to
save the state before sending the response to the client to enable saving the state in
the client.

JSF supports a range of approaches that JSF implementations may utilize in creating
the response text that corresponds to the contents of the response view, including:

■ Deriving all of the response content directly from the results of the encoding
methods (on either the components or the corresponding renderers) that are
called.

■ Interleaving the results of component encoding with content that is dynamically
generated by application programming logic.

■ Interleaving the results of component encoding with content that is copied from a
static “template” resource.

■ Interleaving the results of component encoding by embedding calls to the
encoding methods into a dynamic resource (such as representing the components
as custom tags in a JSP page).

Because of the number of possible options, the mechanism for implementing the
Render Response phase cannot be specified precisely. However, all JSF
implementations of this phase must conform to the following requirements:
2-8 JavaServer Faces Specification • February 2004

■ JSF implementations must provide a default ViewHandler implementation that
performs a RequestDispatcher.forward() call to a web application resource
whose context-relative path is equal to the view identifier of the component tree.

■ If all of the response content is being derived from the encoding methods of the
component or associated Renderers, the component tree should be walked in the
same depth-first manner as was used in earlier phases to process the component
tree, but subject to the additional constraints listed here.

■ If the response content is being interleaved from additional sources and the
encoding methods, the components may be selected for rendering in any desired
order1.

■ During the rendering process, additional components may be added to the
component tree based on information available to the ViewHandler
implementation2. However, before adding a new component, the ViewHandler
implementation must first check for the existence of the corresponding
component in the component tree. If the component already exists (perhaps
because a previous phase has pre-created one or more components), the existing
component’s properties and attributes must be utilized.

■ Under no circumstances should a component be selected for rendering when its
parent component, or any of its ancestors in the component tree, has its
rendersChildren property set to true. In such cases, the parent or ancestor
component must render the content of this child component when the parent or
ancestor was selected.

■ If the isRendered() method of a component returns false, the renderer for
that component must not generate any markup, and none of its facets or children
(if any) should be rendered.

When each particular component in the component tree is selected for rendering,
calls to its encodeXxx() methods must be performed in the manner described in
Section 3.1.12 “Component Specialization Methods”. For components that
implement ValueHolder (such as UIInput and UIOutput), data conversion must
occur as described in the UIOutput Javadocs.

Upon completion of rendering, the completed state of the view must have been
saved using the methods of the class StateManager. This state information must
be made accessible on a subsequent request, so that the Restore View can access it. For
more on StateManager, see Section 7.6.3 “State Saving Methods.”

1. Typically, component selection will be driven by the occurrence of special markup (such as the existence of a
JSP custom tag) in the template text associated with the component tree.

2. For example, this technique is used when custom tags in JSP pages are utilized as the rendering technology,
as described in Chapter 9 “Integration with JSP.
Chapter 2 Request Processing Lifecycle 2-9

2.3 Common Event Processing
For a complete description of the event processing model for JavaServer Faces
components, see Section 3.4 “Event and Listener Model”.

During several phases of the request processing lifecycle, as described in Section 2.2
“Standard Request Processing Lifecycle Phases”, the possibility exists for events to
be queued (via a call to the queueEvent() method on the source UIComponent
instance, or a call to the queue() method on the FacesEvent instance), which must
now be broadcast to interested event listeners. The broadcast is performed as a side
effect of calling the appropriate lifecycle management method (processDecodes(),
processValidators(), processUpdates(), or processApplication()) on
the UIViewRoot instance at the root of the current component tree.

For each queued event, the broadcast() method of the source UIComponent must
be called to broadcast the event to all event listeners who have registered an interest,
on this source component for events of the specified type, after which the event is
removed from the event queue. See the API reference for the
UIComponent.broadcast() method for the detailed functional requirements.

It is also possible for event listeners to cause additional events to be enqueued for
processing during the current phase of the request processing lifecycle. Such events
must be broadcast in the order they were enqueued, after all originally queued
events have been broadcast, before the lifecycle management method returns.

2.4 Common Application Activities
The following subsections describe common activities that may be undertaken by an
application that is using JSF to process an incoming request and/or create an
outgoing response. Their use is described in Section 2.1 “Request Processing
Lifecycle Scenarios”, for each request processing lifecycle scenario in which the
activity is relevant.
2-10 JavaServer Faces Specification • February 2004

2.4.1 Acquire Faces Object References
This phase is only required when the request being processed was not submitted
from a previous response, and therefore did not initiate the Faces Request Generates
Faces Response lifecycle. In order to generate a Faces Response, the application must
first acquire references to several objects provided by the JSF implementation, as
described below.

2.4.1.1 Acquire and Configure Lifecycle Reference

As described in Section 11.1 “Lifecycle”, the JSF implementation must provide an
instance of javax.faces.lifecycle.Lifecycle that may be utilized to manage
the remainder of the request processing lifecycle. An application may acquire a
reference to this instance in a portable manner, as follows:

It is also legal to specify a different lifecycle identifier as a parameter to the
getLifecycle() method, as long as this identifier is recognized and supported by
the JSF implementation you are using. However, using a non-default lifecycle
identifier will generally not be portable to any other JSF implementation.

2.4.1.2 Acquire and Configure FacesContext Reference

As described in Section 6.1 “FacesContext”, the JSF implementation must provide an
instance of javax.faces.context.FacesContext to contain all of the per-
request state information for a Faces Request or a Faces Response. An application
that is processing a Non-Faces Request, but wants to create a Faces Response, must
acquire a reference to a FacesContext instance as follows

LifecycleFactory lFactory = (LifecycleFactory)
FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);

Lifecycle lifecycle =
lFactory.getLifecycle(LifecycleFactory.DEFAULT_LIFECYCLE);

FacesContextFactory fcFactory = (FacesContextFactory)
FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);

FacesContext facesContext =
fcFactory.getFacesContext(context, request, response,

lifecycle);
Chapter 2 Request Processing Lifecycle 2-11

where the context, request, and response objects represent the corresponding
instances for the application environment. For example, in a servlet-based
application, these would be the ServletContext, HttpServletRequest, and
HttpServletResponse instances for the current request.

2.4.2 Create And Configure A New View
When a Faces response is being intially created, or when the application decides it
wants to create and configure a new view that will ultimately be rendered, it may
follow the steps described below in order to set up the view that will be used. You
must start with a reference to a FacesContext instance for the current request.

2.4.2.1 Create A New View

Views are represented by a data structure rooted in an instance of
javax.faces.component.UIViewRoot, and identified by a view identifier whose
meaning depends on the ViewHandler implementation to be used during the
Render Response phase of the request processing lifecycle3. The ViewHandler
provides a factory method that may be utilized to construct new component trees, as
follows:

The UIViewRoot instance returned by the createView() method must minimally
contain a single UIViewRoot provided by the JSF implementation, which must
encapsulate any implementation-specific component management that is required.
Optionally, a JSF implementation’s ViewHandler may support the automatic
population of the returned UIViewRoot with additional components, perhaps based
on some external metadata description.

The caller of ViewHandler.createView() must cause the FacesContext to be
populated with the new UIViewRoot. Applications must make sure that it is safe to
discard any state saved in the view rooted at the UIViewRoot currently stored in the
FacesContext.

3. The default ViewHandler implementation performs a RequestDispatcher.forward call to the web
application resource that will actually perform the rendering, so it expects the tree identifier to be the context-
relative path (starting with a / character) of the web application resource

String viewId = ...identifier of the desired Tree...;
ViewHandler viewHandler = application.getViewHandler();
UIViewRoot view = viewHandler.createView(facesContext, viewId);
2-12 JavaServer Faces Specification • February 2004

2.4.2.2 Configure the Desired RenderKit

The UIViewRoot instance provided by the ViewHandler, as described in the
previous subsection, must automatically be configured to utilize the default
javax.faces.render.RenderKit implementation provided by the JSF
implementation, as described in Section 8.1 “RenderKit”. This RenderKit must
support the standard components and Renderers described later in this
specification, to maximize the portability of your application.

However, a different RenderKit instance provided by your JSF implementation (or
as an add-on library) may be utilized instead, if desired. A reference to this
RenderKit instance can be obtained from the standard RenderKitFactory, and
then assigned to the UIViewRoot instance created previously, as follows:

As described in Chapter 8, changing the RenderKit being used changes the set of
Renderers that will actually perform decoding and encoding activities. Because the
components themselves store only a rendererType property (a logical identifier of
a particular Renderer), it is thus very easy to switch between RenderKits, as long
as they support renderers with the same renderer types.

In the current version of this specification, the default ViewHandler
implementation does not support using RenderKits other than the default one
(configured by the <default-render-kit-id> configuration element), because
the render kit identifier is not exposed separately in the StateManager APIs. This
restriction may be lifted in a future version of the specification. In the mean time, it
is possible to support this feature by implementing a custom ViewHandler that
handles saving and restoring the render kit identifier in a custom manner.

2.4.2.3 Configure The View’s Components

At any time, the application can add new components to the view, remove them, or
modify the attributes and properties of existing components. For example, a new
FooComponent (an implementation of UIComponent) can be added as a child to the
root UIViewRoot in the component tree as follows:

String renderKitId = ... identifier of desired RenderKit ...;
RenderKitFactory rkFactory = (RenderKitFactory)

FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);
RenderKit renderKit = rkFactory.getRenderKit(renderKitId,

facesContext);
view.setRenderKitId(renderKitId);

FooComponent component = ...create a FooComponent instance...;
facesContext.getViewRoot().getChildren().add(component);
Chapter 2 Request Processing Lifecycle 2-13

2.4.2.4 Store the new View in the FacesContext

Once the view has been created and configured, the FacesContext instance for this
request must be made aware of it by calling setViewRoot().

2.5 Concepts that impact several lifecycle
phases
This section is intended to give the reader a “big picture” perspective on several
complex concepts that impact several request processing lifecycle phases.

2.5.1 Value Handling
At a fundamental level, JavaServer Faces is a way to get values from the user, into
your model tier for processing. The process by which values flow from the user to
the model has been documented elsewhere in this spec, but a brief holistic survey
comes in handy. The following description assumes the JSP/HTTP case, and that all
components have Renderers.

2.5.1.1 Apply Request Values Phase

The user presses a button that causes a form submit to occur. This causes the state of
the form to be sent as name=value pairs in the POST data of the HTTP request. The
JSF request processing lifecycle is entered, and eventually we come to the Apply
Request Values Phase. In this phase, the decode() method for each Renderer for
each UIComponent in the view is called. The Renderer takes the value from the
request and passes it to the setSubmittedValue() method of the component,
which is, of course, an instance of EditableValueHolder. If the component has
the "immediate" property set to true, we execute validation immediately after
decoding. See below for what happens when we execute validation.

2.5.1.2 Process Validators Phase

processValidators() is called on the root of the view. For each
EditableValueHolder in the view, If the “immediate” property is not set, we
execute validation for each UIInput in the view. Otherwise, validation has already
occurred and this phase is a no-op.
2-14 JavaServer Faces Specification • February 2004

2.5.1.3 Executing Validation

Please see the javadocs for UIInput.validate() for more details, but basically,
this method gets the submitted value from the component (set during Apply Request
Values), gets the Renderer for the component and calls its getConvertedValue(),
passing the submitted value. If a conversion error occurs, it is dealt with as
described in the javadocs for that method. Otherwise, all validators attached to the
component are asked to validate the converted value. If any validation errors occur,
they are dealt with as described in the javadocs for Validator.validate(). The
converted value is pushed into the component's setValue() method, and a
ValueChangeEvent is fired if the value has changed.

2.5.1.4 Update Model Values Phase

For each UIInput component in the view, its updateModel() method is called.
This method only takes action if a local value was set when validation executed and
if the page author configured this component to push its value to the model tier. This
phase simply causes the converted local value of the UIInput component to be
pushed to the model in the way specified by the page author. Any errors that occur
as a result of the attempt to push the value to the model tier are dealt with as
described in the javadocs for UIInput.updateModel().

2.5.2 Localization and Internationalization
(L10N/I18N)
JavaServer Faces is fully internationalized. The I18N capability in JavaServer Faces
builds on the I18N concepts offered in the Servlet, JSP and JSTL specifications. I18N
happens at several points in the request processing lifecycle, but it is easiest to
explain what goes on by breaking the task down by function.

2.5.2.1 Determining the active Locale

JSF has the concept of an active Locale which is used to look up all localized
resources. Converters must use this Locale when performing their conversion. This
Locale is stored as the value of the locale JavaBeans property on the
UIViewRoot of the current FacesContext. The application developer can tell JSF
what locales the application supports in the applications’ WEB-INF/faces-
config.xml file. For example:

<faces-config>

 <application>

<locale-config>
Chapter 2 Request Processing Lifecycle 2-15

 <default-locale>en</default-locale>

 <supported-locale>de</supported-locale>

 <supported-locale>fr</supported-locale>

 <supported-locale>es</supported-locale>

 </locale-config>

 </application>

This application’s default locale is en, but it also supports de, fr, and es locales.
These elements cause the Application instance to be populated with Locale data.
Please see the javadocs for details.

The UIViewRoot’s Locale is determined and set by the ViewHandler during the
execution of the ViewHandler ’s createView() method. This method must cause
the active Locale to be determined by looking at the user’s preferences combined
with the application’s stated supported locales. Please see the javadocs for details.

The application can call UIViewRoot.setLocale() directly, but it is also possible
for the page author to override the UIViewRoot’s locale by using the locale
attribute on the <f:view> tag. The value of this attribute must be specified as
language[{-|_}country[{-|_}variant]] without the colons, for example
"ja_JP_SJIS". The separators between the segments may be '-' or '_'.

In all cases where JSP is utilized, the active Locale is set under “request scope” into
the JSTL class javax.servlet.jsp.jstl.core.Config, under the key
Config.FMT_LOCALE.

2.5.2.2 Determining the Character Encoding

The request and response character encoding are set and interpreted as follows.

On an initial request to a Faces webapp, the request character encoding is left
unmodified, relying on the underlying request object (e.g., the servlet or portlet
request) to parse request parameter correctly.

At the beginning of the render-response phase, the ViewHandler must ensure that
the response Locale is set to be that of the UIViewRoot, for example by calling
ServletResponse.setLocale() when running in the servlet environment.
Setting the response Locale may affect the response character encoding, see the
Servlet and Portlet specifications for details.

At the end of the render-response phase, the ViewHandler must store the response
character encoding used by the underlying response object (e.g., the servlet or
portlet response) in the session (if and only if a session already exists) under a well
known, implementation-dependent key.
2-16 JavaServer Faces Specification • February 2004

On a subsequent postback, before any of the ExternalContext methods for accessing
request parameters are invoked, the ViewHandler must examine the Content-Type
header to read the charset attribute and use its value to set it as the request encoding
for the underlying request object. If the Content-Type header doesn't contain a
charset attribute, the encoding previously stored in the session (if and only if a
session already exists), must be used to set the encoding for the underlying request
object. If no character encoding is found, the request encoding must be left
unmodified.

The above algorithm allows an application to use the mechanisms of the underlying
technologies to adjust both the request and response encoding in an application-
specific manner, for instance using the page directive with a fixed character
encoding defined in the contentType attribute in a JSP page, see the Servlet, Portlet
and JSP specifications for details. Note, though, that the character encoding rules
prior to Servlet 2.4 and JSP 2.0 are imprecise and special care must be taken for
portability between containers.

2.5.2.3 Localized Text

There is no direct support for this in the API, but the JSP layer provides a
convenience tag that converts a ResourceBundle into a java.util.Map and
stores it in the scoped namespace so all may get to it. This section describes how
resources displayed to the end user may be localized. This includes images, labels,
button text, tooltips, alt text, etc.

Since most JSF components allow pulling their display value from the model tier, it
is easy to do the localization at the model tier level. As a convenience, JSF provides
the <f:loadBundle> tag, which takes a ResourceBundle and loads it into a Map,
which is then stored in the scoped namespace in request scope, thus making its
messages available using the same mechanism for accessing data in the model tier.
For example:

<f:loadBundle basename=”com.foo.industryMessages.chemical”

var=”messages” />

<h:outputText value=”#{messages.benzene}” />

This must cause the ResourceBundle named
com.foo.industryMessages.chemical to be loaded as a Map into the request
scope under the key messages. Localized content can then be pulled out of it using
the normal value binding syntax.
Chapter 2 Request Processing Lifecycle 2-17

2.5.2.4 Localized Application Messages

This section describes how JSF handles localized error and informational messages
that occur as a result of conversion, validation, or other application actions during
the request processing lifecycle. The JSF class
javax.faces.application.FacesMessage is provided to encapsulate summary,
detail, and severity information for a message. A JSF implementation must provide a
javax.faces.Messages ResourceBundle containing all of the necessary keys
for the standard messages. The required keys (and a non-normative indication of the
intended message text) are as follows:

■ javax.faces.component.UIInput.CONVERSION -- Conversion error occurred

■ javax.faces.component.UIInput.REQUIRED -- Value is required

■ javax.faces.component.UISelectOne.INVALID -- Value is not a a valid option

■ javax.faces.component.UISelectMany.INVALID -- Value is not a valid option

■ javax.faces.validator.NOT_IN_RANGE -- Specified attribute is not between the
expected values of {0} and {1}

■ javax.faces.validator.DoubleRangeValidator.MAXIMUM -- Value is greater than
allowable maximum of ‘’{0}’’

■ javax.faces.validator.DoubleRangeValidator.MINIMUM -- Value is less than
allowable minimum of ‘’{0}’’

■ javax.faces.validator.DoubleRangeValidator.TYPE -- Value is not of the correct
type

■ javax.faces.validator.LengthValidator.MAXIMUM -- Value is greater than
allowable maximum of ‘’{0}’’

■ javax.faces.validator.LengthValidator.MINIMUM -- Value is less than allowable
minimum of ‘’{0}’’

■ javax.faces.validator.LongRangeValidator.MAXIMUM -- Value is greater than
allowable maximum of ‘’{0}’’

■ javax.faces.validator.LongRangeValidator.MINIMUM -- Value is less than
allowable minimum of ‘’{0}’’

■ javax.faces.validator.LongRangeValidator.TYPE -- Value is not of the correct type

A JSF application may provide its own messages, or overrides to the standard
messages by supplying a <message-bundle> element to in the application
configuration resources. Since the ResourceBundle provided in the Java platform
has no notion of summary or detail, JSF adopts the policy that ResourceBundle
key for the message looks up the message summary. The detail is stored under the
same key as the summary, with _detail appended. These ResourceBundle keys
must be used to look up the necessary values to create a localized FacesMessage
instance. Note that the value of the summary and detail keys in the
ResourceBundle may contain parameter substitution tokens, which must be
substituted with the appropriate values using java.text.MessageFormat.
2-18 JavaServer Faces Specification • February 2004

These messages can be displayed in the page using the UIMessage and
UIMessages components and their corresponding tags, <h:message> and
<h:messages>.

The following algorithm must be used to create a FacesMessage instance given a
message key.

■ Call getMessageBundle() on the Application instance for this web
application, to determine if the application has defined a resource bundle name. If
so, load that ResourceBundle and look for the message there.

■ If not there, look in the javax.faces.Messages resource bundle.

■ In either case, if a message is found, use the above conventions to create a
FacesMessage instance.

2.5.3 State Management
JavaServer Faces introduces a powerful and flexible system for saving and restoring
the state of the view between requests to the server. It is useful to describe state
management from several viewpoints. For the page author, state management
happens transparently. For the app assembler, state management can be configured
to save the state in the client or on the server by setting the ServletContext
InitParameter named javax.faces.STATE_SAVING_METHOD to either client or
server. The value of this parameter directs the state management decisions made
by the implementation.

2.5.3.1 State Management Considerations for the Custom
Component Author

Since the component developer cannot know what the state saving method will be at
runtime, they must be aware of state management. As shown in Section FIGURE 4-1
“The javax.faces.component package”, all JSF components implement the
StateHolder interface. As a consequence the standard components provide
implementations of StateHolder to suit their needs. A custom component that
extends UIComponent directly, and does not extend any of the standard components
must implement StateHolder manually.Please see Section 3.2.3 “StateHolder” for
details.

A custom component that does extend from one of the standard components and
maintains its own state, in addition to the state maintained by the superclass must
take special care to implement StateHolder correctly. Notably, calls to
saveState() must not alter the state in any way. The subclass is responsible for
saving and restoring the state of the superclass. Consider this example. My custom
component represents a “slider” ui widget. As such, it needs to keep track of the
maximum value, minimum value, and current values as part of its state.
Chapter 2 Request Processing Lifecycle 2-19

public class Slider extends UISelectOne {

protected Integer min = null;

protected Integer max = null;

protected Integer cur = null;

// ... details omitted

public Object saveState(FacesContext context) {

Object values[] = new Object[4];

values[0] = super.saveState(context);

values[1] = min;

values[2] = max;

values[3] = cur;

}

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object {}) state; // guaranteed to succeed

super.restoreState(context, values[0]);

min = (Integer) values[1];

max = (Integer) values[2];

cur = (Integer) values[3];

}

Note that we call super.saveState() and super.restoreState() as
appropriate. This is absolutely vital! Failing to do this will prevent the component
from working.

2.5.3.2 State Management Considerations for the JSF Implementor

The intent of the state management facility is to make life easier for the page author,
app assembler, and component author. However, the complexity has to live
somewhere, and the JSF implementor is the lucky role. Here is an overview of the
key players. Please see the javadocs for each individual class for more information.

Key Players in State Management
■ ViewHandler the entry point to the state management system. Uses a helper

class, StateManager, to do the actual work. In the JSP case, delegates to the tag
handler for the <f:view> tag for some functionality.
2-20 JavaServer Faces Specification • February 2004

■ StateManager abstraction for the hard work of state saving. Uses a helper class,
ResponseStateManager, for the rendering technology specific decisions.

■ ResponseStateManager abstraction for rendering technology specific state
management decisions.

■ UIComponent directs process of saving and restoring individual component state.
Chapter 2 Request Processing Lifecycle 2-21

2-22 JavaServer Faces Specification • February 2004

CHAPTER 3

User Interface Component Model

A JSF user interface component is the basic building block for creating a JSF user
interface. A particular component represents a configurable and reusable element in
the user interface, which may range in complexity from simple (such as a button or
text field) to compound (such as a tree control or table). Components can optionally
be associated with corresponding objects in the data model of an application, via
value binding expressions.

JSF also supports user interface components with several additional helper APIs:

■ Converters—Pluggable support class to convert the markup value of a component
to and from the corresponding type in the model tier.

■ Events and Listeners—An event broadcast and listener registration model based on
the design patterns of the JavaBeans Specification, version 1.0.1.

■ Validators—Pluggable support classes that can examine the local value of a
component (as received in an incoming request) and ensure that it conforms to
the business rules enforced by each Validator. Error messages for validation
failures can be generated and sent back to the user during rendering.

The user interface for a particular page of a JSF-based web application is created by
assembling the user interface components for a particular request or response into a
view. The view is a tree of classes that implement UIComponent. The components in
the tree have parent-child relationships with other components, starting at the root
element of the tree, which must be an instance of UIViewRoot. Components in the
tree can be anonymous or they can be given a component identifier by the framework
user. Components in the tree can be located based on component identifiers, which
must be unique within the scope of the nearest ancestor to the component that is a
naming container. For complex rendering scenarios, components can also be attached
to other components as facets.

This chapter describes the basic architecture and APIs for user interface components
and the supporting APIs.
3-1

3.1 UIComponent and UIComponentBase
The base abstract class for all user interface components is
javax.faces.component.UIComponent. This class defines the state information
and behavioral contracts for all components through a Java programming language
API, which means that components are independent of a rendering technology such
as JavaServer Pages (JSP). A standard set of components (described in Chapter 4
“Standard User Interface Components”) that add specialized properties, attributes,
and behavior, is also provided as a set of concrete subclasses.

Component writers, tool providers, application developers, and JSF implementors
can also create additional UIComponent implementations for use within a particular
application. To assist such developers, a convenience subclass,
javax.faces.component.UIComponentBase, is provided as part of JSF. This
class provides useful default implementations of nearly every UIComponent
method, allowing the component writer to focus on the unique characteristics of a
particular UIComponent implementation.

The following subsections define the key functional capabilities of JSF user interface
components.

3.1.1 Component Identifiers

Every component may be named by a component identifier, which (if utilized) must be
unique among the components that share a common naming container parent in a
component tree. Component identifiers must conform to the following rules:

■ They must start with a letter (as defined by the Character.isLetter()
method) or underscore (‘_’).

■ Subsequent characters may be letters (as defined by the
Character.isLetter() method), digits as defined by the
Character.isDigit() method, dashes (‘-’), and underscores (‘_’).

To minimize the size of responses generated by JavaServer Faces, it is recommended
that component identifiers be as short as possible.

If a component has been given an identifier, it must be unique in the namespace of
the closest ancestor to that component that is a NamingContainer (if any).

public String getId();

public void setId(String componentId);
3-2 JavaServer Faces Specification • February 2004

3.1.2 Component Type
While not a property of UIComponent, the component-type is an important piece
of data related to each UIComponent subclass that allows the Application
instance to create new instances of UIComponent subclasses with that type. Please
see Section 7.1.10 “Object Factories” for more on component-type.

Component types starting with “javax.faces.” are reserved for use by the JSF
specification.

3.1.3 Component Family

Each standard user interface component class has a standard value for the
component family, which is used to look up renderers associated with this
component. Subclasses of a generic UIComponent class will generally inherit this
property from its superclass, so that renderers who only expect the superclass will
still be able to process specialized subclasses.

Component families starting with “javax.faces.” are reserved for use by the JSF
specification.

3.1.4 Value Binding Expressions
Properties and attributes of standard concrete component classes may be value
binding enabled. This means that, rather than specifying a literal value as the
parameter to a property or attribute setter, the caller instead associates a
ValueBinding (see Section 5.3.3 “ValueBinding”) whose getValue() method must
be called (by the property getter) to return the actual property value to be returned
if no value has been set via the corresponding property setter. If a property or
attribute value has been set, that value must be returned by the property getter
(shadowing any associated value binding expression for this property).

Value binding expressions are managed with the following method calls:

public String getFamily();

public ValueBinding getValueBinding(String name);

public void setValueBinding(String name, ValueBinding binding);
Chapter 3 User Interface Component Model 3-3

where name is the name of the attribute or property for which to establish the value
binding. For the standard component classes defined by this specification, all
attributes, and all properties other than id and parent, are value binding enabled.

3.1.5 Component Bindings
A component binding is a special value binding expression that can be used to
facilitate “wiring up” a component instance to a corresponding property of a
JavaBean that is associated with the page, and wants to manipulate component
instances programatically. It is established by calling setValueBinding() (see
Section 3.1.4 “Value Binding Expressions”) with the special property name binding.

The specified ValueBinding must point to a read-write JavaBeans property of type
UIComponent (or appropriate subclass). Such a component binding is used at two
different times during the processing of a Faces Request:

■ When a component instance is first created (typically by virtue of being
referenced by a UIComponentTag in a JSP page), the JSF implementation will
retrieve the ValueBinding for the name binding, and call getValue()
on it. If this call returns a non-null UIComponent value (because the JavaBean
programmatically instantiated and configured a component already), that
instance will be added to the component tree that is being created. If the call
returns null, a new component instance will be created, added to the component
tree, and setValue() will be called on the ValueBinding (which will cause the
property on the JavaBean to be set to the newly created component instance).

■ When a component tree is recreated during the Restore View phase of the request
processing lifecycle, for each component that has a ValueBinding associated
with the name binding, setValue() will be called on it, passing the recreated
component instance.

Component bindings are often used in conjunction with JavaBeans that are
dynamically instantiated via the Managed Bean Creation facility (see Section 5.3.1.2
“Default VariableResolver Implementation”). It is strongly recommend that
application developers place managed beans that are pointed at by component
binding expressions in “request” scope. This is because placing it in session or
application scope would require thread-safety, since UIComponent instances depend
on running inside of a single thread.

3.1.6 Client Identifiers
Client identifiers are used by JSF implementations, as they decode and encode
components, for any occasion when the component must have a client side name.
Some examples of such an occasion are:
3-4 JavaServer Faces Specification • February 2004

■ to name request parameters for a subsequent request from the JSF-generated
page.

■ to serve as anchors for client side scripting code.
■ to serve as anchors for client side accessibility labels.

The client identifier is derived from the component identifier (or the result of calling
UIViewRoot.createUniqueId() if there is not one), and the client identifier of
the closest parent component that is a NamingContainer. The Renderer associated
with this component, if any, will then be asked to convert this client identifier to a
form appropriate for sending to the client. The value returned from this method
must be the same throughout the lifetime of the component instance unless setId()
is called, in which case it will be recalculated by the next call to getClientId().

3.1.7 Component Tree Manipulation

Components that have been added as children of another component can identify
the parent by calling the getParent method. For the root node component of a
component tree, or any component that is not part of a component tree, getParent
will return null. The setParent() method should only be called by the List
instance returned by calling the getChildren() method, or the Map instance
returned by calling the getFacets() method, when child components or facets are
being added, removed, or replaced.

Return a mutable List that contains all of the child UIComponents for this
component instance. The returned List implementation must support all of the
required and optional methods of the List interface, as well as update the parent
property of children that are added and removed, as described in the Javadocs for
this method.

public String getClientId(FacesContext context);

public UIComponent getParent();

public void setParent(UIComponent parent);

public List getChildren();

public int getChildCount();
Chapter 3 User Interface Component Model 3-5

A convenience method to return the number of child components for this
component. If there are no children, this method must return 0. The method must
not cause the creation of a child component list, so it is preferred over calling
getChildren().size() when there are no children.

3.1.8 Component Tree Navigation

Search for and return the UIComponent with an id that matches the specified
search expression (if any), according to the algorithm described in the Javadocs for
this method.

Return an immutable Iterator over all of the facets associated with this
component (in an undetermined order), followed by all the child components
associated with this component (in the order they would be returned by
getChildren()).

3.1.9 Facet Management
JavaServer Faces supports the traditional model of composing complex components
out of simple components via parent-child relationships that organize the entire set
of components into a tree, as described in Section 3.1.7 “Component Tree
Manipulation”. However, an additional useful facility is the ability to define
particular subordinate components that have a specific role with respect to the
owning component, which is typically independent of the parent-child relationship.
An example might be a “data grid” control, where the children represent the
columns to be rendered in the grid. It is useful to be able to identify a component
that represents the column header and/or footer, separate from the usual child
collection that represents the column data.

To meet this requirement, JavaServer Faces components offer support for facets,
which represent a named collection of subordinate (but non-child) components that
are related to the current component by virtue of a unique facet name that represents

public UIComponent findComponent(String expr);

public Iterator getFacetsAndChildren();
3-6 JavaServer Faces Specification • February 2004

the role that particular component plays. Although facets are not part of the parent-
child tree, they participate in request processing lifecycle methods, as described in
Section 3.1.13 “Lifecycle Management Methods”.

Return a mutable Map representing the facets of this UIComponent, keyed by the
facet name.

A convenience method to return a facet value, if it exists, or null otherwise. If the
requested facet does not exist, no facets Map must not be created, so it is preferred
over calling getFacets().get() when there are no Facets.

For easy use of components that use facets, component authors may include type-
safe getter and setter methods that correspond to each named facet that is supported
by that component class. For example, a component that supports a header facet of
type UIHeader should have methods with signatures and functionality as follows:

3.1.10 Generic Attributes

The render-independent characteristics of components are generally represented as
JavaBean component properties with getter and setter methods (see Section 3.1.11
“Render-Independent Properties”). In addition, components may also be associated
with generic attributes that are defined outside the component implementation class.
Typical uses of generic attributes include:

■ Specification of render-dependent characteristics, for use by specific Renderers.

■ General purpose association of application-specific objects with components.

public Map getFacets();

public UIComponent getFacet(String name);

public UIHeader getHeader() {
return ((UIHeader) getFacet(“header”);

}

public void setHeader(UIHeader header) {
getFacets().put(“header”, header);

}

public Map getAttributes();
Chapter 3 User Interface Component Model 3-7

The attributes for a component may be of any Java programming language object
type, and are keyed by attribute name (a String). However, see Section 7.6.2 “State
Saving Alternatives and Implications” for implications of your application’s choice
of state saving method on the classes used to implement attribute values.

Attribute names that begin with javax.faces are reserved for use by the JSF
specification. Names that begin with javax are reserved for definition through the
Java Community Process. Implementations are not allowed to define names that
begin with javax.

The Map returned by getAttributes() must also support attribute-property
transparency, which operates as follows:

■ When the get() method is called, if the specified attribute name matches the
name of a readable JavaBeans property on the component implementation class,
the value returned will be acquired by calling the appropriate property getter
method, and wrapping Java primitive values (such as int) in their corresponding
wrapper classes (such as java.lang.Integer) if necessary.

■ When the put() method is called, if the specified attribute name matches the
name of a writable JavaBeans property on the component implementation class,
the appropriate property setter method will be called.

3.1.11 Render-Independent Properties
The render-independent characteristics of a user interface component are
represented as JavaBean component properties, following JavaBeans naming
conventions. Specifically, the method names of the getter and/or setter methods are
determined using standard JavaBeans component introspection rules, as defined by
java.beans.Introspector. The render-independent properties supported by all
UIComponents are described in the following table:

Name Access Type Description

id RW String The component identifier, as described in Section 3.1.1
“Component Identifiers”.

parent RW UIComponent The parent component for which this component is a child or
a facet.

rendered RW boolean A flag that, if set to true, indicates that this component
should be processed during all phases of the request
processing lifecycle. The default value is “true”.
3-8 JavaServer Faces Specification • February 2004

The method names for the render-independent property getters and setters must
conform to the design patterns in the JavaBeans specification. See Section 7.6.2 “State
Saving Alternatives and Implications” for implications of your application’s choice
of state saving method on the classes used to implement property values.

3.1.12 Component Specialization Methods
The methods described in this section are called by the JSF implementation during
the various phases of the request processing lifecycle, and may be overridden in a
concrete subclass to implement specialized behavior for this component.

The broadcast() method is called during the common event processing (see
Section 2.3 “Common Event Processing”) at the end of several request processing
lifecycle phases. For more information about the event and listener model, see
Section 3.4 “Event and Listener Model”. Note that it is not necessary to override this
method to support additional event types.

rendererType RW String Identifier of the Renderer instance (from the set of
Renderer instances supported by the RenderKit associated
with the component tree we are processing. If this property is
set, several operations during the request processing lifecycle
(such as decode and the encodeXxx family of methods) will
be delegated to a Renderer instance of this type. If this
property is not set, the component must implement these
methods directly.

rendersChildr
en

RO boolean A flag that, if set to true, indicates that this component
manages the rendering of all of its children components (so
the JSF implementation should not attempt to render them).
The default implementation in UIComponentBase delegates
this setting to the associated Renderer, if any, and returns
false otherwise.

transient RW boolean A flag that, if set to true, indicates that this component must
not be included in the state of the component tree. The
default implementation in UIComponentBase returns false
for this property.

public boolean broadcast(FacesEvent event) throws
AbortProcessingException;

public void decode(FacesContext context);

Name Access Type Description
Chapter 3 User Interface Component Model 3-9

This method is called during the Apply Request Values phase of the request
processing lifecycle, and has the responsibility of extracting a new local value for
this component from an incoming request. The default implementation in
UIComponentBase delegates to a corresponding Renderer, if the rendererType
property is set, and does nothing otherwise.

Generally, component writers will choose to delegate decoding and encoding to a
corresponding Renderer by setting the rendererType property (which means the
default behavior described above is adequate).

These methods are called during the Render Response phase of the request processing
lifecycle, and have the responsibility of creating the response data for the beginning
of this component, this component’s children (only called if the rendersChildren
property of this component is true), and the ending of this component, respectively.
Typically, this will involve generating markup for the output technology being
supported, such as creating an HTML <input> element for a UIInput component.
For clients that support it, the encode methods might also generate client-side
scripting code (such as JavaScript), and/or stylesheets (such as CSS). The default
implementations in UIComponentBase delegate to a corresponding Renderer, if
the rendererType property is true, and do nothing otherwise.

Generally, component writers will choose to delegate encoding to a corresponding
Renderer, by setting the rendererType property (which means the default
behavior described above is adequate).

Enqueue the specified event for broadcast at the end of the current request
processing lifecycle phase. Default behavior is to delegate this to the queueEvent()
of the parent component, normally resulting in broadcast via the default behavior in
the UIViewRoot lifecycle methods.

The component author can override any of the above methods to customize the
behavior of their component.

public void encodeBegin(FacesContext context) throws IOException;

public void encodeChildren(FacesContext context) throws
IOException;

public void encodeEnd(FacesContext context) throws IOException;

public void queueEvent(FacesEvent event);
3-10 JavaServer Faces Specification • February 2004

3.1.13 Lifecycle Management Methods
The following methods are called by the various phases of the request processing
lifecycle, and implement a recursive tree walk of the components in a component
tree, calling the component specialization methods described above for each
component. These methods are not generally overridden by component writers, but
doing so may be useful for some advanced component implementations. See the
javadocs for detailed information on these methods.

Perform the component tree processing required by the Restore View phase of the
request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

Perform the component tree processing required by the Apply Request Values phase of
the request processing lifecycle for all facets of this component, all children of this
component, and this component itself

Perform the component tree processing required by the Process Validations phase of
the request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

Perform the component tree processing required by the Update Model Values phase
of the request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

Perform the component tree processing required by the state saving portion of the
Render Response phase of the request processing lifecycle for all facets of this
component, all children of this component, and this component itself.

public void processRestoreState(FacesContext context, Object
state);

public void processDecodes(FacesContext context);

public void processValidators(FacesContext context);

public void processUpdates(FacesContext context);

public void processSaveState(FacesContext context);
Chapter 3 User Interface Component Model 3-11

3.1.14 Utility Methods

Return the FacesContext instance for the current request.

Return the Renderer that is associated with this UIComponent, if any, based on the
values of the family and rendererType properties.

These methods are used to register and deregister an event listener. They should be
called only by a public addXxxListener() method on the component implementation
class, which provides typesafe listener registration.

3.2 Component Behavioral Interfaces
In addition to extending UIComponent, component classes may also implement one
or more of the behavioral interfaces described below. Components that implement
these interfaces must provide the corresponding method signatures and implement
the described functionality.

3.2.1 ActionSource
The ActionSource interface defines a way for a component to indicate that wishes
to be a source of ActionEvent events, including the ability invoke application
actions (see Section 7.3 “Application Actions”) via the default ActionListener
facility (see Section 7.1.1 “ActionListener Property”).

protected FacesContext getFacesContext();

protected Renderer getRenderer(FacesContext context);

protected void addFacesListener(FacesListener listener);

protected void removeFacesListener(FacesListener listener);
3-12 JavaServer Faces Specification • February 2004

3.2.1.1 Properties

The following render-independent properties are added by the ActionSource
interface:

3.2.1.2 Methods

ActionSource adds no new processing methods.

Name Access Type Description

action RW MethodBindi
ng

A MethodBinding (see Section 5.3.4
“MethodBinding”) that must (if non-null)
point at an action method (see Section 7.3
“Application Actions”). The specified
method will be called during the Apply
Request Values or Invoke Application phase of
the request processing lifecycle, as
described in Section 2.2.5 “Invoke
Application”.

actionListener RW MethodBindin
g

A MethodBinding (see Section 5.3.4
“MethodBinding”) that (if non-null) must
point at a method accepting an
ActionEvent, with a return type of void.
Any ActionEvent that is sent by this
ActionSource will be passed to this
method along with the processAction()
method of any registered
ActionListeners, in either Apply
Request Values or Invoke Application
phase, depending upon the state of the
immediate property.

immediate RW boolean A flag indicating that the default
ActionListener should execute
immediately (that is, during the Apply
Request Values phase of the request
processing lifecycle, instead of waiting for
Invoke Application phase). The default value
of this property must be false.
Chapter 3 User Interface Component Model 3-13

3.2.1.3 Events

A component implementing ActionSource is a source of ActionEvent events.
There are three important moments in the lifetime of an ActionEvent:

■ when an the event is created

■ when the event is queued for later processing

■ when the listeners for the event are notified

ActionEvent creation occurs when the system detects that the component
implementing ActionSource has been activated. For example, a button has been
pressed. This happens when the decode() processing of the Apply Request Values
phase of the request processing lifecycle detects that the corresponding user
interface control was activated.

ActionEvent queueing occurs immediately after the event is created.

Event listeners that have registered an interest in ActionEvents fired by this
component (see below) are notified at the end of the Apply Request Values or Invoke
Application phase, depending upon the immediate property of the originating
UICommand.

ActionSource includes the following methods to register and deregister
ActionListener instances interested in these events. See Section 3.4 “Event and
Listener Model” for more details on the event and listener model provided by JSF.

In addition to manually registered listeners, the JSF implementation provides a
default ActionListener that will process ActionEvent events during the Apply
Request Values or Invoke Application phases of the request processing lifecycle. See
Section 2.2.5 “Invoke Application” for more information.

3.2.2 NamingContainer
NamingContainer is a marker interface. Components that implement
NamingContainer have the property that, for all of their children that have non-
null component identifiers, all of those identifiers are unique. This property is
enforced by the renderView() method on ViewHandler. In JSP based
applications, it is also enforced by the UIComponentTag. Since this is just a marker
interface, there are no properties, methods, or events.

public void addActionListener(ActionListener listener);

public void removeActionListener(ActionListener listener);
3-14 JavaServer Faces Specification • February 2004

NamingContainer defines a public static final character constant,
SEPARATOR_CHAR, that is used to separate components of client identifiers, as well
as the components of search expressions used by the findComponent() method see
(Section 3.1.8 “Component Tree Navigation”). The value of this constant must be a
colon character (“:”).

Use of this separator character in client identifiers rendered by Renderers can cause
problems with CSS stylesheets that attach styles to a particular client identifier. For
the Standard HTML RenderKit, this issue can be worked around by using the style
attribute to specify CSS style values directly, or the styleClass attribute to select
CSS styles by class rather than by identifier.

3.2.3 StateHolder
The StateHolder interface is implemented by UIComponent, Converter,
FacesListener, and Validator classes that need to save their state between
requests. UIComponent implements this interface to denote that components have
state that must be saved and restored between requests.

3.2.3.1 Properties

The following render-independent properties are added by the StateHolder
interface:

Name Access Type Description

transient RW boolean A flag indicating whether this instance has
decided to opt out of having its state
information saved and restored. The
default value for all standard component,
converter, and validator classes that
implement StateHolder must be false.
Chapter 3 User Interface Component Model 3-15

3.2.3.2 Methods

Any class implementing StateHolder must implement both the saveState() and
restoreState() methods, since these two methods have a tightly coupled contract
between themselves. In other words, if there is an inheritance hierarchy, it is not
permissible to have the saveState() and restoreState() methods reside at
different levels of the hierarchy.

Gets or restores the state of the instance as a Serializable Object.

If the class that implements this interface has references to Objects which also
implement StateHolder (such as a UIComponent with a converter, event listeners,
and/or validators) these methods must call the saveState() or restoreState()
method on all those instances as well.

Any class implementing StateHolder must have a public no-args constructor.

If the state saving method is server, these methods may not be called.

If the class that implements this interface has references to Objects which do not
implement StateHolder, these methods must ensure that the references are
preserved. For example, consider class MySpecialComponent, which implements
StateHolder, and keeps a reference to a helper class,
MySpecialComponentHelper, which does not implement StateHolder.
MySpecialComponent.saveState() must save enough information about
MySpecialComponentHelper, so that when
MySpecialComponent.restoreState() is called, the reference to
MySpecialComponentHelper can be restored. The return from saveState()
must be Serializable.

Since all of the standard user interface components listed in Chapter 4 “Standard
User Interface Components” extend from UIComponent, they all implement the
StateHolder interface. In addition, the standard Converter and Validator
classes that require state to be saved and restored also implement StateHolder.

3.2.3.3 Events

StateHolder does not originate any standard events.

public Object saveState(FacesContext context);
public void restoreState(FacesContext context, Object state)
throws IOException;
3-16 JavaServer Faces Specification • February 2004

3.2.4 ValueHolder
ValueHolder is an interface that may be implemented by any concrete
UIComponent that wishes to support a local value, as well as access data in the
model tier via a value binding expression, and support conversion between
String and the model tier data's native data type.

3.2.4.1 Properties

The following render-independent properties are added by the ValueHolder
interface:

Like nearly all component properties, the value property may have a value binding
expression (see Section 3.1.4 “Value Binding Expressions”) associated with it. If
present (and if there is no value set directly on this component), such an expression
is utilized to retrieve a value dynamically from a model tier object during Render
Response Phase of the request processing lifecycle. In addition, for input components,
the value binding is used during Update Model Values phase (on the subsequent
request) to push the possibly updated component value back to the model tier
object.

The Converter property is used to allow the component to know how to convert
the model type from the String format provided by the Servlet API to the proper
type in the model tier.

3.2.4.2 Methods

ValueHolder adds no methods.

Name Access Type Description

converter RW Converter The Converter (if any) that is registered for
this UIComponent.

value RW Object First consult the local value property of this
component. If non-null return it. If the local
value property is null, see if we have a
ValueBinding for the value property. If so,
return the result of evaluating the property,
otherwise return null.

localValue RO Object allows any value set by calling setValue() to
be returned, without potentially evaluating a
ValueBinding the way that getValue() will
do
Chapter 3 User Interface Component Model 3-17

3.2.4.3 Events

ValueHolder does not originate any standard events.

3.2.5 EditableValueHolder
The EditableValueHolder interface (extends ValueHolder, see Section 3.2.4
“ValueHolder”) describes additional features supported by editable components,
including ValueChangeEvents and Validators.

3.2.5.1 Properties

The following render-independent properties are added by the
EditableValueHolder interface:

Name Access Type Description

immediate RW boolean Flag indicating that conversion and validation
of this component’s value should occur during
Apply Request Values phase instead of Process
Validations phase.

localValueS
et

RW boolean Flag indicating whether the value property
has been set.

required RW boolean Is the user required to provide a non-empty
value for this component? Default value must
be false.

submitted
Value

RW Object The submitted, unconverted, value of this
component. This property should only be set by
the decode() method of this component, or its
corresponding Renderer, or by the validate
method of this component. This property
should only be read by the validate() method of
this component.
3-18 JavaServer Faces Specification • February 2004

3.2.5.2 Methods

The following methods support the validation functionality performed during the
Process Validations phase of the request processing lifecycle:

The addValidator() and removeValidator() methods are used to register and
deregister additional external Validator instances that will be used to perform
correctness checks on the local value of this component.

If the validator property is not null, the method it points at must be called by the
processValidations() method, after the validate() method of all registered
Validators is called.

3.2.5.3 Events

EditableValueHolder is a source of ValueChangeEvent events, which are
emitted when the validate() processing of the Process Validations phase of the
request processing lifecycle determines that the previous value of this component
differs from the current value, and all validation checks have passed (i.e. the valid
property of this component is still true). It includes the following methods to register

valid RW boolean A flag indicating whether the local value of this
component is valid (that is, no conversion error
or validation error has occurred).

validator RW MethodBindin
g

A MethodBinding that (if not null) must point
at a method accepting a FacesContext and a
UIInput, with a return type of void. This
method will be called during Process Validations
phase, after any validators that are externally
registered.

valueChan
geListener

RW MethodBindin
g

A MethodBinding that (if not null) must point
at a method that accepts a
ValueChangeEvent, with a return type of
void. The specified method will be called
during the Process Validations phase of the
request processing lifecycle, after any externally
registered ValueChangeListeners.

public void addValidator(Validator validator);

public void removeValidator(Validator validator);

Name Access Type Description
Chapter 3 User Interface Component Model 3-19

and deregister ValueChangeListener instances interested in these events. See
Section 3.4 “Event and Listener Model” for more details on the event and listener
model provided by JSF.

In addition to the above listener registration methods, If the
valueChangeListener property is not null, the method it points at must be
called by the broadcast() method, after the processValueChange() method of
all registered ValueChangeListeners is called.

public void addValueChangeListener(ValueChangeListener listener);

public void removeValueChangeListener(ValueChangeListener
listener);
3-20 JavaServer Faces Specification • February 2004

3.3 Conversion Model
This section describes the facilities provided by JavaServer Faces to support type
conversion between server-side Java objects and their (typically String-based)
representation in presentation markup.

3.3.1 Overview
A typical web application must constantly deal with two fundamentally different
viewpoints of the underlying data being manipulated through the user interface:

■ The model view—Data is typically represented as Java programming language
objects (often JavaBeans components), with data represented in some native Java
programming language datatype. For example, date and time values might be
represented in the model view as instances of java.util.Date.

■ The presentation view—Data is typically represented in some form that can be
perceived or modified by the user of the application. For example, a date or type
value might be represented as a text string, as three text strings (one each for
month/date/year or one each for hour/minute/second), as a calendar control,
associated with a spin control that lets you increment or decrement individual
elements of the date or time with a single mouse click, or in a variety of other
ways. Some presentation views may depend on the preferred language or locale
of the user (such as the commonly used mm/dd/yy and dd/mm/yy date
formats, or the variety of punctuation characters in monetary amount
presentations for various currencies).

To transform data formats between these views, JavaServer Faces provides an ability
to plug-in an optional Converter for each ValueHolder, which has the
responsibility of converting the internal data representation between the two views.
The application developer attaches a particular Converter to a particular
ValueHolder by calling setConverter, passing an instance of the particular
converter. A Converter implementation may be acquired from the Application
instance (see Section 7.1.10 “Object Factories”) for your application.

3.3.2 Converter
JSF provides the javax.faces.convert.Converter interface to define the
behavioral characteristics of a Converter. Instances of implementations of this
interface are either identified by a converter identifier, or by a class for which the
Chapter 3 User Interface Component Model 3-21

Converter class asserts that it can perform successful conversions, which can be
registered with, and later retrieved from, an Application, as described in
Section 7.1.10 “Object Factories”.

Often, a Converter will be an object that requires no extra configuration
information to perform its responsibilities. However, in some cases, it is useful to
provide configuration parameters to the Converter (such as a
java.text.DateFormat pattern for a Converter that supports
java.util.Date model objects). Such configuration information will generally
may be provided via JavaBeans properties on the Converter instance.

Converter implementations should be programmed so that the conversions they
perform are symmetric. In other words, if a model data object is converted to a
String (via a call to the getAsString method), it should be possible to call
getAsObject and pass it the converted String as the value parameter, and return a
model data object that is semantically equal to the original one. In some cases, this is
not possible. For example, a converter that uses the formatting facilities provided by
the java.text.Format class might create two adjacent integer numbers with no
separator in between, and in this case the Converter could not tell which digits
belong to which number.

For UIInput and UIOutput components that wish to explicitly select a Converter
to be used, a new Converter instance of the appropriate type must be created,
optionally configured, and registered on the component by calling
setConverter()1. Otherwise, the JSF implementation will automatically create
new instances based on the data type being converted, if such Converter classes
have been registered. In either case, Converter implementations need not be
threadsafe, because they will be used only in the context of a single request
processing thread.

The following two method signatures are defined by the Converter interface:

This method is used to convert the presentation view of a component’s value
(typically a String that was received as a request parameter) into the corresponding
model view. It is called during the Apply Request Values phase of the request
processing lifecycle.

1. In a JSP environment, these steps are performed by a custom tag extending ConverterTag.

public Object getAsObject(FacesContext context, UIComponent
component, String value) throws ConverterException;

public String getAsString(FacesContext context, UIComponent
component, Object value) throws ConverterException;
3-22 JavaServer Faces Specification • February 2004

This method is used to convert the model view of a component’s value (typically
some native Java programming language class) into the presentation view (typically
a String that will be rendered in some markup language. It is called during the
Render Response phase of the request processing lifecycle.

3.3.3 Standard Converter Implementations
JSF provides a set of standard Converter implementations. A JSF implementation
must register the DateTime and Number converters by name with the
Application instance for this web application, as described in the table below. This
ensures that the converters are available for subsequent calls to
Application.createConverter(). Each concrete implementation class must
define a static final String constant CONVERTER_ID whose value is the standard
converter id under which this Converter is registered.

The following converter id values must be registered to create instances of the
specified Converter implementation classes:

■ javax.faces.BigDecimal -- An instance of
javax.faces.convert.BigDecimalConverter (or a subclass of this class).

■ javax.faces.BigInteger -- An instance of
javax.faces.convert.BigIntegerConverter (or a subclass of this class).

■ javax.faces.Boolean -- An instance of
javax.faces.convert.BooleanConverter (or a subclass of this class).

■ javax.faces.Byte -- An instance of
javax.faces.convert.ByteConverter (or a subclass of this class).

■ javax.faces.Character -- An instance of
javax.faces.convert.CharacterConverter (or a subclass of this class).

■ javax.faces.DateTime -- An instance of
javax.faces.convert.DateTimeConverter (or a subclass of this class).

■ javax.faces.Double -- An instance of
javax.faces.convert.DoubleConverter (or a subclass of this class).

■ javax.faces.Float -- An instance of
javax.faces.convert.FloatConverter (or a subclass of this class).

■ javax.faces.Integer -- An instance of
javax.faces.convert.IntegerConverter (or a subclass of this class).

■ javax.faces.Long -- An instance of
javax.faces.convert.LongConverter (or a subclass of this class).

■ javax.faces.Number -- An instance of
javax.faces.convert.NumberConverter (or a subclass of this class).

■ javax.faces.Short -- An instance of
javax.faces.convert.ShortConverter (or a subclass of this class).
Chapter 3 User Interface Component Model 3-23

See the Javadocs for these classes for a detailed description of the conversion
operations they perform, and the configuration properties that they support.

A JSF implementation must register converters for all of the following classes using
the by-type registration mechanism:

■ java.lang.Boolean, and java.lang.Boolean.TYPE -- An instance of
javax.faces.convert.BooleanConverter (or a subclass of this class).

■ java.lang.Byte, and java.lang.Byte.TYPE -- An instance of
javax.faces.convert.ByteConverter (or a subclass of this class).

■ java.lang.Character, and java.lang.Character.TYPE -- An instance of
javax.faces.convert.CharacterConverter (or a subclass of this class).

■ java.lang.Double, and java.lang.Double.TYPE -- An instance of
javax.faces.convert.DoubleConverter (or a subclass of this class).

■ java.lang.Float, and java.lang.Float.TYPE -- An instance of
javax.faces.convert.FloatConverter (or a subclass of this class).

■ java.lang.Integer, and java.lang.Integer.TYPE -- An instance of
javax.faces.convert.IntegerConverter (or a subclass of this class).

■ java.lang.Long, and java.lang.Long.TYPE -- An instance of
javax.faces.convert.LongConverter (or a subclass of this class).

■ java.lang.Short, and java.lang.Short.TYPE -- An instance of
javax.faces.convert.ShortConverter (or a subclass of this class).

See the Javadocs for these classes for a detailed description of the conversion
operations they perform, and the configuration properties that they support.
3-24 JavaServer Faces Specification • February 2004

3.4 Event and Listener Model
This section describes how JavaServer Faces provides support for generating and
handling user interface events.

3.4.1 Overview
JSF implements a model for event notification and listener registration based on the
design patterns in the JavaBeans Specification, version 1.0.1. This is similar to the
approach taken in other user interface toolkits, such as the Swing Framework
included in the JDK.

A UIComponent subclass may choose to emit events that signify significant state
changes, and broadcast them to listeners that have registered an interest in receiving
events of the type indicated by the event’s implementation class. At the end of
several phases of the request processing lifecycle, the JSF implementation will
broadcast all of the events that have been queued to interested listeners.The
following UML class diagram illustrates the key players in the event model.
Chapter 3 User Interface Component Model 3-25

3-26 JavaServer Faces Specification • February 2004

3.4.2 Event Classes
All events that are broadcast by JSF user interface components must extend the
javax.faces.event.FacesEvent abstract base class. The parameter list for the
constructor(s) of this event class must include a UIComponent, which identifies the
component from which the event will be broadcast to interested listeners. The source
component can be retrieved from the event object itself by calling getComponent.
Additional constructor parameters and/or properties on the event class can be used
to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event
classes typically have a class name that ends with Event. It is recommended that
application event classes follow this naming pattern as well.

The component that is the source of a FacesEvent can be retrieved via this method:

FacesEvent has a phaseId property (of type PhaseId, see Section 3.4.4 “Phase
Identifiers”) used to identify the request processing lifecycle phase after which the
event will be delivered to interested listeners.

If this property is set to PhaseId.ANY_PHASE (which is the default), the event will
be delivered at the end of the phase in which it was enqueued.

To facilitate general management of event listeners in JSF components, a
FacesEvent implementation class must support the following methods:

The isAppropriateListener() method returns true if the specified
FacesListener is a relevant receiver of this type of event. Typically, this will be
implemented as a simple “instanceof” check to ensure that the listener class
implements the FacesListener subinterface that corresponds to this event class

public UIComponent getComponent();

public PhaseId getPhaseId();

public void setPhaseId(PhaseId phaseId);

public abstract boolean isAppropriateListener(FacesListener
listener);

public abstract void processListener(FacesListener listener);
Chapter 3 User Interface Component Model 3-27

The processListener() method must call the appropriate event processing
method on the specified listener. Typically, this will be implemented by casting the
listener to the corresponding FacesListener subinterface and calling the
appropriate event processing method, passing this event instance as a parameter.

The above convenience method calls the queueEvent() method of the source
UIComponent for this event, passing this event as a parameter.

JSF includes two standard FacesEvent subclasses, which are emitted by the
corresponding standard UIComponent subclasses described in the following
chapter.

■ ActionEvent—Emitted by a UICommand component when the user activates the
corresponding user interface control (such as a clicking a button or a hyperlink).

■ ValueChangeEvent—Emitted by a UIInput component (or appropriate
subclass) when a new local value has been created, and has passed all validations.

3.4.3 Listener Classes
For each event type that may be emitted, a corresponding listener interface must be
created, which extends the javax.faces.event.FacesListener interface. The
method signature(s) defined by the listener interface must take a single parameter,
an instance of the event class for which this listener is being created. A listener
implementation class will implement one or more of these listener interfaces, along
with the event handling method(s) specified by those interfaces. The event handling
methods will be called during event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener
interfaces have a class name based on the class name of the event being listened to,
but with the word Listener replacing the trailing Event of the event class name
(thus, the listener for a FooEvent would be a FooListener). It is recommended
that application event listener interfaces follow this naming pattern as well.

Corresponding to the two standard event classes described in the previous section,
JSF defines two standard event listener interfaces that may be implemented by
application classes:

■ ActionListener—a listener that is interested in receiving ActionEvent events.
■ ValueChangeListener—a listener that is interested in receiving

ValueChangeEvent events.

public void queue();
3-28 JavaServer Faces Specification • February 2004

3.4.4 Phase Identifiers
As described in Section 2.3 “Common Event Processing”, event handling occurs at
the end of several phases of the request processing lifecycle. In addition, a particular
event must indicate, through the value it returns from the getPhaseId() method,
the phase in which it wishes to be delivered. This indication is done by returning an
instance of javax.faces.event.PhaseId. The class defines a typesafe
enumeration of all the legal values that may be returned by getPhaseId(). In
addition, a special value (PhaseId.ANY_PHASE) may be returned to indicate that
this event wants to be delivered at the end of the phase in which it was queued.

3.4.5 Listener Registration
A concrete UIComponent subclass that emits events of a particular type must
include public methods to register and deregister a listener implementation. In order
to be recognized by development tools, these listener methods must follow the
naming patterns defined in the JavaBeans Specification. For example, for a component
that emits FooEvent events, to be received by listeners that implement the
FooListener interface, the method signatures (on the component class) must be:

The application (or other components) may register listener instances at any time, by
calling the appropriate add method. The set of listeners associated with a component
is part of the state information that JSF saves and restores. Therefore, listener
implementation classes must have a public zero-argument constructor, and may
implement StateHolder (see Section 3.2.3 “StateHolder”) if they have internal state
information that needs to be saved and restored.

The UICommand and UIInput standard component classes include listener
registration and deregistration methods for event listeners associated with the event
types that they emit. The UIInput methods are also inherited by UIInput
subclasses, including UISelectBoolean, UISelectMany, and UISelectOne.

public void addFooListener(FooListener listener);

public FooListener[] getFooListeners();

public void removeFooListener(FooListener listener);
Chapter 3 User Interface Component Model 3-29

3.4.6 Event Queueing
During the processing being performed by any phase of the request processing
lifecycle, events may be created and queued by calling the queueEvent() method
on the source UIComponent instance, or by calling the queue() method on the
FacesEvent instance itself. As described in Section 2.3 “Common Event
Processing”, at the end of certain phases of the request processing lifecycle, any
queued events will be broadcast to interested listeners in the order that the events
were originally queued.

Deferring event broadcast until the end of a request processing lifecycle phase
ensures that the entire component tree has been processed by that state, and that
event listeners all see the same consistent state of the entire tree, no matter when the
event was actually queued.

3.4.7 Event Broadcasting
As described in Section 2.3 “Common Event Processing”, at the end of each request
processing lifecycle phase that may cause events to be queued, the lifecycle
management method of the UIViewRoot component at the root of the component
tree will iterate over the queued events and call the broadcast() method on the
source component instance to actually notify the registered listeners. See the
Javadocs of the broadcast() method for detailed functional requirements.

During event broadcasting, a listener processing an event may:

■ Examine or modify the state of any component in the component tree.
■ Add or remove components from the component tree.
■ Add messages to be returned to the user, by calling addMessage on the

FacesContext instance for the current request.
■ Queue one or more additional events, from the same source component or a

different one, for processing during the current lifecycle phase.
■ Throw an AbortProcessingException, to tell the JSF implementation that no

further broadcast of this event, or any further events, should take place.
■ Call renderResponse() on the FacesContext instance for the current request.

This tells the JSF implementation that, when the current phase of the request
processing lifecycle has been completed, control should be transferred to the
Render Response phase.

■ Call responseComplete() on the FacesContext instance for the current
request. This tells the JSF implementation that, when the current phase of the
request processing lifecycle has been completed, processing for this request
should be terminated (because the actual response content has been generated by
some other means).
3-30 JavaServer Faces Specification • February 2004

3.5 Validation Model
This section describes the facilities provided by JavaServer Faces for validating user
input.

3.5.1 Overview
JSF supports a mechanism for registering zero or more validators on each
EditableValueHolder component in the component tree. A validator’s purpose is
to perform checks on the local value of the component, during the Process Validations
phase of the request processing lifecycle. In addition, a component may implement
internal checking in a validate method that is part of the component class.

3.5.2 Validator Classes
A validator must implement the javax.faces.validator.Validator interface,
which contains a validate method signature. General purpose validators may
require configuration values in order to define the precise check to be performed.
For example, a validator that enforces a maximum length might wish to support a
configurable length limit. Such configuration values are typically implemented as
JavaBeans component properties, and/or constructor arguments, on the Validator
implementation class. In addition, a validator may elect to use generic attributes of
the component being validated for configuration information.

JSF includes implementations of several standard validators, as described in
Section 3.5.5 “Standard Validator Implementations”.

3.5.3 Validation Registration
The EditableValueHolder interface (implemented by UIInput) includes an
addValidator method to register an additional validator for this component, and a
removeValidator method to remove an existing registration, as well as the ability
to add a MethodBinding that points to a method that adheres to the validate
signature in the Validator interface.
Chapter 3 User Interface Component Model 3-31

The application (or other components) may register validator instances at any time,
by calling the addValidator method. The set of validators associated with a
component is part of the state information that JSF saves and restores. Validators
that wish to have configuration properties saved and restored must also implement
StateHolder (see Section 3.2.3 “StateHolder”).

3.5.4 Validation Processing
During the Process Validations phase of the request processing lifecycle (as described
in Section 2.2.3 “Process Validations”), the JSF implementation will ensure that the
validate() method of each registered Validator, the method referenced by the
validator property (if any), and the validate() method of the component itself,
is called for each EditableValueHolder component in the component tree,
regardless of the validity state of any of the components in the tree. The
responsibilities of each validate() method include:

■ Perform the check for which this validator was registered.
■ If violation(s) of the correctness rules are found, create a FacesMessage instance

describing the problem, and create a ValidatorException around it, and throw
the ValidatorException. The EditableValueHolder on which this
validation is being performed will catch this exception, set valid to false for
that instance, and cause the message to be added to the FacesContext.

In addition, a validate() method may:

■ Examine or modify the state of any component in the component tree.
■ Add or remove components from the component tree.
■ Queue one or more events, from the same component or a different one, for

processing during the current lifecycle phase.

The render-independent property required is a shorthand for the function of a
“required” validator. If the value of this property is true and the component has no
value, the component is marked invalid and a message is added to the
FacesContext instance. See Section 2.5.2.4 “Localized Application Messages” for
details on the message.

3.5.5 Standard Validator Implementations
JavaServer Faces defines a standard suite of Validator implementations that
perform a variety of commonly required checks. In addition, component writers,
application developers, and tool providers will often define additional Validator
implementations that may be used to support component-type-specific or
application-specific constraints. These implementations share the following common
characteristics:
3-32 JavaServer Faces Specification • February 2004

■ Standard Validators accept configuration information as either parameters to
the constructor that creates a new instance of that Validator, or as JavaBeans
component properties on the Validator implementation class.

■ To support internationalization, FacesMessage instances should be created. The
message identifiers for such standard messages are also defined by manifest
String constants in the implementation classes. It is the user’s responsibility to
ensure the content of a FacesMessage instance is properly localized, and
appropriate parameter substitution is performed, perhaps using
java.text.MessageFormat.

■ Unless otherwise specified, components with a null local value cause the
validation checking by this Validator to be skipped. If a component should be
required to have a non-null value, a component attribute with the name
required and the value true must be added to the component in order to
enforce this rule.

■ Concrete Validator implementations must define a public static final String
constant VALIDATOR_ID, whose value is the standard identifier under which the
JSF implementation must register this instance (see below).

Please see Section 2.5.2.4 “Localized Application Messages” for the list of message
identifiers.

The following standard Validator implementations (in the
javax.faces.validator package) are provided:

■ DoubleRangeValidator—Checks the local value of a component, which must
be of any numeric type, against specified maximum and/or minimum values.
Standard identifier is “javax.faces.DoubleRange”.

■ LengthValidator—Checks the length (i.e. number of characters) of the local
value of a component, which must be of type String, against maximum and/or
minimum values. Standard identifier is “javax.faces.Length”.

■ LongRangeValidator—Checks the local value of a component, which must be
of any numeric type convertible to long, against maximum and/or minimum
values. Standard identifier is “javax.faces.LongRange”.
Chapter 3 User Interface Component Model 3-33

CHAPTER 44

Standard User Interface
Components

In addition to the abstract base class UIComponent and the abstract base class
UIComponentBase, described in the previous chapter, JSF provides a number of
concrete user interface component implementation classes that cover the most
common requirements. In addition, component writers will typically create new
components by subclassing one of the standard component classes (or the
UIComponentBase class). It is anticipated that the number of standard component
classes will grow in future versions of the JavaServer Faces specification.

Each of these classes defines the render-independent characteristics of the
corresponding component as JavaBeans component properties. Some of these
properties may be value binding expressions that indirectly point to values related to
the current request, or to the properties of model data objects that are accessible
through request-scope, session-scope, or application-scope attributes. In addition,
the rendererType property of each concrete implementation class is set to a
defined value, indicating that decoding and encoding for this component will (by
default) be delegated to the corresponding Renderer.

4.1 Standard User Interface Components
This section documents the features and functionality of the standard UIComponent
classes and implementations that are included in JavaServer Faces.

The implementation for each standard UIComponent class must specify two public
static final String constant values:

■ COMPONENT_TYPE -- The standard component type identifier under which the
corresponding component class is registered with the Application object for
this application. This value may be used as a parameter to the
createComponent() method.
4-1

■ COMPONENT_FAMILY -- The standard component family identifier used to select
an appropriate Renderer for this component.

For all render-independent properties in the following sections (except for id,
scope, and var) the value may either be a literal, or it may come from a value
binding expression. Please see Chapter 5 “Value Binding Expressions” for more
information.
4-2 JavaServer Faces Specification • February 2004

The following UML class diagram shows the classes and interfaces in the package
javax.faces.component.
Chapter 4 Standard User Interface Components 4-3

FIGURE 4-1 The javax.faces.component package
4-4 JavaServer Faces Specification • February 2004

4.1.1 UIColumn
UIColumn (extends UIComponentBase) is a component that represents a single
column of data with a parent UIData component. The child components of a
UIColumn will be processed once for each row in the data managed by the parent
UIData.

4.1.1.1 Component Type

The standard component type for UIColumn components is “javax.faces.Column”.

4.1.1.2 Properties

UIColumn adds the following render-independent properties:

UIColumn specializes the behavior of render-independent properties inherited from
the parent class as follows:

■ The default value of the family property must be set to “javax.faces.Column”.

■ The default value of the rendererType property must be set to null.

4.1.1.3 Methods

UIColumn adds no new processing methods.

4.1.1.4 Events

UIColumn adds no new event handling methods.

Name Access Type Description

footer RW UIComponent Convenience methods to get and set the
“footer” facet for this component.

header RW UIComponent Convenience methods to get and set the
“header” facet for this component.
Chapter 4 Standard User Interface Components 4-5

4.1.2 UICommand
UICommand (extends UIComponentBase; implements ActionSource) is a control
which, when activated by the user, triggers an application-specific “command” or
“action.” Such a component is typically rendered as a push button, a menu item, or
a hyperlink.

4.1.2.1 Component Type

The standard component type for UICommand components is “javax.faces.Command”.

4.1.2.2 Properties

UICommand adds the following render-independent properties.

See Section 3.2.1 “ActionSource” for information about properties introduced by the
implemented classes.

UICommand components specialize the behavior of render-independent properties
inherited from the parent class as follows:

■ The default value of the family property must be set to “javax.faces.Command”.

■ The default value of the rendererType property must be set to
“javax.faces.Button”.

4.1.2.3 Methods

UICommand adds no new processing methods. See Section 3.2.1 “ActionSource” for
information about methods introduced by the implemented classes.

4.1.2.4 Events

UICommand adds no new event processing methods. See Section 3.2.1
“ActionSource” for information about event handling introduced by the
implemented classes.

Name Access Type Description

value RW Object The value of this component, normally used as
a label.
4-6 JavaServer Faces Specification • February 2004

4.1.3 UIData
UIData (extends UIComponentBase; implements NamingContaier) is a
component that represents a data binding to a collection of data objects represented
by a DataModel instance (see Section 4.2.1 “DataModel”). Only children of type
UIColumn should be processed by renderers associated with this component.

4.1.3.1 Component Type

The standard component type for UIData components is “javax.faces.Data”

4.1.3.2 Properties

UIData adds the following render-independent properties.

Name Access Type Description

first RW int One-relative row number of the first row in the
underlying data model to be displayed, or zero
to start at the beginning of the data model.

footer RW UIComponent Convenience methods to get and set the
“footer” facet for this component.

header RW UIComponent Convenience methods to get and set the
“header” facet for this component.

rowCount RO int The number of rows in the underlying
DataModel, which can be -1 if the number of
rows is unknown.

rowAvailab
le

RO boolean Return true if there is row data available for
the currently specified rowIndex; else return
false.

rowData RO Object The data object representing the data for the
currently selected rowIndex value.

rowIndex RW int Zero-relative index of the row currently being
accessed in the underlying DataModel, or -1
for no current row. See below for further
information.
Chapter 4 Standard User Interface Components 4-7

See Section 3.2.2 “NamingContainer” for information about properties introduced by
the implemented classes.

UIData specializes the behavior of render-independent properties inherited from
the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Data”.

■ The default value of the rendererType property must be set to
“javax.faces.Table”.

The current value identified by the value property is normally of type DataModel.
However, a DataModel wrapper instance must automatically be provided by the JSF
implementation if the current value is of one of the following types:

■ java.util.List

■ Array of java.util.Object

■ java.sql.ResultSet (which therefore also supports javax.sql.RowSet)

■ javax.servlet.jsp.jstl.sql.Result

■ Any other Java object is wrapped by a DataModel instance with a single row.

Convenience implementations of DataModel are provided in the
javax.faces.model package for each of the above (see Section 4.2.1.4 “Concrete
Implementations”), and must be used by the UIData component to create the
required DataModel wrapper.

4.1.3.3 Methods

UIData adds no new processing methods. See Section 3.2.2 “NamingContainer” for
information about methods introduced by the implemented classes.

rows RW int The number of rows (starting with the one
identified by the first property) to be
displayed, or zero to display the entire set of
available rows.

value RW Object The DataModel instance representing the data
to which this component is bound, or a
collection of data for which a DataModel
instance is synthesized. See below for more
information.

var RW String The request-scope attribute (if any) under
which the data object for the current row will
be exposed when iterating.

Name Access Type Description
4-8 JavaServer Faces Specification • February 2004

UIData specializes the behavior of the getClientId() method inherited from its
parent, in order to create a client identifier that includes the current rowIndex value
(if it is not -1). Because UIData is a NamingContainer, this makes it possible for
rendered client identifiers of child components to be row-specific.

UIData specializes the behavior of the queueEvent() method inherited from its
parent, to wrap the specified event (bubbled up from a child component) in a private
wrapper containing the current rowIndex value, so that this rowIndex can be reset
when the event is later broadcast.

UIData specializes the behavior of the broadcast() method to unwrap the private
wrapper (if this event was wrapped), and call setRowIndex() to re-establish the
context in which the event was queued, followed by delivery of the event.

UIData specializes the behavior of the processDecodes(),
processValidators(), and processUpdates() methods inherited from its
parent as follows:

■ For each of these methods, the UIData implementation must iterate over each
row in the underlying data model, starting with the row identified by the first
property, for the number of rows indicated by the rows property, by calling the
setRowIndex() method.

■ When iteration is complete, set the rowIndex property of this component, and of
the underlying DataModel, to zero, and remove any request attribute exposed
via the var property.

4.1.3.4 Events

UIData adds no new event handling methods. SeeSection 3.2.2 “NamingContainer”
for information about event handling introduced by the implemented classes.
Chapter 4 Standard User Interface Components 4-9

4.1.4 UIForm
UIForm (extends UIComponentBase; implements NamingContainer) is a
component that represents an input form to be presented to the user, and whose
child components (among other things) represent the input fields to be included
when the form is submitted.

The encodeEnd() method of the renderer for UIForm must call
ViewHandler.writeState() before writing out the markup for the closing tag of
the form.This allows the state for multiple forms to be saved.

4.1.4.1 Component Type

The standard component type for UIForm components is “javax.faces.Form”.

4.1.4.2 Properties

UIForm adds no new render-independent properties.

UIForm specializes the behavior of render-independent properties inherited from
the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Form”.

■ The default value of the rendererType property must be set to
“javax.faces.Form”.

4.1.4.3 Methods.

The setSubmitted() method of each UIForm instance in the view must be called
during the Apply Request Values phase of the request processing lifecycle, during the
processing performed by the UIComponent.decode() method. If this UIForm
instance represents the form actually being submitted on this request, the parameter
must be set to true; otherwise, it must be set to false. The standard
implementation of UIForm delegates the responsibility for calling this method to the
Renderer associated with this instance.

public boolean isSubmitted();
public void setSubmitted(boolean submitted)
4-10 JavaServer Faces Specification • February 2004

The value of a UIForm's submitted property must not be saved as part of its state.

Override UIComponent.processDecodes() to ensure that the submitted
property is set for this component. If the submitted property decodes to false, do
not process the children and return immediately.

Override processValidators() and processUpdates() to ensure that the
children of this UIForm instance are only processed if isSubmitted() returns true.

The saveState() method of UIForm must call setSubmitted(false) before
calling super.saveState().

4.1.4.4 Events

UIForm adds no new event handling methods.

public void processDecodes(FacesContext context);

public void processValidators(FacesContext context);
public void processUpdates(FacesContext context);

public void saveState(FacesContext context);
Chapter 4 Standard User Interface Components 4-11

4.1.5 UIGraphic
UIGraphic (extends UIComponentBase) is a component that displays a graphical
image to the user. The user cannot manipulate this component; it is for display
purposes only.

4.1.5.1 Component Type

The standard component type for UIGraphic components is “javax.faces.Graphic”.

4.1.5.2 Properties

The following render-independent properties are added by the UIGraphic
component:

UIGraphic specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Graphic”.

■ The default value of the rendererType property must be set to
“javax.faces.Image”.

4.1.5.3 Methods

UIGraphic adds no new processing methods.

4.1.5.4 Events

UIGraphic does not originate any standard events.

Name Access Type Description

url RW String The URL of the image to be displayed. If this
URL begins with a / character, it is assumed to
be relative to the context path of the current
web application. This property is a typesafe
alias for the value property, so that the actual
URL to be used can be acquired via a value
binding expression.

value RW Object The value of this component, normally used as
a URL.
4-12 JavaServer Faces Specification • February 2004

4.1.6 UIInput
UIInput (extends UIOutput, implements EditableValueHolder) is a component
that both displays the current value of the component to the user (as UIOutput
components do), and processes request parameters on the subsequent request that
need to be decoded.

4.1.6.1 Component Type

The standard component type for UIInput components is “javax.faces.Input”.

4.1.6.2 Properties

UIInput adds no new render-independent properties. See Section 3.2.5
“EditableValueHolder” for information about properties introduced by the
implemented interfaces.

UIInput specializes the behavior of render-independent properties inherited from
the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Input”.

■ The default value of the rendererType property must be set to
“javax.faces.Text”.

■ The Converter specified by the converter property (if any) must also be used
to perform String->Object conversions during decoding.

■ If the value property has an associated ValueBinding, the setValue()
method of that ValueBinding will be called during the Update Model Values
phase of the request processing lifecycle to push the local value of the component
back to the corresponding model bean property.

4.1.6.3 Methods

The following method is used during the Update Model Values phase of the request
processing lifecycle, to push the converted (if necessary) and validated (if necessary)
local value of this component back to the corresponding model bean property.

public void updateModel(FacesContext context);
Chapter 4 Standard User Interface Components 4-13

The following method is over-ridden from UIComponent:

In addition to the default
UIComponent.broadcast(javax.faces.event.FacesEvent) processing, pass
the ValueChangeEvent being broadcast to the method referenced by the
valueChangeListener property (if any).

Perform the algorithm described in the javadoc to validate the local value of this
UIInput.

4.1.6.4 Events

All events are described in Section 3.2.5 “EditableValueHolder”.

public void broadcast(FacesEvent event);

public void validate(FacesContext context);
4-14 JavaServer Faces Specification • February 2004

4.1.7 UIMessage
UIMessage (extends UIComponentBase) encapsulates the rendering of error
message(s) related to a specified input component.

4.1.7.1 Component Type

The standard component type for UIMessage components is
“javax.faces.Message”.

4.1.7.2 Properties

The following render-independent properties are added by the UIMessage
component:

UIMessage specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to
“javax.faces.Message”.

■ The default value of the rendererType property must be set to
“javax.faces.Message”.

Name Access Type Description

for RW String Identifier of the component for which to render
error messages. If this component is within the
same NamingContainer as the target
component, this must be the component
identifier. Otherwise, it must be an absolute
component identifier (starting with “:”). See the
UIComponent.findComponent() Javadocs for
more information.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should
be rendered. Default value is “true”.

showSum
mary

RW boolean Flag indicating whether the “summary”
property of messages for the specified
component should be rendered. Default value
is “false”.
Chapter 4 Standard User Interface Components 4-15

4.1.7.3 Methods.

UIMessage adds no new processing methods.

4.1.7.4 Events

UIMessage adds no new event handling methods.
4-16 JavaServer Faces Specification • February 2004

4.1.8 UIMessages
UIMessage (extends UIComponentBase) encapsulates the rendering of error
message(s) not related to a specified input component, or all enqueued messages.

4.1.8.1 Component Type

The standard component type for UIMessage components is
“javax.faces.Messages”.

4.1.8.2 Properties

The following render-independent properties are added by the UIMessages
component:

UIMessages specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to
“javax.faces.Messages”.

■ The default value of the rendererType property must be set to
“javax.faces.Messages”.

4.1.8.3 Methods.

UIMessages adds no new processing methods.

Name Access Type Description

globalOn
ly

RW boolean Flag indicating whether only messages not
associated with any specific component should
be rendered. If not set, all messages will be
rendered. Default value is “false”.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should
be rendered. Default value is “false”.

showSum
mary

RW boolean Flag indicating whether the “summary”
property of messages for the specified
component should be rendered. Default value
is “true”.
Chapter 4 Standard User Interface Components 4-17

4.1.8.4 Events

UIMessages adds no new event handling methods.
4-18 JavaServer Faces Specification • February 2004

4.1.9 UIOutput
UIOutput (extends UIComponentBase; implements ValueHolder) is a
component that has a value, optionally retrieved from a model tier bean via a value
binding expression (see Section 5.1 “Value Binding Expressions”), that is displayed
to the user. The user cannot directly modify the rendered value; it is for display
purposes only:

4.1.9.1 Component Type

The standard component type for UIOutput components is “javax.faces.Output”.

4.1.9.2 Properties

UIOutput adds no new render-independent properties. See Section 3.2.4
“ValueHolder” for information about properties introduced by the implemented
classes.

UIOutput specializes the behavior of render-independent properties inherited from
the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Output”.

■ The default value of the rendererType property must be set to
“javax.faces.Text”.

4.1.9.3 Methods

UIOutput adds no new processing methods. See Section 3.2.4 “ValueHolder” for
information about methods introduced by the implemented interfaces.

4.1.9.4 Events

UIOutput does not originate any standard events. See Section 3.2.4 “ValueHolder”
for information about events introduced by the implemented interfaces.
Chapter 4 Standard User Interface Components 4-19

4.1.10 UIPanel
UIPanel (extends UIComponentBase) is a component that manages the layout of
its child components.

4.1.10.1 Component Type

The standard component type for UIPanel components is “javax.faces.Panel”.

4.1.10.2 Properties

UIPanel adds no new render-independent properties.

UIPanel specializes the behavior of render-independent properties inherited from
the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Panel”.

■ The default value of the rendererType property must be set to null.

4.1.10.3 Methods

UIPanel adds no new processing methods.

4.1.10.4 Events

UIPanel does not originate any standard events
4-20 JavaServer Faces Specification • February 2004

4.1.11 UIParameter
UIParameter (extends UIComponentBase is a component that represents an
optionally named configuration parameter that affects the rendering of its parent
component. UIParameter components do not generally have rendering behavior of
their own.

4.1.11.1 Component Type

The standard component type for UIParameter components is
“javax.faces.Parameter”.

4.1.11.2 Properties

The following render-independent properties are added by the UIParameter
component:

UIParameter specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to “javax.faces.Parameter”.

■ The default value of the rendererType property must be set to null.

4.1.11.3 Methods

UIParameter adds no new processing methods.

4.1.11.4 Events

UIParameter does not originate any standard events

Name Access Type Description

name RW String The optional name for this parameter.

value RW Object The value for this parameter.
Chapter 4 Standard User Interface Components 4-21

4.1.12 UISelectBoolean
UISelectBoolean (extends UIInput) is a component that represents a single
boolean (true or false) value. It is most commonly rendered as a checkbox.

4.1.12.1 Component Type

The standard component type for UISelectBoolean components is
“javax.faces.SelectBoolean”.

4.1.12.2 Properties

The following render-independent properties are added by the UISelectBoolean
component:

UISelectBoolean specializes the behavior of render-independent properties
inherited from the parent component as follows:

■ The default value of the family property must be set to
“javax.faces.SelectBoolean”.

■ The default value of the rendererType property must be set to
“javax.faces.Checkbox”.

4.1.12.3 Methods

UISelectBoolean adds no new processing methods.

4.1.12.4 Events

UISelectBoolean inherits the ability to send ValueChangeEvent events from its
parent UIInput component.

Name Access Type Description

selected RW boolean The selected state of this component. This
property is a typesafe alias for the value
property, so that the actual state to be used can
be acquired via a value binding expression.
4-22 JavaServer Faces Specification • February 2004

4.1.13 UISelectItem
UISelectItem (extends UIComponentBase) is a component that may be nested
inside a UISelectMany or UISelectOne component, and represents exactly one
SelectItem instance in the list of available options for that parent component.

4.1.13.1 Component Type

The standard component type for UISelectItem components is
“javax.faces.SelectItem”.

4.1.13.2 Properties

The following render-independent properties are added by the UISelectItem
component:

UISelectItem specializes the behavior of render-independent properties inherited

■ The default value of the family property must be set to “javax.faces.SelectItem”.

■ The default value of the rendererType property must be set to null.

■ If the value property is non-null, it must contain a SelectItem instance used
to configure the selection item specified by this component.

Name Access Type Description

itemDesc
ription

RW String The optional description of this available
selection item. This may be useful for tools.

itemDisabl
ed

RW boolean Flag indicating that any synthesized
SelectItem object should have its disabled
property set to true.

itemLabel RW String The localized label that will be presented to the
user for this selection item.

itemValue RW Object The server-side value of this item, of the same
basic data type as the parent component’s
value. If the parent component type’s value is a
value binding expression that points at a
primitive, this value must be of the
corresponding wrapper type.

value RW javax.faces.mo
del.SelectItem

The SelectItem instance associated with this
component.
Chapter 4 Standard User Interface Components 4-23

■ If the value property is a value binding expression, it must point at a
SelectItem instance used to configure the selection item specified by this
component.

■ If the value property is null, and there is no corresponding value binding
expression, the itemDescription, itemDisabled, itemLabel and
itemValue properties must be used to construct a new SelectItem
representing the selection item specified by this component.

4.1.13.3 Methods

UISelectItem adds no new processing methods.

4.1.13.4 Events

UISelectItem does not originate any standard events.
4-24 JavaServer Faces Specification • February 2004

4.1.14 UISelectItems
UISelectItems (extends UIComponentBase) is a component that may be nested
inside a UISelectMany or UISelectOne component, and represents zero or more
SelectItem instances for adding selection items to the list of available options for
that parent component.

4.1.14.1 Component Type

The standard component type for UISelectItems components is
“javax.faces.SelectItems”.

4.1.14.2 Properties

The following render-independent properties are added by the UISelectItems
component:

UISelectItems specializes the behavior of render-independent properties
inherited

■ The default value of the family property must be set to
“javax.faces.SelectItems”.

■ The default value of the rendererType property must be set to null.

■ If the value property (or the value returned by a value binding expression
associated with the value property) is non-null, it must contain a SelectItem
bean, an array of SelectItem beans, a Collection of SelectItem beans, or a
Map, where each map entry is used to construct a SelectItem bean with the key
as the label property of the bean, and the value as the value property of the
bean (which must be of the same basic type as the value of the parent
component’s value).

4.1.14.3 Methods

UISelectItems adds no new processing methods.

Name Access Type Description

value RW See below The SelectItem instances associated with this
component.
Chapter 4 Standard User Interface Components 4-25

4.1.14.4 Events

UISelectItems does not originate any standard events.
4-26 JavaServer Faces Specification • February 2004

4.1.15 UISelectMany
UISelectMany (extends UIInput) is a component that represents one or more
selections from a list of available options. It is most commonly rendered as a
combobox or a series of checkboxes.

4.1.15.1 Component Type

The standard component type for UISelectMany components is
“javax.faces.SelectMany”.

4.1.15.2 Properties

The following render-independent properties are added by the UISelectMany
component:

UISelectMany specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to
“javax.faces.SelectMany”.

■ The default value of the rendererType property must be set to
“javax.faces.Listbox”.

■ See the class Javadocs for UISelectMany for additional requirements related to
implicit conversions for the value property.

4.1.15.3 Methods

UISelectMany must provide a specialized validate() method which ensures that
any decoded values are valid options (from the nested UISelectItem and
UISelectItems children).

Name Access Type Description

selected
Values

RW Object[] or
array of
primitives

The selected item values of this component.
This property is a typesafe alias for the value
property, so that the actual state to be used can
be acquired via a value binding expression.
Chapter 4 Standard User Interface Components 4-27

4.1.15.4 Events

UISelectMany inherits the ability to send ValueChangeEvent events from its
parent UIInput component.
4-28 JavaServer Faces Specification • February 2004

4.1.16 UISelectOne
UISelectOne (extends UIInput) is a component that represents zero or one
selections from a list of available options. It is most commonly rendered as a
combobox or a series of radio buttons.

4.1.16.1 Component Type

The standard component type for UISelectOne components is
“javax.faces.SelectOne”.

4.1.16.2 Properties

UISelectOne adds no new render-independent properties.

UISelectOne specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to
“javax.faces.SelectOne”.

■ The default value of the rendererType property must be set to
“javax.faces.Menu”.

4.1.16.3 Methods

UISelectOne must provide a specialized validate() method which ensures that
any decoded value is a valid option (from the nested UISelectItem and
UISelectItems children).

4.1.16.4 Events

UISelectOne inherits the ability to send ValueChangeEvent events from its
parent UIInput component.
Chapter 4 Standard User Interface Components 4-29

4.1.17 UIViewRoot
UIViewRoot (extends UIComponentBase;) represents the root of the component
tree.

In JSP applications, the tag handler for this component is involved in the state saving
process. The tag handler for UIViewRoot must indicate that the body content must
be buffered. In the doAfterBody() method of the tag handler, the
StateManager.getSerializedView() and StateManager.restoreView()
methods must be called.

4.1.17.1 Component Type

The standard component type for UIViewRoot components is
“javax.faces.ViewRoot”

4.1.17.2 Properties

The following render-independent properties are added by the UIViewRoot
component:

For an existing view, the locale property may be modified only from the event
handling portion of Process Validations phase through Invoke Application phase, unless
it is modified by an Apply Request Values event handler for an ActionSource or
EditableValueHolder component that has its immediate property set to true
(which therefore causes Process Validations, Update Model Values, and Invoke
Application phases to be skipped).

UIViewRoot specializes the behavior of render-independent properties inherited
from the parent component as follows:

■ The default value of the family property must be set to
“javax.faces.ViewRoot”.

■ The default value of the rendererType property must be set to null.

Name Access Type Description

locale RW java.util.Locale The Locale to be used in localizing the response
for this view.

renderKitI
d

RW String The id of the RenderKit used to render this
page.

viewId RW String The view identifier for this view.
4-30 JavaServer Faces Specification • February 2004

4.1.17.3 Methods

UIViewRoot adds no new processing methods.

UIViewRoot specializes the behavior of the UIComponent.queueEvent() method
to maintain a list of queued events that can be transmitted later. It also specializes
the behavior of the processDecodes(), processValidators(),
processUpdates(), and processApplication() methods to broadcast queued
events to registered listeners.

4.1.17.4 Events

UIViewRoot does not originate any standard events.
Chapter 4 Standard User Interface Components 4-31

4.2 Standard UIComponent Model Beans
Several of the standard UIComponent subclasses described in the previous section
reference JavaBean components to represent the underlying model data that is
rendered by those components. The following subsections define the standard
UIComponent model bean classes.

4.2.1 DataModel
DataModel is an abstract base class for creating wrappers around arbitrary data
binding technologies. It can be used to adapt a wide variety of data sources for use
by JavaServer Faces components that want to support access to an underlying data
set that can be modelled as multiple rows. The data underlying a DataModel
instance is modelled as a collection of row objects that can be accessed randomly via
a zero-relative index

4.2.1.1 Properties

An instance of DataModel supports the following properties:

Name Access Type Description

rowAvailable RO boolean Flag indicating whether the current rowIndex value points
at an actual row in the underlying data.

rowCount RO int The number of rows of data objects represented by this
DataModel instance, or -1 if the number of rows is unknown.

rowData RO Object An object representing the data for the currently selected
row. DataModel implementations must return an object that
be successfully processed as the “base” parameter for the
PropertyResolver in use by this application. If the current
rowIndex value is -1, null is returned.

rowIndex RW int Zero-relative index of the currently selected row, or -1 if no
row is currently selected. When first created, a DataModel
instance must return -1 for this property.

wrappedData RW Object Opaque property representing the data object wrapped by
this DataModel. Each individual implementation will restrict
the types of Object(s) that it supports.
4-32 JavaServer Faces Specification • February 2004

4.2.1.2 Methods

An instance of DataModel supports no additional public processing methods.

4.2.1.3 Events

No events are generated for this component.

4.2.1.4 Concrete Implementations

The JSF implementation must provide concrete implementations of DataModel (in
the javax.faces.model package) for the following data wrapping scenarios:

■ ArrayDataModel -- Wrap an array of Java objects.

■ ListDataModel -- Wrap a java.util.List of Java objects.

■ ResultDataModel -- Wrap an object of type
javax.servlet.jsp.jstl.sql.Result (the query results from JSTL’s SQL
tag library)

■ ResultSetDataModel -- Wrap an object of type java.sql.ResultSet (which
therefore means that javax.sql.RowSet instances are also supported).

■ ScalarDataModel -- Wrap a single Java object in what appears to be a one-row
data set.

Each concrete DataModel implementation must extend the DataModel abstract
base class, and must provide a constructor that accepts a single parameter of the
object type being wrapped by that implementation (in addition to a zero-args
constructor). See the JavaDocs for specific implementation requirements on
DataModel defined methods, for each of the concrete implementation classes.
Chapter 4 Standard User Interface Components 4-33

4.2.2 SelectItem
SelectItem is a utility class representing a single choice, from among those made
available to the user, for a UISelectMany or UISelectOne component. It is not
itself a UIComponent subclass.

4.2.2.1 Properties

An instance of SelectItem supports the following properties:

4.2.2.2 Methods

An instance of SelectItem supports no additional public processing methods.

4.2.2.3 Events

An instance of SelectItem supports no events.

Name Access Type Description

description RW String A description of this selection item, for use in development
tools.

disabled RW boolean Flag indicating that this option should be rendered in a
fashion that disables selection by the user. Default value is
false.

label RW String Label of this selection item that should be rendered to the
user.

value RW Object The server-side value of this item, of the same basic data type
as the parent component’s value. If the parent component
type’s value is a value binding expression that points at a
primitive, this value must be of the corresponding wrapper
type.
4-34 JavaServer Faces Specification • February 2004

4.2.3 SelectItemGroup
SelectItemGroup is a utility class extending SelectItem, that represents a group
of subordinate SelectItem instances that can be rendered as a “sub-menu” or
“option group”. Renderers will typically ignore the value property of this
instance, but will use the label property to render a heading for the sub-menu.

4.2.3.1 Properties

An instance of SelectItemGroup supports the following additional properties:

Note that, since SelectItemGroup is a subclass of SelectItem,
SelectItemGroup instances can be included in the selectItems property in
order to create hierarchies of subordinate menus. However, some rendering
environments may limit the depth to which such nesting is supported; for example,
HTML/4.01 does not allow an <optgroup> to be nested inside another
<optgroup> within a <select> control.

4.2.3.2 Methods

An instance of SelectItemGroup supports no additional public processing
methods.

4.2.3.3 Events

An instance of SelectItemGroup supports no events.

Name Access Type Description

selectItems RW SelectItem[] Array of SelectItem instances representing the subordinate
selection items that are members of the group represented by
this SelectItemGroup instance.
Chapter 4 Standard User Interface Components 4-35

CHAPTER 5

Value Binding and Method Binding
Expression Evaluation

In the descriptions of the standard user interface component model, it was noted
that all attributes, and nearly all properties can have a value binding expression
associated with them (see Section 3.1.4 “Value Binding Expressions”). In addition,
the action, actionListener, validator, and valueChangeListener
properties can be defined by a method binding expression pointing at a public method
in some class to be executed. This chapter describes the mechanisms and APIs that
JavaServer Faces utilizes in order to evaluate value binding expressions and method
binding expressions.

5.1 Value Binding Expressions

5.1.1 Overview
To support binding of attribute and property of values to dynamically calculated
results, the name of the attribute or property can be associated with a value binding
expression using the setValueBinding() method. Whenever the dynamically
calculated result of evaluating the expression is required, the getValue() method
of the ValueBinding is called, which returns the evaluated result. Such expressions
can be used, for example, to dynamically calculate a component value to be
displayed:

<h:outputText value=”#{customer.name}”/>
5-1

which, when this page is rendered, will retrieve the bean stored under the
“customer” key, then acquire the name property from that bean and render it.

Besides the component value itself, value binding expressions can be used to
dynamically compute attributes and properties. The following example checks a
boolean property manager on the current user bean (presumably representing the
logged-in user) to determine whether the salary property of an employee should
be displayed or not:

which sets the rendered property of the component to false if the user is not a
manager, and therefore causes this component to render nothing.

Value binding expressions also have special semantics (with restrictions on the
available syntax) when a component that implements EditableValueHolder
establishes a binding for the value property. See Section 5.1.4 “Set Value
Semantics”for more information.

5.1.2 Value Binding Expression Syntax
The syntax of a value binding expression is identical to the syntax of an expression
language expression defined in the JavaServer Pages Specification (version 2.0),
sections 2.3 through 2.9, with the following exceptions:

■ The expression delimiters for a value binding expression are “#{“ and “}” instead
of “${“ and “}”.

■ Value binding expressions do not support EL functions.

This difference in delimiters points out the semantic differences between the two
expression types:

■ During rendering, value binding expressions are evaluated by the JSF
implementation (via calls to the getValue() method) rather than by the compiled
code for a JSP page.

■ Value binding expressions may be evaluated programmatically, even when a JSP
page is not present.

■ Value binding expression evaluation leverages the facilities of the configured
VariableResolver and PropertyResolver objects available via the Application
object for the current web application, for which applications may provide plug in
replacement classes that provide additional capabilities.

<h:outputText rendered=”#{user.manager}” value=
”#{employee.salary}”/>
5-2 JavaServer Faces Specification • February 2004

■ A value binding expression is used for the value property of an
EditableValueHolder component is used during the Update Model Values
phase of the request processing lifecycle to modify the referenced value, rather
than to retrieve it.

Examples of valid value binding expressions include:

■ #{foo}

■ #{foo.bar}

■ #{foo.bar.baz}

■ #{foo[bar]}

■ #{foo[“bar”]}

■ #{foo[3]}

■ #[foo[3].bar}

■ #{foo.bar[3]}

■ #{customer.status == ‘VIP’}

■ #((city.farenheitTemp - 32) * 5 / 9}

■ Reporting Period: #{report.fromDate} to #{report.toDate}

For value binding expressions where the setValue() method is going to be called
(such as during Update Model Values), the syntax of a value binding expression is
limited to one of the following forms:

■ #{expr-a.value-b}

■ #{expr-a[value-b]]

■ #{value-b}

where “expr-a” is a general expression (as described above) that evaluates to some
object, and “value-b” is an identifier.

5.1.3 Get Value Semantics
When the getValue() method of a ValueBinding instance is called, the
expression is evaluated (and the result of that evaluation is returned), evaluation
takes place exactly as described in the JavaServer Pages Specification (version 2.0),
sections 2.3 through 2.9, with the following exceptions:

■ The left-most identifier in an expression is evaluated by the VariableResolver
instance that is acquired from the Application instance for this web application.
See Section 5.3.1 “VariableResolver” for more information.

■ Each occurrence of the “.” or “[...]” operators in an expression is evaluated by the
PropertyResolver instance that is acquired from the Application instance for this
web application. See Section 5.3.2 “PropertyResolver” for more information.
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-3

Thus, page authors familiar with JSP EL expressions will be able to immediately
understand how value binding expressions work in JSF.

5.1.4 Set Value Semantics
When the setValue() method on a ValueBinding is called, the syntax of the
value binding restriction is restricted as described above. The implementation must
perform the following processing to evaluate an expression of the form “#{expr-
a.value-b}” or “#{expr-a[value-b]}”:

■ Evaluate expr-a into value-a.
■ If value-a is null, throw PropertyNotFoundException.
■ If value-b is null, throw PropertyNotFoundException.
■ If value-a is a Map, call value-a.put(value-b, new-value).
■ If value-a is a List or an array:

■ Coerce value-b to int, throwing ReferenceSyntaxException on an error.
■ Attempt to execute value-a.set(value-b, new-value) or

Array.set(value-b, new-value) as appropriate.
■ If IndexOutOfBoundsException or ArrayIndexOutOfBoundsException

is thrown, throw PropertyNotFoundException.
■ If a different exception was thrown, throw EvaluationException.

■ Otherwise (value-a is a JavaBean object):

■ Coerce value-b to String.
■ If value-b is a writeable property of value-a (as per the JavaBeans

Specification), call the setter method (passing new-value); throwing
ReferenceSyntaxException if an exception is thrown.

■ Otherwise, throw PropertyNotFoundException.

If the entire expression consists of a single identifier, the following rules apply:

■ If the identifier matches the name of one of the implicit objects described below,
throw ReferenceSyntaxException.

■ Otherwise, if the identifier matches the key of an attribute in request scope,
session scope, or application scope, the corresponding attribute value will be
replaced by new-value.

■ Otherwise, a new request scope attribute will be created, whose key is the
identifier and whose value is new-value.
5-4 JavaServer Faces Specification • February 2004

5.2 Method Binding Expressions
Method binding expressions are a specialized variant of value binding expressions.
Rather than supporting the dynamic retrieval and setting of properties, method
binding expressions support the invocation (i.e. execution) of an arbitrary public
method of an arbitrary object, passing a specified set of parameters, and returning
the result from the called method (if any). They may be used in any phase of the
request processing lifecycle; the standard JSF components and framework employ
them (encapsulated in a MethodBinding object) at the following times:

■ During Apply Request Values or Invoke Application phase (depending upon the state
of the immediate property), components that implement the ActionSource
behavioral interface (see Section 3.2.1 “ActionSource”) utilize MethodBindings as
follows:

■ If the action property is specified, it must be a MethodBinding expression
that identifies an Application Action method (see Section 7.3 “Application
Actions”) that takes no parameters and returns a String.

■ If the actionListener property is specified, it must be a MethodBinding
that identifies a public method that accepts an ActionEvent (see Section 3.4.2
“Event Classes”) instance, and has a return type of void. The called method
has exactly the same responsibilities as the processAction() method of an
ActionListener instance (see Section 3.4.3 “Listener Classes”) that was built
in to a separate Java class.

■ During the Apply Request Values or Process Validations phase (depending upon the
state of the immediate property), components that implement
EditableValueHolder (such as UIInput and its subclasses) components (see
Section 3.2.5 “EditableValueHolder”) utilize method binding expressions as
follows:

■ If the validator property is specified, it must be a MethodBinding that
identifies a public method that accepts a FacesContext instance and a
UIComponent instance, and an Object containing the value to be validated,
and has a return type of void. The called method has exactly the same
responsibilities as the validate() method of a Validator instance (see
Section 3.5.2 “Validator Classes”) that was built in to a separate Java class.

■ If the valueListenerChange property is specified, it must be a
MethodBinding that identifies a public method that accepts a
ValueChangeEvent (see Section 3.4.2 “Event Classes”) instance, and has a
return type of void. The called method has exactly the same responsibilities as
the processValueChange() method of a ValueChangeListener instance
(see Section 3.4.3 “Listener Classes”) that was built in to a separate Java class.
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-5

Here is the set of component attributes that currently support MethodBindings,
and the method signatures to which they must point:

Note that any of the method arguments may also be a subclass of what is listed
above.

5.2.1 Method Binding Expression Syntax
The syntax of a method binding expression must conform to one of the following
patterns:

■ #{expr-a.value-b}

■ #{expr-a[value-b]}

where “expr-a” is a value binding expression (see Section 5.1.2 “Value Binding
Expression Syntax”) and “value-b” is an identifier whose syntax matches that of a
Java method name.

5.2.2 Method Binding Expression Semantics
Method binding expressions are evaluated via the use of a MethodBinding instance
(see Section 5.3.4 “MethodBinding”), which supports two methods:

■ If the invoke() method is executed:

■ The “expr-a” portion of the expression is used to construct a ValueBinding
instance, and the getValue() method is called.

TABLE 5-1

component property method signature

action public String <methodName>();

actionListener public void
<methodName>(javax.faces.event.ActionEvent);

validator public void
<methodName>(javax.faces.context.FacesContext,
javax.faces.component.UIComponent,
java.lang.Object);

valueChangeListener public void
<methodName>(javax.faces.event.ValueChangeEvent);
5-6 JavaServer Faces Specification • February 2004

■ The underlying class of the object returned by this evaluation is examined for
the presence of a public Method whose parameter signature is compatible with
the signature specified when the MethodBinding was created. The Method
object may represent a Java method implemented by the underlying class, or
by one of its super-classes.

■ The identified method is called on the referenced Java object, passing the
parameters specified on the invoke() call, and any returned value is returned.

■ If the getType() method is executed:

■ The “expr-a” portion of the expression is used to construct a ValueBinding
instance, and the getValue() method is called.

■ The underlying class of the object returned by this evaluation is examined for
the presence of a public method whose parameter signature is compatible with
the signature specified when the MethodBinding was created.

■ The Class representing the return type of the identified method is returned.

5.3 Expression Evaluation APIs
The description of expression evaluation in Section 5.1 “Value Binding Expressions”
describes the default behavior provided by the JSF implementation. For advanced
use cases, the application developer can modify the behavior of expression
evaluation by implementing one or both of the following APIs, and configuring their
use as described in Section 7.1 “Application”.

5.3.1 VariableResolver

5.3.1.1 Overview

A VariableResolver is used by a ValueBinding (see Section 5.3.3
“ValueBinding”) to support retrieval of the object associated with the left most
identifier in a value binding expression.

The JSF implementation must provide a default VariableResolver
implementation that provides the functionality described in Section 5.3.1.2 “Default
VariableResolver Implementation”. It is accessible via the
getVariableResolver() method on the Application instance for this
application (see Section 7.1 “Application”).
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-7

An application (or framework) can provide an implementation with more features
(such as support for additional implicit object names). This is accomplished by
calling the setVariableResolver() method on the Application instance for
this application. Typically, such an enhanced implementation will employ the
Decorator Pattern, providing the additional support for implicit object names that it
recognizes, and delegating responsibility for variable resolution to the standard
implementation when the implicit object name is not recognized.

The following method signatures are supported:

This method resolves the specified variable name, and returns the corresponding
object instance, or null if no such instance can be identified.

5.3.1.2 Default VariableResolver Implementation

The JSF implementation must provide a default VariableResolver
implementation, which may be acquired by calling getVariableResolver() on
the Application instance for this application. This implementation’s
resolveVariable() method must support the following behavior:

The implementation must first compare the name parameter passed to the
resolveVariable() method against the following values, returning the
corresponding object on a match:

■ applicationScope—A Map of the application scope attribute values, keyed by
attribute name.

■ cookie—An immutable Map of the cookie values for the current request, keyed
by cookie name.

■ facesContext—The FacesContext instance for the current request.

■ header—An immutable Map of HTTP header values for the current request,
keyed by header name. Only the first value for each header name is included.

■ headerValues—An immutable Map of String arrays containing all of the
header values for HTTP headers in the current request, keyed by header name.

■ initParam—An immutable Map of the context initialization parameters for this
web application.

■ param—An immutable Map of the request parameters for this request, keyed by
parameter name. Only the first value for each parameter name is included.

■ paramValues—An immutable Map of String arrays containing all of the
parameter values for request parameters in the current request, keyed by
parameter name.

public Object resolveVariable(FacesContext context, String name);
5-8 JavaServer Faces Specification • February 2004

■ requestScope—A Map of the request attributes for this request, keyed by
attribute name.

■ sessionScope—A Map of the session attributes for this request, keyed by
attribute name.

■ view—The UIViewRoot in the current component tree stored in the
FacesContext for this request.

Next, the implementation must search for an attribute in request scope, then session
scope (if it exists), then application scope with a matching key. If a match is found,
the corresponding attribute value is returned.

Next, the implementation must examine the configuration information for the
Managed Bean Facility, to determine if there is an entry with a matching <managed-
bean-name>. If a match is found, a new bean will be created, optionally stored in
some scope, and returned. See Section 5.3.1.3 “The Managed Bean Facility” for more
information.

If no match is found based on any of the above rules, resolveVariable() must
return null.

5.3.1.3 The Managed Bean Facility

The Managed Bean Creation facility is configured by the existence of <managed-
bean> elements in one or more application configuration resources (see Section 10.3
“Application Configuration Resources”). Such elements describe the characteristics
of a bean to be created, and properties to be initialized, with the following nested
elements:

■ <managed-bean-name> -- The key under which the created bean can be
retrieved; also the key in the scope under which the created bean will be stored,
unless the value of <managed-bean-scope> is set to none.

■ <managed-bean-class> -- The fully qualified class name of the application
class used to instantiate a new instance. This class must conform to JavaBeans
design patterns -- in particular, it must have a public zero-args constructor, and
must have public property setters for any properties referenced with nested
<managed-property> elements -- or it must be a class that implements
java.util.Map or java.util.List.

■ <managed-bean-scope> -- The scope (request, session, or application)
under which the newly instantiated bean will be stored after creation (under the
key specified by the <managed-bean-name> element), or none for a bean that
should be instantiated and returned, but not stored in any scope. The latter option
is useful when dynamically constructing trees of related objects, as illustrated in
the following example.
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-9

■ <list-entries> or <map-entries> -- Used to configure managed beans that
are themselves instances of java.util.List or java.util.Map, respectively.
See below for details on the contents of these elements.

■ <managed-property> -- Zero or more elements used to initialize the properties
of the newly instantiated bean (see below).

After the new managed bean instance is instantiated, but before it is placed into the
specified scope (if any), each nested <managed-property> element must be
processed and a call to the corresponding property setter must be made to initialize
the value of the corresponding property. If the managed bean has properties not
referenced by <managed-property> elements, the values of such properties will
not be affected by the creation of this managed bean; they will retain whatever
default values are established by the constructor.

Each <managed-property> element contains the following elements used to
configure the execution of the corresponding property setter call:

■ <property-name> -- The property name of the property to be configured. The
actual property setter method to be called will be determined as described in the
JavaBeans Specification.

■ Exactly one of the following sub-elements that can be used to initialize the
property value in a number of different ways:

■ <map-entries> -- A set of key/value pairs used to initialize the contents of a
property of type java.util.Map (see below for more details).

■ <null-value/> -- An empty element indicating that this property must be
explicitly initialized to null. This element is not allowed if the underlying
property is of a Java primitive type.

■ <value> -- A String value that will have any leading and trailing spaces
stripped, and then be converted (according to the rules described in the JSP
Specification for the <jsp:setProperty> action) to the corresponding data type
of the property, prior to setting it to this value.

■ <list-entries> -- A set of values used to initialize the contents of a
property of type array or java.util.List. See below for more information.

As described above, the <map-entries> element is used to initialize the key-value
pairs of a property of type java.util.Map. This element may contain the following
nested elements:

■ <key-class> -- Optional element specifying the fully qualified class name for
keys in the map to be created. If not specified, java.lang.String is used.

■ <value-class> -- Optional element specifying the fully qualified class name for
values in the map to be created. If not specified, java.lang.String is used.

■ <map-entry> -- Zero or more elements that define the actual key-value pairs for
a single entry in the map. Nested inside is a <key> element to define the key, and
then exactly one of <null-value>, <value> to define the value. These elements
5-10 JavaServer Faces Specification • February 2004

have the same meaning as when nested in a <managed-property> element,
except that they refer to an individual map entry’s value instead of the entire
property value.

As described above, the <list-entries> element is used to initialize a set of
values for a property of type array or java.util.List. This element may contain
the following nested elements:

■ <value-class> -- Optional element specifying the fully qualified class name for
values in the map to be created. If not specified, java.lang.String is used.

■ Zero or more elements of type <null-value>, <value> to define the individual
values to be initialized. These elements have the same meaning as when nested in
a <managed-property> element, except that they refer to an individual list
element instead of the entire property value.

The following general rules apply to the operation of the Managed Bean Creation
facility:

■ Properties are assigned in the order that their <managed-property> elements
are listed in the application configuration resource.

■ If a managed bean has writeable properties that are not mentioned in <managed-
property> elements, the values of those properties are not assigned any values.

■ The bean instantiation and population with properties must be done lazily, when
Variable.resolveVariable() is called. For example, this is the case when a
ValueBinding or MethodBinding has its getValue() or setValue() method
called.

■ Due to the above mentioned laziness constraint, any error conditions that occur
below are only required to be manifested at runtime. However, it is conceivable
that tools may want to detect these errors earlier; this is perfectly acceptable. The
presense of any of the errors described below, until the end of this section, must
not prevent the application from deploying and being made available to service
requests.

■ It is an error to specify a managed bean class that does not exist, or that cannot be
instantiated with a public, zero-args constructor.

■ It is an error to specify a <property-name> for a property that does not exist, or
does not have a public setter method, on the specified managed bean class.

■ It is an error to specify a <value> element that cannot be converted to the type
required by a managed property, or that, when evaluated, results in a value that
cannot be converted to the type required by a managed property.

■ It is an error for a managed bean created through this facility to have a property
that points at an object stored in a scope with a (potentially) shorter life span.
Specifically, this means, for an object created with the specified <managed-bean-
scope>, then <value> evaluations can only point at created objects with the
specified managed bean scope:

■ none -- none
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-11

■ application -- none, application

■ session -- none, application, session

■ request -- none, application, session, request

■ If a bean points to a property whose value is a mixed expression containing literal
strings and expressions, the net scope of the mixed expression is considered to be
the scope of the narrowest sub-expression, excluding expressions in the none
scope.

■ Data accessed via an implicit object is also defined to be in a scope. The following
implicit objects are considered to be in request scope:

■ cookie

■ facesContext

■ header

■ headerValues

■ param

■ paramValues

■ requestScope

■ view

■ The only implicit object in session scope is sessionScope

■ The following implicit objects are considered to be in application scope:

■ applicationScope

■ initParam

■ It is an error to configure cyclic references between managed beans.

■ Managed bean names must conform to the syntax of a Java language identifier.

The initialization bean properties from <map-entries> and <list-entries>
elements must adhere to the following algorithm, though any confirming
implementation may be used.

For <map-entries>:

1. Call the property getter, if it exists.

2. If the getter returns null or doesn't exist, create a java.util.HashMap,
otherwise use the returned java.util.Map.

3. Add all entries defined by nested <map-entry> elements in the order they are
listed, converting key values defined by nested <key> elements to the type
defined by <key-class> and entry values defined by nested <value> elements
to the type defined by <value-class>. If a value is given as a value binding
expression, evaluate the reference and store the result, converting to <value-
class> if necessary. If <key-class> and/or <value-class> are not defined,
use java.lang.String. Add null for each <null-value> element.
5-12 JavaServer Faces Specification • February 2004

4. If a new java.util.Map was created in step 2), set the property by calling the
setter method, or log an error if there is no setter method.

For <list-entries>:

1. Call the property getter, if it exists.

2. If the getter returns null or doesn't exist, create a java.util.ArrayList,
otherwise use the returned Object (an array or a java.util.List).

3. If a List was returned or created in step 2), add all elements defined by nested
<value> elements in the order they are listed, converting values defined by
nested <value> elements to the type defined by <value-class>. If a value is
given as a value binding expression, evaluate the reference and store the result,
converting to <value-class> if necessary. If a <value-class> is not defined,
use the value as-is (i.e., as a java.lang.String). Add null for each <null-
value> element.

4. If an array was returned in step 2), create a java.util.ArrayList and copy all
elements from the returned array to the new List, wrapping elements of a
primitive type. Add all elements defined by nested <value> elements as
described in step 3).

5. If a new java.util.List was created in step 2) and the property is of type
List, set the property by calling the setter method, or log an error if there is no
setter method.

6. If a new java.util.List was created in step 2) and the property is a java array,
convert the List into an array of the property type, and set it by calling the setter
method, or log an error if there is no setter method.

7. If a new java.util.List was created in step 4), convert the List to an array
of the proper type for the property and set the property by calling the setter
method, or log an error if there is no setter method.

5.3.1.4 Managed Bean Configuration Example

The following <managed-bean> elements might appear in one or more application
configuration resources (see Section 10.3 “Application Configuration Resources”) to
configure the behavior of the Managed Bean Creation facility.
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-13

Assume that your application includes CustomerBean with properties
mailingAddress and shippingAddress of type Address (along with additional
properties that are not shown), and AddressBean implementation classes with
String properties of type street, city, state, country, and postalCode.

<managed-bean>
<description>

A customer bean will be created as needed, and stored in
request scope. Its “mailingAddress” and “streetAddress”
properties will be initialized by virtue of the fact that the
“value” expressions will not encounter any object under
key “addressBean” in any scope.

</description>
<managed-bean-name>customer</managed-bean-name>
<managed-bean-class>

com.mycompany.mybeans.CustomerBean
</managed-bean-class>
<managed-bean-scope> request </managed-bean-scope>
<managed-property>

<property-name>mailingAddress</property-name>
<value>#{addressBean}</value>

</managed-property>
<managed-property>

<property-name>shippingAddress</property-name>
<value>#{addressBean}</value>

</managed-property>
<managed-property>

<property-name>customerType</property-name>
<value>New</value> <!-- Set to literal value -->

</managed-property>
</managed-bean>
5-14 JavaServer Faces Specification • February 2004

If a value binding expression “#{customer.mailingAddress.city}” were to be
evaluated by the JSF implementation, and there was no object stored under key
“customer” in request, session, or application scope, a new CustomerBean
instance will be created and stored in request scope, with its mailingAddress and
shippingAddress properties being initialized to instances of AddressBean as
defined by the configuration elements shown above. Then, the evaluation of the
remainder of the expression can proceed as usual.

Although not used by the JSF implementation at application runtime, it is also
convenient to be able to indicate to JSF tools (at design time) that objects of
particular types will be created and made available (at runtime) by some other
means. For example, an application configuration resource could include the
following information to declare that a JDBC data source instance will have been
created, and stored in application scope, as part of the application’s own startup
processing.

<managed-bean>
<description>

A new AddressBean will not be added to any scope, because we
only want to create instances when a CustomerBean creation asks
for them. Therefore, we set the scope to “none”.

</description>
<managed-bean-name>addressBean</managed-bean-name>
<managed-bean-class>

com.mycompany.mybeans.AddressBean
</managed-bean-class>
<managed-bean-scope> none </managed-bean-scope>

</managed-bean>

<referenced-bean>
<description>

A JDBC data source will be initialized and made available in
some scope (presumably application) for use by the JSF based
application when it is actually run. This information is not
used by the JSF implementation itself; only by tools.

</description>
<referenced-bean-name> dataSource </referenced-bean-name>
<referenced-bean-class>

javax.sql.DataSource
</referenced-bean-class>

</referenced-bean>
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-15

This information can be utilized by the tool to construct user interfaces based on the
properties of the referenced beans.

5.3.2 PropertyResolver
A PropertyResolver is used by a ValueBinding (see Section 5.3.3
“ValueBinding”) to resolve an . or [] operator during the evaluation of a value
binding expression.

The JSF implementation must provide a default PropertyResolver
implementation that provides the functionality described in Section 5.1.3 “Get Value
Semantics”. It is accessible via the getPropertyResolver method on the
Application instance for this application (see Section 7.1 “Application”).

An application (or framework) can provide an implementation with more features
(such as support for non-JavaBeans-based property resolution on additional
supported base classes). This is accomplished by calling the
setPropertyResolver method on the Application instance for this application.
Typically, such an enhanced implementation will employ the Decorator Pattern,
providing the additional support for additional base classes that it recognizes, and
delegating responsibility for property resolution to the standard implementation
when the implicit object name is not recognized.

The following method signatures are supported:

Retrieve and return the specified property value from the specified base object. The
int variant is used for accessing elements of a property that is based on a List or
array, while the String variant is used in all other cases.

public Object getValue(Object base, Object property) throws
EvaluationException, PropertyNotFoundException;

public Object getValue(Object base, int index) throws
EvaluationException, PropertyNotFoundException;

public void setValue(Object base, Object property, Object
newValue) throws EvaluationException, PropertyNotFoundException;

public void setValue(Object base, int index, Object newValue)
throws EvaluationException, PropertyNotFoundException;
5-16 JavaServer Faces Specification • February 2004

Modify the value of the specified property on the specified base object. The int
variant is used for accessing elements of a property that is based on a List or array,
while the String variant is used in all other cases.

Return true if the specified property on the specified base object is known to be
immutable; otherwise, return false. The int variant is used for accessing elements
of a property that is based on a List or array, while the String variant is used in
all other cases.

Return the Class that defines the property type of the specified property on the
specified base object, if it can be determined; otherwise, return null. The int
variant is used for accessing elements of a property that is based on a List or array,
while the String variant is used in all other cases.

5.3.3 ValueBinding
The ValueBinding class encapsulates the actual evaluation of a value binding
expression. Instances of ValueBinding for specific references are acquired from the
Application instance by calling the createValueBinding method (see
Section 7.1 “Application”).

public boolean isReadOnly(Object base, Object property) throws
EvaluationException, PropertyNotFoundException;

public boolean isReadOnly(Object base, int index) throws
EvaluationException, PropertyNotFoundException;

public Class getType(Object base, Object property) throws
EvaluationException, PropertyNotFoundException;

public Class getType(Object base, int index) throws
EvaluationException, PropertyNotFoundException;

public Object getValue(FacesContext context) throws
EvaluationException, PropertyNotFoundException;
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-17

Evaluate the value binding expression used to create this ValueBinding instance,
relative to the specified FacesContext, and return the referenced value.

Evaluate the value binding expression used to create this ValueBinding instance,
relative to the specified FacesContext, and update the referenced value to the
specified new value.

Evaluate the value binding expression used to create this ValueBinding instance,
relative to the specified FacesContext, and return true if the corresponding
property is known to be immutable. Otherwise, return false.

Evaluate the value binding expression used to create this ValueBinding instance,
relative to the specified FacesContext, and return the Class that represents the
data type of the referenced value, if it can be determined. Otherwise, return null.

5.3.4 MethodBinding
The MethodBinding class encapsulates the actual evaluation of a method binding
expression. Instances of MethodBinding for specific references are acquired from
the Application instance by calling the createMethodBinding() method (see
Section 7.1.9 “Acquiring MethodBinding Instances”). Note that instances of
MethodBinding are immutable, and contain no references to a FacesContext
(which is passed in as a parameter when the reference expression is evaluated).

public void setValue(FacesContext context, Object value) throws
EvaluationException, PropertyNotFoundException;

public boolean isReadOnly(FacesContext context) throws
EvaluationException, PropertyNotFoundException;

public Class getType(FacesContext context) throws
EvaluationException, PropertyNotFoundException;

public Object invoke(FacesContext context, Object params[]) throws
EvaluationException, MethodNotFoundException;
5-18 JavaServer Faces Specification • February 2004

Evaluate the method binding expression (see Section 5.2.2 “Method Binding
Expression Semantics”) and call the identified method, passing the specified
parameters. Return any value returned by the invoked method, or return null if the
invoked method is of type void.

Evaluate the method binding expression (see Section 5.2.2 “Method Binding
Expression Semantics”) and return the Class representing the return type of the
identified method. If this method is of type void, return null instead.

5.3.5 Expression Evaluation Exceptions
Three exception classes are defined to report errors related to the evaluation of value
binding exceptions:

■ EvaluationException (which extends FacesException)—used to report a
problem evaluating a value binding exception dynamically.

■ MethodNotFoundException (which extends EvaluationException)—used
to report that a requested public method does not exist in the context of
evaluation of a method binding expression.

■ PropertyNotFoundException (which extends
EvaluationException)—used to report that a requested property does not
exist in the context of evaluation of a value binding expression.

■ ReferenceSyntaxException (which extends EvaluationException)—used
to report a syntax error in a value binding exception.

public Class getType(FacesContext context) throws
MethodNotFoundException;
Chapter 5 Value Binding and Method Binding Expression Evaluation 5-19

CHAPTER 6

Per-Request State Information

During request processing for a JSF page, a context object is used to represent
request-specific information, as well as provide access to services for the application.
This chapter describes the classes which encapsulate this contextual information.

6.1 FacesContext
JSF defines the javax.faces.context.FacesContext abstract base class for
representing all of the contextual information associated with processing an
incoming request, and creating the corresponding response. A FacesContext
instance is created by the JSF implementation, prior to beginning the request
processing lifecycle, by a call to the getFacesContext method of
FacesContextFactory, as described in Section 6.5 “FacesContextFactory”. When
the request processing lifecycle has been completed, the JSF implementation will call
the release method, which gives JSF implementations the opportunity to release
any acquired resources, as well as to pool and recycle FacesContext instances
rather than creating new ones for each request.

6.1.1 Application

The JSF implementation must ensure that the Application instance for the current
web application is available via this method, as a convenient alternative to lookup
via an ApplicationFactory.

public Application getApplication();
6-1

6.1.2 ExternalContext
It is sometimes necessary to interact with APIs provided by the containing
environment in which the JavaServer Faces application is running. In most cases this
is the servlet API, but it is also possible for a JavaServer Faces application to run
inside of a portlet. JavaServer Faces provides the ExternalContext abstract class
for this purpose. This class must be implemented along with the FacesContext
class, and must be accessible via the getExternalContext method in
FacesContext.

The ExternalContext instance provides immediate access to all of the components
defined by the containing environment (servlet or portlet) within which a JSF-based
web application is deployed. The following table lists the container objects available
from ExternalContext. Note that the Access column refers to whether the
returned object is mutable. None of the properties may be set through
ExternalContext. itself.

public ExternalContext getExternalContext();

Name Access Type Description

applicationMap RW java.util.Map The application context
attributes for this
application.

authType RO String The method used to
authenticate the currently
logged on user (if any).

context RW Object The application context
object for this application.

initParameterMap RO java.util.Map The context initialization
parameters for this
application

remoteUser RO String The login name of the
currently logged in user (if
any).

request RW Object The request object for this
request.

requestContextPath RO String The context path for this
application.

requestCookieMap RO java.util.Map The cookies included with
this request.
6-2 JavaServer Faces Specification • February 2004

requestHeaderMap RO java.util.Map The HTTP headers
included with this request
(value is a String).

requestHeaderValuesMap RO java.util.Map .The HTTP headers
included with this request
(value is a String array).

requestLocale RW java.util.
Locale

The preferred Locale for
this request.

requestLocales RW java.util.
Iterator

The preferred Locales for
this request, in descending
order of preference.

requestMap RW java.util.Map The request scope
attributes for this request.

requestParameterMap RO java.util.Map The request parameters
included in this request
(value is a String).

requestParameterNames RO Iterator The set of request
parameter names included
in this request.

requestParameterValues
Map

RO java.util.Map The request parameters
included in this request
(value is a String array).

requestPathInfo RO String The extra path information
from the request URI for
this request.

requestServletPath RO String The servlet path
information from the
request URI for this
request.

response RW Object The response object for the
current request.

sessionMap RW java.util.Map The session scope attributes
for this request*.

userPrincipal RO java.security.P
rincipal

The Principal object
containing the name of the
currently logged on user (if
any).

* Accessing attributes via this Map will cause the creation of a session associated with this request, if none cur-
rently exists.

Name Access Type Description
Chapter 6 Per-Request State Information 6-3

In addition to the above properties of ExternalContext, the following methods
must be exposed. See the JavaDocs for more details.

The dispatch() must use a RequestDispatcher provided by the application context
object to incorporate content from a specified context-relative resource. The
redirect() method must cause an HTTP Redirect to be sent to the client.

Return the specified URLs, after performing any necessary encoding or rewriting to
ensure that the URL correctly identifies an addressable action or resource,
respectively, in the current application.

Return the specified name, prefixed as needed to ensure that it will be unique within
the scope of the current page.

Log the message (and a stack trace of the exception) to the underlying context.

Return the value of the specified context initialization parameter (if any).

public void dispatch(String path) throws IOException;

public void redirect(String url) throws IOException;

public String encodeActionURL(String url);

public String encodeResourceURL(String url);

public String encodeNamespace(String value);

public void log(String message);

public void log(String message, Throwable throwable);

public String getInitParameter(String name);

public URL getResource(String path);

public InputStream getResourceAsStream(String path);
6-4 JavaServer Faces Specification • February 2004

Return a URL or an InputStream, respectively, for the specified web application
resource.

Return the context-relative paths of web application resources matching the
specified path.

Return the session option associated with the current request, if any. If the create
flag is set to true, a new session must be created if none is currently associated with
this request.

Return true if the currently logged in user is included in the specified role.

6.1.3 ViewRoot

During the Restore View phase of the request processing lifecycle, the state
management subsystem of the JSF implementation will identify the component tree
(if any) to be used during the inbound processing phases of the lifecycle, and call
setViewRoot() to establish it.

public Set getResourcePaths(String path);

public Object getSession(boolean create);

public boolean isUserInRole(String role);

public UIViewRoot getViewRoot();

public void setViewRoot(UIViewRoot root);
Chapter 6 Per-Request State Information 6-5

6.1.4 Message Queue

During the Apply Request Values, Process Validations, Update Model Values, and Invoke
Application phases of the request processing lifecycle, messages can be queued to
either the component tree as a whole (if clientId is null), or related to a specific
component based on its client identifier.

The getClientIdsWithMessages() method must return an Iterator over the
client identifiers for which at least one Message has been queued. The
getMaximumSeverity() method returns the highest severity level on any
Message that has been queued, regardless of whether or not the message is
associated with a specific client identifier or not. The getMessages(String)
method returns an Iterator over queued Messages, either those associated with
the specified client identifier, or those associated with no client identifier if the
parameter is null. The getMessages() method returns an Iterator over all
queued Messages, whether or not they are associated with a particular client
identifier.

For more information about the Message class, see Section 6.2 “FacesMessage”.

6.1.5 RenderKit

Return the RenderKit associated with the render kit identifier in the current
UIViewRoot (if any).

public void addMessage(String clientId, FacesMessage message);

public Interator getClientIdsWithMessages();

public Severity getMaximumSeverity();

public Iterator getMessages(String clientId);

public Iterator getMessages();

public RenderKit getRenderKit();
6-6 JavaServer Faces Specification • February 2004

6.1.6 ResponseStream and ResponseWriter

JSF supports output that is generated as either a byte stream or a character stream.
UIComponents or Renderers that wish to create output in a binary format should
call getResponseStream() to acquire a stream capable of binary output.
Correspondingly, UIComponents or Renderers that wish to create output in a
character format should call getResponseWriter() to acquire a writer capable of
character output.

Due to restrictions of the underlying servlet APIs, either binary or character output
can be utilized for a particular response—they may not be mixed.

Please see Section 7.5 “ViewHandler” to learn when setResponseWriter() and
setResponseStream() are called.

6.1.7 Flow Control Methods

Normally, the phases of the request processing lifecycle are executed sequentially, as
described in Chapter 2 “Request Processing Lifecycle.” However, it is possible for
components, event listeners, and validators to affect this flow by calling one of these
methods.

The renderResponse() method signals the JSF implementation that, at the end of
the current phase (in other words, after all of the processing and event handling
normally performed for this phase is completed), control should be transferred
immediately to the Render Response phase, bypassing any intervening phases that
have not yet been performed. For example, an event listener for a tree control that

public ResponseStream getResponseStream();

public void setResponseStream(ResponseStream responseStream);

public ResponseWriter getResponseWriter();

public void setResponseWriter(ResponseWriter responseWriter);

public void renderResponse();

public void responseComplete();

public boolean getRenderResponse();

public boolean getResponseComplete();
Chapter 6 Per-Request State Information 6-7

was designed to process user interface state changes (such as expanding or
contracting a node) on the server would typically call this method to cause the
current page to be redisplayed, rather than being processed by the application.

The responseComplete() method, on the other hand, signals the JSF
implementation that the HTTP response for this request has been completed by
some means other than rendering the component tree, and that the request
processing lifecycle for this request should be terminated when the current phase is
complete. For example, an event listener that decided an HTTP redirect was required
would perform the appropriate actions on the response object (i.e. calling
ExternalContext.redirect()) and then call this method.

In some circumstances, it is possible that both renderResponse() and
responseComplete() might have been called for the request. In this case, the JSF
implementation must respect the responseComplete() call (if it was made) before
checking to see if renderResponse() was called.

The getRenderResponse() and getResponseComplete() methods allow a JSF-
based application to determine whether the renderResponse() or responseComplete()
methods, respectively, have been called already for the current request.

6.1.8 Access To The Current FacesContext Instance

Under most circumstances, JSF components, and application objects that access
them, are passed a reference to the FacesContext instance for the current request.
However, in some cases, no such reference is available. The
getCurrentInstance() method may be called by any Java class in the current
web application to retrieve an instance of the FacesContext for this request. The
JSF implementation must ensure that this value is set correctly before
FacesContextFactory returns a FacesContext instance, and that the value is
maintained in a thread-safe manner.

public static FacesContext getCurrentInstance();

public static void setCurrentInstance(FacesContext context);
6-8 JavaServer Faces Specification • February 2004

6.2 FacesMessage
Each message queued within a FacesContext is an instance of the
javax.faces.application.FacesMessage class. It offers the following
constructors:

The following method signatures are supported to retrieve and set the properties of
the completed message:

The message properties are defined as follows:

■ detail—Localized detail text for this FacesMessage (if any). This will generally
be additional text that can help the user understand the context of the problem
being reported by this FacesMessage, and offer suggestions for correcting it.

■ severity—A value defining how serious the problem being reported by this
FacesMessage instance should be considered. Four standard severity values
(SEVERITY_INFO, SEVERITY_WARN, SEVERITY_ERROR, and SEVERITY_FATAL)
are defined as a typesafe enum in the FacesMessage class.

■ summary—Localized summary text for this FacesMessage. This is normally a
relatively short message that concisely describes the nature of the problem being
reported by this FacesMessage.

public FacesMessage();

public FacesMessage(String summary, String detail);

public FacesMessage(Severity severity, String summary, String
detail);

public String getDetail();
public void setDetail(String detail);

public Severity getSeverity();
public void setSeverity(Severity severity);

public String getSummary();
public void setSummary(String summary);
Chapter 6 Per-Request State Information 6-9

6.3 ResponseStream
ResponseStream is an abstract class representing a binary output stream for the
current response. It has exactly the same method signatures as the
java.io.OutputStream class.

6.4 ResponseWriter
ResponseWriter is an abstract class representing a character output stream for the
current response. A ResponseWriter instance is obtained via a factory method on
RenderKit. Please see Chapter 8 “RenderKit”. It supports both low-level and high
level APIs for writing character based information

The ResponseWriter class extends java.io.Writer, and therefore inherits these
method signatures for low-level output. The close() method flushes the
underlying output writer, and causes any further attempts to output characters to
throw an IOException. The flush method flushes any buffered information to the
underlying output writer, and commits the response. The write methods write raw
characters directly to the output writer.

public void close() throws IOException;

public void flush() throws IOException;

public void write(char c[]) throws IOException;

public void write(char c[], int off, int len) throws IOException;

public void write(int c) throws IOException;

public void write(String s) throws IOException;

public void write(String s, int off, int len) throws IOException;

public abstract String getContentType();
public abstract String getCharacterEncoding();
6-10 JavaServer Faces Specification • February 2004

Return the content type or character encoding used to create this ResponseWriter.

Write appropriate characters at the beginning (startDocument) or end
(endDocument) of the current response.

Write the beginning of a markup element (the < character followed by the element
name), which causes the ResponseWriter implementation to note internally that
the element is open. This can be followed by zero or more calls to writeAttribute
or writeURIAttribute to append an attribute name and value to the currently
open element. The element will be closed (i.e. the trailing > added) on any
subsequent call to startElement(), writeComment(), writeText(),
endDocument(), close(), flush(), or write(). The componentForElement
parameter tells the ResponseWriter which UIComponent this element
corresponds to, if any. This parameter may be null to indicate that the element has
no corresponding component. The presence of this parameter allows tools to provide
their own implementation of ResponseWriter to allow the design time
environment to know which component corresponds to which piece of markup.

Write a closing for the specified element, closing any currently opened element first
if necessary.

Write a comment string wrapped in appropriate comment delimiters, after
converting the comment object to a String first. Any currently opened element is
closed first.

public void startDocument() throws IOException;
public void endDocument() throws IOException;

public void startElement(String name, UIComponent
componentForElement) throws IOException;

public void endElement(String name) throws IOException;

public void writeComment(Object comment) throws IOException;

public void writeAttribute(String name, Object value, String
componentPropertyName) throws IOException;

public void writeURIAttribute(String name, Object value, String
componentPropertyName) throws IOException;
Chapter 6 Per-Request State Information 6-11

These methods add an attribute name/value pair to an element that was opened
with a previous call to startElement(), throwing an exception if there is no
currently open element. The writeAttribute() method causes character encoding
to be performed in the same manner as that performed by the writeText()
methods. The writeURIAttribute() method assumes that the attribute value is a
URI, and performs URI encoding (such as % encoding for HTML). The
componentPropertyName, if present, denotes the property on the associated
UIComponent for this element, to which this attribute corresponds. The
componentPropertyName parameter may be null to indicate that this attribute has
no corresponding property.

Write text (converting from Object to String first, if necessary), performing
appropriate character encoding and escaping. Any currently open element created
by a call to startElement is closed first.

Creates a new instance of this ResponseWriter, using a different Writer.

6.5 FacesContextFactory
A single instance of javax.faces.context.FacesContextFactory must be
made available to each JSF-based web application running in a servlet or portlet
container. This class is primarily of use by JSF implementors—applications will not
generally call it directly. The factory instance can be acquired, by JSF
implementations or by application code, by executing:

public void writeText(Object text, String property) throws
IOException;

public void writeText(char text[], int off, int len) throws
IOException;

public abstract ResponseWriter cloneWithWriter(Writer writer);

FacesContextFactory factory =

(FacesContextFactory)

FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);
6-12 JavaServer Faces Specification • February 2004

The FacesContextFactory implementation class provides the following method
signature to create (or recycle from a pool) a FacesContext instance:

Create (if necessary) and return a FacesContext instance that has been configured
based on the specified parameters. In a servlet environment, the first argument is a
ServletContext, the second a ServletRequest and the third a
ServletResponse.

public FacesContext getFacesContext(Object context, Object
request, Object response, Lifecycle lifecycle);
Chapter 6 Per-Request State Information 6-13

6-14 JavaServer Faces Specification • February 2004

CHAPTER 77

Application Integration

Previous chapters of this specification have described the component model, request
state information, and the next chapter describes the rendering model for JavaServer
Faces user interface components. This chapter describes APIs that are used to link an
application’s business logic objects, as well as convenient pluggable mechanisms to
manage the execution of an application that is based on JavaServer Faces. These
classes are in the javax.faces.application package.

Access to application related information is centralized in an instance of the
Application class, of which there is a single instance per application based on
JavaServer Faces. Applications will typically provide one or more implementations
of ActionListener (or a method that can be referenced by an action expression)
in order to respond to ActionEvent events during the Apply Request Values or
Invoke Application phases of the request processing lifecycle. Finally, a standard
implementation of NavigationHandler (replaceable by the application or
framework) is provided to manage the selection of the next view to be rendered.

7.1 Application
There must be a single instance of Application per web application that is
utilizing JavaServer Faces. It can be acquired by calling the getApplication()
method on the FacesContext instance for the current request, or the
getApplication() method of the ApplicationFactory (see Section 7.2
“ApplicationFactory”), and provides default implementations of features that
determine how application logic interacts with the JSF implementation. Advanced
applications (or application frameworks) can install replacements for these default
implementations, which will be used from that point on. Access to several
integration objects is available via JavaBeans property getters and setters, as
described in the following subsections.
7-1

7.1.1 ActionListener Property

Return or replace an ActionListener instance that will be utilized to process
ActionEvent events during the Apply Request Values or Invoke Application phase of
the request processing lifecycle. The JSF implementation must provide a default
implementation ActionListener that performs the following functions:

■ The processAction() method must call FacesContext.renderResponse()
in order to bypass any intervening lifecycle phases, once the method returns.

■ The processAction() method must next determine the logical outcome of this
event, as follows:

■ If the originating component has a non-null action property, retrieve the
MethodBinding and call invoke() to perform the application-specified
processing in this action method, and use the value returned as the logical
outcome.

■ Otherwise, the logical outcome is null.
■ The processAction() method must finally retrieve the NavigationHandler

instance for this application, and pass the logical outcome value (determined
above) as a parameter to the handleNavigation() method of the
NavigationHandler instance.

7.1.2 DefaultRenderKitId Property

An application may specify the render kit identifier of the RenderKit to be used by
the ViewHandler to render views for this application. If not specified, the default
render kit identifier specified by RenderKitFactory.HTML_BASIC_RENDER_KIT
will be used by the default ViewHandler implementation.

Unless the application has provided a custom ViewHandler that supports the use of
multiple RenderKit instances in the same application, this method may only be
called at application startup, before any Faces requests have been processed. This is
a limitation of the current Specification, and may be lifted in a future release.

public ActionListener getActionListener();

public void setActionListener(ActionListener listener);

public String getDefaultRenderKitId();

public void setDefaultRenderKitId(String defaultRenderKitId);
7-2 JavaServer Faces Specification • February 2004

7.1.3 NavigationHandler Property

Return or replace the NavigationHandler instance (see Section 7.4
“NavigationHandler”) that will be passed the logical outcome of the application
ActionListener as described in the previous subsection. A default
implementation must be provided, with functionality described in Section 7.4.2
“Default NavigationHandler Implementation”:

7.1.4 PropertyResolver Property

Return or replace the PropertyResolver instance that will be utilized to evaluate
each . or [] operator when processing a value binding expression. A default
implementation must be provided, which operates as described in Section 5.3.2
“PropertyResolver”.

7.1.5 StateManager Property

Return or replace the StateManager instance that will be utilized during the Restore
View and Render Response phases of the request processing lifecycle to manage state
persistence for the components belonging to the current view. A default
implementation must be provided, which operates as described in Section 7.6
“StateManager”.

public NavigationHandler getNavigationHandler();

public void setNavigationHandler(NavigationHandler handler);

public PropertyResolver getPropertyResolver();

public void setPropertyResolver(PropertyResolver resolver);

public StateManager getStateManager();

public void setStateManager(StateManager manager);
Chapter 7 Application Integration 7-3

7.1.6 VariableResolver Property

Return or replace the VariableResolver instance that will be utilized to convert
the first name in a value binding expression into a corresponding object. A default
implementation must be provided, which operates as described in Section 5.3.1
“VariableResolver”.

7.1.7 ViewHandler Property

See Section 7.5 “ViewHandler” for the description of the ViewHandler. The JSF
implementation must provide a default ViewHandler implementation. This
implementation may be replaced by calling setViewHandler() before the first
time the Render Response phase has executed. If a call is made to
setViewHandler() after the first time the Render Response phase has executed, the
call must be ignored by the implementation.

7.1.8 Acquiring ValueBinding Instances

Create and return a ValueBinding (see Section 5.3.3 “ValueBinding”) that can be
used to evaluate the specified value binding expression. To avoid nondeterministic
behavior, it is recommended that applications (or frameworks) wishing to plug in
their own resolver implementations do so before createValueBinding() is called
for the first time.

public VariableResolver getVariableResolver();

public void setVariableResolver(VariableResolver resolver);

public ViewHandler getViewHandler();

public void setViewHandler(ViewHandler handler);

public ValueBinding createValueBinding(String ref);
7-4 JavaServer Faces Specification • February 2004

7.1.9 Acquiring MethodBinding Instances

Create and return a MethodBinding (see Section 5.3.4 “MethodBinding”) that can
be used to evaluate the specified method binding expression, and invoke the
specified method. This method must have parameter signatures that are compatible
with the classes in the params parameter1 (which may be null or a zero-length
array if the method to be called takes no parameters). The actual parameters to be
passed when the method is executed are specified on the invoke() call of the
returned MethodBinding instance.

To avoid nondeterministic behavior, it is recommended that applications (or
frameworks) wishing to plug in their own resolver implementations do so before
calling createMethodBinding() for the first time.

7.1.10 Object Factories
The Application instance for a web application also acts as an object factory for
the creation of new JSF objects such as components, converters, and validators.

Each of these methods creates a new instance of an object of the requested type2,
based on the requested identifier. The names of the implementation class used for
each identifier is normally provided by the JSF implementation automatically (for
standard classes described in this Specification), or in one or more application

public MethodBinding createMethodBinding(String ref, Class
params[]);

1. The actual Method selected for execution must be selected as if by calling Class.getMethod() and passing the
method name and the parameters signature specified in the createMethodBinding() call.

public UIComponent createComponent(String componentType);

public Converter createConverter(Class targetClass);

public Converter createConverter(String converterId);

public Validator createValidator(String validatorId);

2. Converters can also be requested based on the object class of the value to be converted.
Chapter 7 Application Integration 7-5

configuration resources (see Section 10.3 “Application Configuration Resources”)
included with a JSF web application, or embedded in a JAR file containing the
corresponding implementation classes.

Special version of the factory for UIComponent instances that is used when
evaluating component reference expression properties. This method has the
following behavior:

■ Call the getValue() method on the specified ValueBinding, in the context of
the specified FacesContext. If this results in a non-null UIComponent instance,
return that as the value of the getComponent() call.

■ If the getValue() call did not return a component instance, create a new
component instance of the specified component type.

JSF-based applications can register additional mappings of identifiers to a
corresponding fully qualified class name, or replace mappings provided by the JSF
implementation in order to customize the behavior of standard JSF features. These
methods are also used by the JSF implementation to register mappings based on
<component>, <converter>, and <validator> elements discovered in an
application configuration resource.

public UIComponent createComponent(ValueBinding componentRef,
FacesContext context, String componentType);

public void addComponent(String componentType, String
componentClass);

public void addConverter(Class targetClass, String
converterClass);

public void addConverter(String converterId, String
converterClass);

public void addValidator(String validatorId, String
validatorClass);

public Iterator getComponentTypes();

public Iterator getConverterIds();

public Iterator getConverterTypes();

public Iterator getValidatorIds();
7-6 JavaServer Faces Specification • February 2004

JSF-based applications can ask the Application instance for a list of the registered
identifiers for components, converters, and validators that are known to the instance.

7.1.11 Internationalization Support
The following methods and properties allow an application to describe its supported
locales, and to provide replacement text for standard messages created by JSF
objects.

JSF applications may state the Locales they support (and the default Locale
within the set of supported Locales) in the application configuration resources file.
The setters for the following methods must be called when the configuration
resources are parsed. Each time the setter is called, the previous value is overwritten.

Specify the fully qualified name of the ResourceBundle from which the JSF
implementation will acquire message strings that correspond to standard message
keys See Section 2.5.2.4 “Localized Application Messages” for a list of the standard
message keys recognized by JSF.

7.2 ApplicationFactory
A single instance of javax.faces.application.ApplicationFactory must be
made available to each JSF-based web application running in a servlet or portlet
container. The factory instance can be acquired by JSF implementations or by
application code, by executing:

public Iterator getSupportedLocales();
public void setSupportedLocales(Collection newLocales);
public Locale getDefaultLocale();
public void setDefaultLocale(Locale newLocale);

public String getMessageBundle();

public void setMessageBundle(String messageBundle);

ApplicationFactory factory = (ApplicationFactory)
FactoryFinder.getFactory(FactoryFinder.APPLICATION_FACTORY);
Chapter 7 Application Integration 7-7

The ApplicationFactory implementation class supports the following methods:

Return or replace the Application instance for the current web application. The
JSF implementation must provide a default Application instance whose behavior
is described in Section 7.1 “Application”.

Note that applications will generally find it more convenient to access the
Application instance for this application by calling the getApplication()
method on the FacesContext instance for the current request.

7.3 Application Actions
An application action is an application-provided method on some Java class that
performs some application-specified processing when an ActionEvent occurs,
during either the Apply Request Values or the Invoke Application phase of the request
processing lifecycle (depending upon the immediate property of the
ActionSource instance initiating the event).

Application action is not a formal JSF API; instead any method that meets the
following requirements may be used as an Action by virtue of evaluating a method
binding expression:

■ The method must be public.

■ The method must take no parameters.

■ The method must return String.

The action method will be called by the default ActionListener implementation,
as described in Section 7.1.1 “ActionListener Property” above. Its responsibility is to
perform the desired application actions, and then return a logical “outcome”
(represented as a String) that can be used by a NavigationHandler in order to
determine which view should be rendered next. The action method to be invoked is
defined by a MethodBinding that is specified in the action property of a
component that implements ActionSource. Thus, a component tree with more
than one such ActionSource component can specify individual action methods to
be invoked for each activated component, either in the same Java class or in different
Java classes.

public Application getApplication();

public void setApplication(Application application);
7-8 JavaServer Faces Specification • February 2004

7.4 NavigationHandler

7.4.1 Overview
A single NavigationHandler instance is responsible for consuming the logical
outcome returned by an application action that was invoked, along with additional
state information that is available from the FacesContext instance for the current
request, and (optionally) selecting a new view to be rendered. As mentioned below,
if the outcome returned by the application action is null, the same view must be re-
displayed. This is the only case where the same view (and component tree) is re-
used..

The handleNavigation method may select a new view by calling createView()
on the ViewHandler instance for this application, optionally customizing the
created view, and then selecting it by calling the setViewRoot() method on the
FacesContext instance that is passed. Alternatively, the NavigationHandler can
complete the actual response (for example, by issuing an HTTP redirect), and call
responseComplete() on the FacesContext instance.

After a return from the NavigationHandler, control will normally proceed to the
Render Response phase of the request processing lifecycle (see Section 2.2.6 “Render
Response”), which will cause the newly selected view to be rendered. If the
NavigationHandler called the responseComplete() method on the
FacesContext instance, however, the Render Response phase will be bypassed.

7.4.2 Default NavigationHandler Implementation
JSF implementations must provide a default NavigationHandler implementation
that maps the action reference that was utilized (by the default ActionListener
implementation) to invoke an application action, the logical outcome value returned
by that application action, as well as other state information, into the view identifier
for the new view to be selected. The remainder of this section describes the
functionality provided by this default implementation.

public void handleNavigation(FacesContext context, String
fromAction, String outcome);
Chapter 7 Application Integration 7-9

The behavior of the default NavigationHandler implementation is configured, at
web application startup time, from the contents of zero or more application
configuration resources (see Section 10.3 “Application Configuration Resources”). The
configuration information is represented as zero or more <navigation-rule>
elements, each keyed to a matching pattern for the view identifier of the current view
expressed in a <from-view-id> element. This matching pattern must be either an
exact match for a view identifier (such as “/index.jsp” if you are using the default
ViewHandler), or the prefix of a component view id, followed by an asterisk (“*”)
character. A matching pattern of “*”, or the lack of a <from-view-id> element
inside a <navigation-rule> rule, indicates that this rule matches any possible
component view identifier.

Nested within each <navigation-rule> element are zero or more <navigation-
case> elements that contain additional matching criteria based on the action
reference expression value used to select an application action to be invoked (if any),
and the logical outcome returned by calling the invoke() method of that
application action3. Finally, the <navigation-case> element contains a <to-
view-id> element whose content is the view identifier that will be selected and
stored in the FacesContext for the current request. See below for an example of the
configuration information for the default NavigationHandler might be
configured.

It is permissible for the application configuration resource(s) used to configure the
default NavigationHandler to include more than one <navigation-rule>
element with the same <from-view-id> matching pattern. For the purposes of the
algorithm described below, all of the nested <navigation-case> elements for all
of these rules shall be treated as if they had been nested inside a single
<navigation-rule> element.

The default NavigationHandler implementation must behave as if it were
performing the following algorithm (although optimized implementation techniques
may be utilized):

■ If the logical outcome value passed to the handleNavigation() method is null,
do not scan for matching rules. This is an indication that the current view should
be redisplayed.

■ Find a <navigation-rule> element for which the view identifier (of the view
in the FacesContext instance for the current request) matches the <from-
view-id> matching pattern of the <navigation-rule>. Rule instances are
considered in the following order:

■ An exact match of the view identifier against a <from-view-id> pattern that
does not end with an asterisk (“*”) character.

3. It is an error to specify more than one <navigation-case>, nested within one or more <navigation-rule>
elements with the same <from-view-id> matching pattern, that have exactly the same combination of <from-
xxx> element values.
7-10 JavaServer Faces Specification • February 2004

■ For <from-view-id> patterns that end with an asterisk, an exact match on
characters preceding the asterisk against the prefix of the view id. If the
patterns for multiple navigation rules match, pick the longest matching prefix
first.

■ If there is a <navigation-rule> with a <from-view-id> pattern of only an
asterisk4, it matches any view identifier.

■ From the <navigation-case> elements nested within the matching
<navigation-rule> element, locate a matching navigation case by matching
the <from-action> and <from-outcome> values against the corresponding
parameter values passed in to the handleNavigation() method. Navigation cases
are checked in the following order:

■ Cases specifying both a <from-action> value and a <from-outcome> value
are matched against the action expression and outcome parameters passed
to the handleNavigation() method (both parameters must be not null, and
both must be equal to the corresponding condition values, in order to match).

■ Cases that specify only a <from-outcome> value are matched against the
outcome parameter passed to the handleNavigation() method (which
must be not null, and equal to the corresponding condition value, to match).

■ Cases that specify only a <from-action> value are matched against the
action expression parameter passed to the handleNavigation() method
(which must be not null, and equal to the corresponding condition value, to
match).

■ Any remaining case is assumed to match.

■ If a matching <navigation-case> element was located, and the <redirect/>
element was not specified in this <navigation-case> (or the application is running
in a Portlet environment, where redirects are not possible), use the <to-view-
id> element of the matching case to request a new UIViewRoot instance from
the ViewHandler instance for this application, and pass it to the
setViewRoot() method of the FacesContext instance for the current request.
Then, exit the algorithm.

■ If a matching <navigation-case> element was located, the <redirect/>
element was specified in this <navigation-case>, and the application is not
running in a Portlet environment, use the <to-view-id> element of the
matching case to construct a context-relative path that corresponds to that view
id, cause the current response to perform an HTTP redirect to this path, and call
responseComplete() on the FacesContext instance for the current request.

■ If no matching <navigation-case> element was located, return to Step 1 and
find the next matching <navigation-rule> element (if any). If there are no
more matching rule elements, return without changing the current view.

A rule match always causes a new view to be created, losing the state of the old
view.

4. Or, equivalently, with no <from-view-id> element at all.
Chapter 7 Application Integration 7-11

7.4.3 Example NavigationHandler Configuration
The following <navigation-rule> elements might appear in one or more
application configuration resources (see Section 10.3 “Application Configuration
Resources”) to configure the behavior of the default NavigationHandler
implementation:

<navigation-rule>

<description>
APPLICATION WIDE NAVIGATION HANDLING

</description>
<from-view-id> * </from-view-id>

<navigation-case>
<description>

Assume there is a “Logout” button on every page that
invokes the logout Action.

</description>
<display-name>Generic Logout Button</display-name>
<from-action>#{userBean.logout}</from-action>
<to-view-id>/logout.jsp</to-view-id>

</navigation-case>

<navigation-case>
<description>

Handle a generic error outcome that might be returned
by any application Action.

</description>
<display-name>Generic Error Outcome</display-name>
<from-outcome>loginRequired</from-outcome>
<to-view-id>/must-login-first.jsp</to-view-id>

</navigation-case>

</navigation-rule>
7-12 JavaServer Faces Specification • February 2004

<navigation-rule>

<description>
LOGIN PAGE NAVIGATION HANDLING

</description>
<from-view-id> /login.jsp </from-view-id>

<navigation-case>
<description>

Handle case where login succeeded.
</description>
<display-name>Successful Login</display-name>
<from-action>#{userBean.login}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/home.jsp</to-view-id>

</navigation-case>

<navigation-case>
<description>

User registration for a new user succeeded.
</description>
<display-name>Successful New User Registration</display-name>
<from-action>#{userBean.register}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/welcome.jsp</to-view-id>

</navigation-case>

<navigation-case>
<description>

User registration for a new user failed because of a
duplicate username.

</description>
<display-name>Failed New User Registration</display-name>
<from-action>#{userBean.register}</from-action>
<from-outcome>duplicateUserName</from-outcome>
<to-view-id>/try-another-name.jsp</to-view-id>

</navigation-case>

</navigation-rule>
Chapter 7 Application Integration 7-13

<navigation-rule>

<description>
Assume there is a search form on every page. These navigation
cases get merged with the application-wide rules above because
they use the same “from-view-id” pattern. The same thing would
also happen if “from-view-id” was omitted here, because that is
equivalent to a matching pattern of “*”.

</description>
<from-view-id> * </from-view-id>

<navigation-case>
<display-name>Search Form Success</display-name>
<from-action>#{searchForm.go}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/search-results.jsp</to-view-id>

</navigation-case>

<navigation-case>
<display-name>Search Form Failure</display-name>
<from-action>#{searchForm.go}</from-action>
<to-view-id>/search-problem.jsp</to-view-id>

</navigation-case>

</navigation-rule>
7-14 JavaServer Faces Specification • February 2004

7.5 ViewHandler
ViewHandler is the pluggability mechanism for allowing implementations of or
applications using the JavaServer Faces specification to provide their own handling
of the activities in the Render Response and Restore View phases of the request
processing lifecycle. This allows for implementations to support different response
generation technologies, as well as different state saving/restoring approaches.

A JSF implementation must provide a default implementation of the ViewHandler
interface. See Section 7.1.7 “ViewHandler Property” for information on replacing
this default implementation with another implementation.

7.5.1 Overview
ViewHandler defines the public APIs described in the following paragraphs

<navigation-rule>

<description>
Searching works slightly differently in part of the site.

</description>
<from-view-id> /movies/* </from-view-id>

<navigation-case>
<display-name>Search Form Success</display-name>
<from-action>#{searchForm.go}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/movie-search-results.jsp</to-view-id>

</navigation-case>

<navigation-case>
<display-name>Search Form Failure</display-name>
<from-action>#{searchForm.go}</from-action>
<to-view-id>/search-problem.jsp</to-view-id>

</navigation-case>

</navigation-rule>

public Locale calculateLocale(FacesContext context);
public String calculateRenderKitId(FacesContext context);
Chapter 7 Application Integration 7-15

These methods are called from createView() to allow the new view to determine
the Locale to be used for all subsequent requests, and to find out which
renderKitId should be used for rendering the view.

Create and return a new UIViewRoot instance, initialized with information from the
specified FacesContext and view identifier parameters. It is the callers
responsibility to ensure that setViewId() is called on the returned view, passing
the same viewId value.

Returns a URL, suitable for encoding and rendering, that (if activated) will cause the
JSF request processing lifecycle for the specified viewId to be executed

Returns a URL, suitable for encoding and rendering, that (if activated) will retrieve
the specified web application resource.

This method must be called during the Render Response phase of the request
processing lifecycle. It must provide a valid ResponseWriter or ResponseStream
instance, storing it in the FacesContext instance for the current request (see
Section 6.1.6 “ResponseStream and ResponseWriter”), and then perform whatever
actions are required to cause the view currently stored in the viewRoot of the
FacesContext instance for the current request to be rendered to the corresponding
writer or stream. It must also interact with the associated StateManager (see
Section 7.6 “StateManager”), by calling the getSerializedView() and
saveView() methods, to ensure that state information for current view is saved
between requests.

public UIViewRoot createView(FacesContext context, String viewId);

public String getActionURL(FacesContext context, String viewId);

public String getResourceURL(FacesContext context, String path);

public void renderView(FacesContext context, UIViewRoot
viewToRender) throws IOException, FacesException;

public UIViewRoot restoreView(FacesContext context, String viewId)
throws IOException;
7-16 JavaServer Faces Specification • February 2004

This method must be called from the Restore View phase of the request
processing lifecycle. It must perform whatever actions are required to restore the
view associated with the specified FacesContext and viewId.

It is the caller’s responsibility to ensure that the returned UIViewRoot instance is
stored in the FacesContext as the new viewRoot property. In addition, if
restoreView() returns null (because there is no saved state for this view
identifier), the caller must call createView(), and call renderResponse() on the
FacesContext instance for this request.

Take any appropriate action to either immediately write out the current view’s state
information (by calling StateManager.writeState()), or noting where state
information may later be written. This method must be called once per call to the
encodeEnd() method of any renderer for a UIForm component, in order to provide
the ViewHandler an opportunity to cause saved state to be included with each
submitted form

7.5.2 Default ViewHandler Implementation
The terms view identifier and viewId are used interchangeably below and mean the
context relative path to the web application resource that produces the view, such as
a JSP page. In the JSP case, this is a context relative path to the jsp page representing
the view, such as /foo.jsp.

JSF implementations must provide a default ViewHandler implementation,
designed to support the rendering of JSP pages containing JSF components, that
must behave as described in the remainder of this section:

The calculateLocale() method must fulfill the following responsibilities:

■ Attempt to match one of the locales returned by the getLocales() method of
the ExternalContext instance for this request, against the supported locales for
this application as defined in the application configuration resources. Matching is
performed by the algorithm described in Section JSTL.8.3.2 of the JSTL
Specification. If a match is found, return the corresponding Locale object.

■ Otherwise, if the application has specified a default locale in the application
configuration resources, return the corresponding Locale object.

■ Otherwise, return the value returned by calling Locale.getDefault().

The calculateRenderKitId() method must fulfill the following responsibilities:

■ Return the value returned by Application.getDefaultRenderKitId() if it is
not null.

public void writeState(FacesContext context) throws IOException;
Chapter 7 Application Integration 7-17

■ Otherwise, return the value specified by the symbolic constant
RenderKitFactory.HTML_BASIC_RENDER_KIT.

The createView() method must fulfill the following responsibilities:

■ Create a new UIViewRoot object instance

■ Conditionally copy the renderKitId and locale from any current view for the
current request (as described in the Javadocs for createView()).

■ Return the newly created UIViewRoot.

The getActionURL() method must fulfill the following responsibilities:

■ If the specified viewId does not start with a “/”, throw
IllegalArgumentException.

■ If prefix mapping (such as “/faces/*”) is used for FacesServlet, prepend the
context path of the current application, and the specified prefix, to the specified
viewId and return the completed value. For example
“/cardemo/faces/chooseLocale.jsp”.

■ If suffix mapping (such as “*.faces”) is used for FacesServlet, and the specified
viewId ends with the specified suffix, replacing the suffix with the value specified
by the context initialization parameter named by the symbolic constant
ViewHandler.DEFAULT_SUFFIX_NAME (if no such context initialization
parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_SUFFIX as the replacement suffix), prefix this value with
the context path for the current web application, and return the result. For
example “/cardemo/chooseLocale.faces”

The getResourceURL() method must fulfill the following responsibilities:

■ If the specified path starts with a “/”, prefix it with the context path for the
current web application, and return the result.

■ Otherwise, return the specified path value unchanged.

The renderView() method must fulfill the following responsibilities:

■ If the current request is a ServletRequest, call the set() method of the
javax.servlet.jsp.jstl.core.Config class, passing the current
ServletRequest, the symbolic constant Config.FMT_LOCALE, and the locale
property of the specfied UIViewRoot. This configures JSTL with the application’s
preferred locale for rendering this response.

■ If suffix mapping (such as “*.faces”) is used for FacesServlet, examine the
viewId property of the specfied UIViewRoot. If it ends with a matching suffix,
modify the viewId property by replacing the suffix with the value specified by the
context initialization parameter named by the symbolic constant
ViewHandler.DEFAULT_SUFFIX_NAME (if no such context initialization
parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_SUFFIX as the replacement suffix).
7-18 JavaServer Faces Specification • February 2004

■ Treat the (possibly modified) viewId as a context-relative path (starting with a
slash character), by passing it to the dispatch() method of the
ExternalContext associated with this request.

The restoreView() method must fulfill the following responsibilities:

■ If the current request is a servlet request, set the character encoding to be used for
processing this request, either from a “charset” attribute included on the
incoming Content-Type header, or from a value previously saved in the session
under the key specified by the symbolic constant
ViewHandler.CHARACTER_ENCODING_KEY (if the request is part of a session).

■ Calculate the viewId that corresponds to this request, as follows:

■ If prefix mapping (such as “/faces/*”) is used for FacesServlet, the viewId
is set from the extra path information of the request URI.

■ If suffix mapping (such as “*.faces”) is used for FacesServlet, the viewId is
set from the servlet path information of the request URI, after replacing the
suffix with the value of the context initialization parameter named by the
symbolic constant ViewHandler.DEFAULT_SUFFIX_NAME (if no such context
initialization parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_SUFFIX as the replacement suffix).

■ If no viewId could be identified, call the redirect() method of the
ExternalContext instance for this request, passing the context path of this web
application.

■ Otherwise, call the restoreView() method of the associated StateManager,
passing the FacesContext instance for the current request and the calculated
viewId, and return the returned UIViewRoot.

In JSP applications, the default ViewHandler must delegate certain of its
responsibilities, as follows:

■ The responsibility to configure and install an appropriate ResponseWriter is
delegated to the doStartTag() method of UIComponentTag.

■ The renderView() responsibility to interact with the StateManager for
ensuring that state is saved between requests (by calling
saveSerializedView() and writeState()) is delegated to the
doAfterBody() method of the tag handler corresponding to the <f:view>
custom action.

In non-JSP applications, these responsibilities must be performed by a custom
ViewHandler implementation.
Chapter 7 Application Integration 7-19

7.6 StateManager
StateManager directs the process of saving and restoring the view between
requests. The StateManager instance for an application is retrieved from the
Application instance, and therefore cannot know any details of the markup
language created by the RenderKit being used to render a view. Therefore, the
StateManager utilizes a helper object (see Section 8.3 “ResponseStateManager”),
that is provided by the RenderKit implementation, and is therefore aware of the
markup language details. The JSF implementation must provide a default
StateManager implementation that supports the behavior described below.

7.6.1 Overview
The state of a view is divided into two pieces:

■ Tree Structure. This includes component parent-child relationships, including
facets.

■ Component State. This includes:

■ Component attributes and properties, and

■ Validators, Converters, FacesListeners, and other objects attached to a
component. The manner in which these attached objects are saved is up to the
component implementation. For attached objects that may have state, the
StateHolder interface (see Section 3.2.3 “StateHolder”) is provided to allow
these objects to preserve their own attributes and properties. If an attached
object does not implement StateHolder, but does implement
Serializable, it is saved using standard serialization. Attached objects that
do not implement either StateHolder or Serializable must have a public,
zero-arg constructor, and will be restored only to their initial, default object
state5.

The separation between tree structure and tree state has been explicitly called out
to make it clear that implementations can use a different mechanism for persisting
the structure than is used to persist the state. For example, in a system where the
tree structure is stored statically, as an XML file, for example, the system could
keep a DOM representation of the trees representing the webapp UI in memory,
to be used by all requests to the application.

5. The implementation classes for attached object must include a public zero-arguments constructor.
7-20 JavaServer Faces Specification • February 2004

7.6.2 State Saving Alternatives and Implications
JSF implementations support two primary mechanisms for saving state, based on the
value of the javax.faces.STATE_SAVING_METHOD initialization parameter (see
Section 10.1.3 “Application Configuration Parameters”). The possible values for this
parameter give a general indication of the approach to be used, while allowing JSF
implementations to innovate on the technical details:

■ client -- Cause the saved state to be included in the rendered markup that is sent
to the client (such as in a hidden input field for HTML). The state information
must be included in the subsequent request, making it possible for JSF to restore
the view without having saved information on the server side.

■ server -- Cause the saved state to be stored on the server (perhaps by being stored
in a servlet or portlet session) in between requests.

If your application uses client state saving, the values of all component attributes and
properties (as well as the saved state of attached objects) must implement
java.io.Serializable.

7.6.3 State Saving Methods.

This method causes the tree structure and component state of the view contained in
the argument FacesContext to be collected, stored, and returned in a
StateManager.SerializedView instance. If null is returned from this method,
there is no state to save.

This method must also enforce the rule that component ids within a
NamingContainer must be unique

Save the state represented in the specified SerializedView instance, in an
implementation dependent manner.

public StateManager.SerializedView
saveSerializedView(FacesContext context);

public void writeState(FacesContext context,
StateManager.SerializedView state) throws IOException;

protected Object getTreeStructureToSave(FacesContext context);
Chapter 7 Application Integration 7-21

This method must create a Serializable object that represents the tree structure of
the component tree for this view. Tree structure is comprised of parent-child
relationships, including facets. The id of each component and facet must also be
saved to allow the naming containers in the tree to be correctly restored when this
view is restored.

This method must create a Serializable object representing the component state
(attributes, properties, and attached objects) of the component tree for this view.
Attached objects that wish to save and restore their own state must implement
StateHolder.

7.6.4 State Restoring Methods

Restore the tree structure and the component state of the view for this viewId to be
restored, in an implementation dependent manner. If there is no saved state
information available for this viewId, this method returns null.

The default implementation of this method calls through to
restoreTreeStructure() and, if necessary restoreComponentState().

Convenience method to construct a new UIViewRoot and populate it with the child
and facet descendants represented in the saved tree structure information.

Convenience method to restore the attributes, properties, and attached objects of all
components in the restored component tree. This method must be called only if
restoreTreeStructure() returned a non-null UIViewRoot instance.

protected Object getComponentStateToSave(FacesContext context);

public UIViewRoot restoreView(FacesContext context, String
viewId);

protected UIViewRoot restoreTreeStructure(FacesContext context,
String viewId);

protected void restoreComponentState(FacesContext context,
UIViewRoot viewRoot);
7-22 JavaServer Faces Specification • February 2004

CHAPTER 88

Rendering Model

JavaServer Faces supports two programming models for decoding component values
from incoming requests, and encoding component values into outgoing responses -
the direct implementation and delegated implementation models. When the direct
implementation model is utilized, components must decode and encode themselves.
When the delegated implementation programming model is utilized, these operations
are delegated to a Renderer instance associated (via the rendererType property)
with the component. This allows applications to deal with components in a manner
that is predominantly independent of how the component will appear to the user,
while allowing a simple operation (selection of a particular RenderKit) to
customize the decoding and encoding for a particular client device or localized
application user.

Component writers, application developers, tool providers, and JSF implementations
will often provide one or more RenderKit implementations (along with a
corresponding library of Renderer instances). In many cases, these classes will be
provided along with the UIComponent classes for the components supported by the
RenderKit. Page authors will generally deal with RenderKits indirectly, because
they are only responsible for selecting a render kit identifier to be associated with a
particular page, and a rendererType property for each UIComponent that is used
to select the corresponding Renderer.

8.1 RenderKit
A RenderKit instance is optionally associated with a view, and supports
components using the delegated implementation programming model for the decoding
and encoding of component values. Each JSF implementation must provide a default
8-1

RenderKit instance (named by the render kit identifier associated with the String
constant RenderKitFactory.HTML_BASIC_RENDER_KIT as described below) that
is utilized if no other RenderKit is selected.

Return the Renderer instance corresponding to the specified component family
and rendererType (if any), which will typically be the value of the
rendererType property of a UIComponent about to be decoded or encoded.

Applications that wish to go beyond the capabilities of the standard RenderKit that
is provided by every JSF implementation may either choose to create their own
RenderKit instances and register them with the RenderKitFactory instance (see
Section 8.4 “RenderKitFactory”), or integrate additional (or replacement) supported
Renderer instances into an existing RenderKit instance. For example, it will be
common to for an application that requires custom component classes and
Renderers to register them with the standard RenderKit provided by the JSF
implementation, at application startup time See Section 10.3.6 “Example Application
Configuration Resource”for an example of a faces-config.xml configuration
resource that defines two additional Renderer instances to be registered in the
default RenderKit.

Use the provided Writer to create a new ResponseWriter instance for the
specified character encoding.

The contentTypeList parameter is an "Accept header style" list of content types
for this response, or null if the RenderKit should choose the best fit. The
RenderKit must support a value for the contentTypeList argument that comes
straight from the Accept HTTP header, and therefore requires parsing according to
the specification of the Accept header. Please see Section 14.1 of RFC 2616 (he
HTTP 1.1 RFC) for the specification of the Accept header.

Implementors are advised to consult the getCharacterEncoding() method of
class javax.faces.servlet.ServletResponse to get the required value for the
characterEncoding parameter for this method. Since the Writer for this response

public Renderer getRenderer(String family, String rendererType);

public void addRenderer(String family, String rendererType,
Renderer renderer);

public ResponseWriter createResponseWriter(Writer writer, String
contentTypeList, String characterEncoding);
8-2 JavaServer Faces Specification • February 2004

will already have been obtained (due to it ultimately being passed to this method),
we know that the character encoding cannot change during the rendering of the
response. Please see Section 6.4 “ResponseWriter”

Use the provided OutputStream to create a new ResponseStream instance.

Return an instance of ResponseStateManager to handle rendering technology
specific state management decisions.

8.2 Renderer
A Renderer instance implements the decoding and encoding functionality of
components, during the Apply Request Values and Render Response phases of the
request processing lifecycle, when the component has a non-null value for the
rendererType property.

For components utilizing the delegated implementation programming model, this
method will be called during the apply request values phase of the request processing
lifecycle, for the purpose of converting the incoming request information for this
component back into a new local value. See the API reference for the
Renderer.decode() method for details on its responsibilities.

public ResponseStream createResponseStream(OuputStream out);

public ResponseStateManager getResponseStateManager();

public void decode(FacesContext context, UIComponent component);

public void encodeBegin(FacesContext context, UIComponent
component) throws IOException;

public void encodeChildren(FacesContext context, UIComponent
component) throws IOException;

public void encodeEnd(FacesContext context, UIComponent component)
throws IOException;
Chapter 8 Rendering Model 8-3

For components utilizing the delegated implementation programming model, these
methods will be called during the Render Response phase of the request processing
lifecycle. These methods have the same responsibilities as the corresponding
encodeBegin(), encodeChildren(), and encodeEnd() methods of
UIComponent (described in Section 3.1.12 “Component Specialization Methods”
and the corresponding Javadocs) when the component implements the direct
implementation programming model.

Converts a component-generated client identifier into one suitable for transmission
to the client.

Return a flag indicating whether this Renderer is responsible for rendering the
children of the component it is asked to render.

Attempt to convert previously stored state information into an object of the type
required for this component (optionally using the registered Converter for this
component, if there is one). If conversion is successful, the new value should be
returned from this method; if not, a ConverterException should be thrown.

8.3 ResponseStateManager
ResponseStateManager is the helper class to
javax.faces.application.StateManager that knows the specific rendering
technology being used to generate the response. It is a singleton abstract class. This
class knows the mechanics of saving state, whether it be in hidden fields, session, or
some combination of the two.

public String convertClientId(FacesContext context, String
clientId);

public boolean getRendersChildren();

 public Object getConvertedValue(FacesContext context,
UIComponent component, Object submittedValue) throws
ConverterException;

public Object getComponentStateToRestore(FacesContext context);
8-4 JavaServer Faces Specification • February 2004

The implementation must inspect the current request and return the component tree
state Object passed to it on a previous invocation of writeState().

The implementation must inspect the current request and return the tree structure
Object passed to it on a previous invocation of writeState().

Take the argument content buffer and replace the state markers that we've written
using writeStateMarker() with the appropriate representation of the structure
and state, writing the output to the output writer.

If the structure and state are to be written out to hidden fields, the implementation
must take care to make all necessary character replacements to make the Strings
suitable for inclusion as an HTTP request paramater.

8.4 RenderKitFactory
A single instance of javax.faces.render.RenderKitFactory must be made
available to each JSF-based web application running in a servlet or portlet container.
The factory instance can be acquired by JSF implementations, or by application code,
by executing

The RenderKitFactory implementation class supports the following methods:

Return a RenderKit instance for the specified render kit identifier, possibly
customized based on the dynamic characteristics of the specified, (yet possibly null)
FacesContext. For example, an implementation might choose a different

public Object getTreeStructureToRestore(FacesContext context,
String viewId);

public void writeState(FacesContext context, SerializedView state)
throws IOException;

RenderKitFactory factory = (RenderKitFactory)
FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);

public RenderKit getRenderKit(FacesContext context, String
renderKitId);
Chapter 8 Rendering Model 8-5

RenderKit based on the “User-Agent” header included in the request, or the
Locale that has been established for the response view. Note that applications
which depend on this feature are not guaranteed to be portable across JSF
implementations.

Every JSF implementation must provide a RenderKit instance for a default render
kit identifier that is designated by the String constant
RenderKitFactory.HTML_BASIC_RENDER_KIT. Additional render kit identifiers,
and corresponding instances, can also be made available.

This method returns an Iterator over the set of render kit identifiers supported by
this factory. This set must include the value specified by
RenderKitFactory.HTML_BASIC_RENDER_KIT.

Register a RenderKit instance for the specified render kit identifier, replacing any
previous RenderKit registered for that identifier.

8.5 Standard HTML RenderKit
Implementation
To ensure application portability, all JSF implementations are required to include
support for a RenderKit, and the associated Renderers, that meet the
requirements defined in this section, to generate textual markup that is compatible
with HTML 4.01. JSF implementors, and other parties, may also provide additional
RenderKit libraries, or additional Renderers that are added to the standard
RenderKit at application startup time, but applications must ensure that the
standard Renderers are made available for the web application to utilize them.

The required behavior of the standard HTML RenderKit is specified in a set of
external HTML pages that accompany this specification, entitled “The Standard
HTML RenderKit”. The behavior described in these pages is normative, and are
required to be fulfilled by all implementations of JSF.

public Iterator getRenderKitIds();

public void addRenderKit(String renderKitId, RenderKit renderKit);
8-6 JavaServer Faces Specification • February 2004

8.6 The Concrete HTML Component Classes
For each valid combination of UIComponent subclass and standard renderer given
in the previous section, there is a concrete class in the package
javax.faces.component.html package. Each class in this package is a subclass
of an corresponding class in the javax.faces.component package, and adds
strongly typed JavaBeans properties for all of the renderer-dependent properties.

TABLE 8-1 Concrete HTML Component Classes

javax.faces.component
class renderer-type

javax.faces.component.html
class

UICommand javax.faces.Button HtmlCommandButton

UICommand javax.faces.Link HtmlCommandLink

UIData javax.faces.Table HtmlDataTable

UIForm javax.faces.Form HtmlForm

UIGraphic javax.faces.Image HtmlGraphicImage

UIInput javax.faces.Hidden HtmlInputHidden

UIInput javax.faces.Secret HtmlInputSecret

UIInput javax.faces.Text HtmlInputText

UIInjput javax.faces.Textarea HtmlInputTextarea

UIMessage javax.faces.Message HtmlMessage

UIMessages javax.faces.Messages HtmlMessages

UIOutput javax.faces.Format HtmlOutputFormat

UIOutput javax.faces.Label HtmlOutputLabel

UIOutput javax.faces.Link HtmlOutputLink

UIOutput javax.faces.Text HtmlOutputText

UIPanel javax.faces.Grid HtmlPanelGrid

UIPanel javax.faces.Group HtmlPanelGroup

UISelectBoolean javax.faces.Checkbox HtmlSelectBooleanCheck
box

UISelectMany javax.faces.Checkbox HtmlSelectManyCheckb
ox

UISelectMany javax.faces.Listbox HtmlSelectManyListbox

UISelectMany javax.faces.Menu HtmlSelectManyMenu
Chapter 8 Rendering Model 8-7

As with the standard components in the javax.faces.component package, each
HTML component implementation class must define a static public final String
constant named COMPONENT_TYPE, whose value is “javax.faces.” concatenated
with the class name. HTML components, however, must not define a
COMPONENT_FAMILY constant, or override the getFamily() method they inherit
from their superclass.

UISelectOne javax.faces.Listbox HtmlSelectOneListbox

UISelectOne javax.faces.Menu HtmlSelectOneMenu

UISelectOne javax.faces.Radio HtmlSelectOneRadio

TABLE 8-1 Concrete HTML Component Classes

javax.faces.component
class renderer-type

javax.faces.component.html
class
8-8 JavaServer Faces Specification • February 2004

CHAPTER 9

Integration with JSP

JavaServer Faces implementations must support (although JSF-based applications
need not utilize) using JavaServer Pages (JSP) as the page description language for
JSF pages. This JSP support is provided by providing custom actions so that a JSF
user interface can be easy defined in a JSP page by adding custom actions
corresponding to JSF UI components. Custom actions provided by a JSF
implementation may be mixed with standard JSP actions and custom actions from
other libraries, as well as template text for layout, in the same JSP page.

For JSP version 2.0 and onward, the file extension “.jsf” is reserved, and may
optionally be used (typically by authoring tools) to represent JSP pages containing
JSF content1. When running in a JSP 1.2 environment, JSP authors must give their
JSP pages that contain JSF content a filename ending in “.jsp”.

1. If this extension is used, it must be declared in the web application deployment descriptor, as described in the
JSP 2.0 (or later) specification.
9-1

9.1 UIComponent Custom Actions
A JSP custom action for a JSF UIComponent is constructed by combining properties
and attributes of a Java UI component class with the rendering attributes supported
by a specific Renderer from a concrete RenderKit. For example, assume the
existence of a concrete RenderKit, HTMLRenderKit, which supports three
Renderer types for the UIInput component:

The tag library descriptor (TLD) file for the corresponding tag library, then, would
define three custom actions—one per Renderer. Below is an example of a portion of
the custom action definition for the inputText tag2:

TABLE 9-1 Example Renderer Types

RendererType Render-Dependent Attributes

“Text” “size”

“Secret” “size”, “secretChar”

“Textarea” “size”, “rows”

<tag>
<name>inputText</name>
<tag-class>acme.html.tags.InputTag</tag-class>
<bodycontent>JSP</bodycontent>
<attribute>

<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>size</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
...

</tag>
9-2 JavaServer Faces Specification • February 2004

Note that the size attribute is derived from the Renderer of type “Text”, while the
id and value attributes are derived from the UIInput component class itself.
RenderKit implementors will generally provide a JSP tag library which includes
component custom actions corresponding to each of the component classes (or
types) supported by each of the RenderKit’s Renderers. See Section 8.1
“RenderKit” and Section 8.2 “Renderer” for details on the RenderKit and
Renderer APIs. JSF implementations must provide such a tag library for the
standard HTML RenderKit (see Section 9.5 “Standard HTML RenderKit Tag
Library”).

9.2 Using UIComponent Custom Actions in
JSP Pages
The following subsections define how a page author utilizes the custom actions
provided by the RenderKit implementor in the JSP pages that create the user
interface of a JSF-based web application.

9.2.1 Declaring the Tag Libraries
This specification hereby reserves the following Uniform Resource Identifier (URI)
values to refer to the standard tag libraries for the custom actions defined by
JavaServer Faces:

■ http://java.sun.com/jsf/core -- URI for the JavaServer Faces Core Tag Library

■ http://java.sun.com/jsf/html -- URI for the JavaServer Faces Standard HTML
RenderKit Tag Library

The page author must use the standard JSP taglib directive to declare the URI of
each tag library to be utilized, as well as the prefix used (within this page) to identify
custom actions from this library. For example,

2. This example illustrates a non-normative convention for naming custom actions based on a combination of
the component name and the renderer type. This convention is useful, but not required; custom actions may
be given any desired custom action name; however the convention is rigorously followed in the Standard
HTML RenderKit Tag Library.

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
Chapter 9 Integration with JSP 9-3

declares the unique resource identifiers of the tag libraries being used, as well as the
prefixes to be used within the current page for referencing actions from these
libraries3.

9.2.2 Including Components in a Page
A JSF UIComponent custom action can be placed at any desired position in a JSP
page that contains the taglib directive for the corresponding tag library, subject to
the following restrictions:

■ When using a single JSP page to create the entire view, JSF component custom
actions must be nested inside the <f:view> custom action from the JSF Core Tag
Library.

■ When using the <jsp:include> standard action (or the JSTL <c:import>
action) to compose a single view from multiple JSP pages, all JSF component
custom actions in included pages must be nested inside the <f:subview> custom
action from the JSF Core Tag Library (which is itself nested inside the <f:view>
custom action). The <f:subview> action itself may be present in the including
page (i.e. with the <jsp:include> or <c:import> action nested inside it), or in
the included page.

■ For the current version of this specification, any template text (or non-JSF custom
actions) present in a page that is included with the <jsp:include> or
<c:import> action, or any other mechanism that uses
RequestDispatcher.include(), must be enclosed in an <f:verbatim>
custom action (see Section 9.4.17 “<f:verbatim>”). This restriction may be lifted in
future versions of this specification.

The following example illustrates the general use of a UIComponent custom action
in a JSP page. In this scenario:

represents a UIInput field, to be rendered with the “Text” renderer type, and points
to the username property of a backing bean for the actual value. The id attribute
specifies the component id of a UIComponent instance, from within the component
tree, to which this custom action corresponds. If no id is specified, one will be
automatically generated by the custom action implementation.

3. Consistent with the way that namespace prefixes work in XML, the actual prefix used is totally up to the page
author, and has no semantic meaning. However, the values shown above are the suggested defaults, which
are used consistently in tag library examples throughout this specification.

<h:inputText id=”username” value=”#{logonBean.username}”/>
9-4 JavaServer Faces Specification • February 2004

Custom actions that correspond to JSF UIComponent instances must subclass either
javax.faces.webapp.UIComponentTag (see Section 10.2.6.3
“UIComponentTag”) or javax.faces.webapp.UIComponentBodyTag (see
Section 10.2.6.4 “UIComponentBodyTag”), depending on whether the custom action
needs to support javax.servlet.jsp.tagext.BodyTag functionality or not.

During the Render Response phase of the request processing lifecycle, the appropriate
encoding methods of the component (or its associated Renderer) will be utilized to
generate the representation of this component in the response page. In addition, the
first time a particular page is rendered, the component tree may also be dynamically
constructed.

All markup other than UIComponent custom actions is processed by the JSP
container, in the usual way. Therefore, you can use such markup to perform layout
control, or include non-JSF content, in conjunction with the actions that represent UI
components.

9.2.3 Creating Components and Overriding Attributes
As UIComponent custom actions are encountered during the processing of a JSP
page, the custom action implementation must check the component tree for the
existence of a corresponding UIComponent, and (if not found) create and configure
a new component instance corresponding to this custom action. The details of this
process (as implemented in the findComponent() method of UIComponentTag, for
easy reuse) are as follows:

■ If the component associated with this component custom action has been
identified already, return it unchanged.

■ Identify the component identifier for the component related to this UIComponent
custom action, as follows:

■ If the page author has specified a value for the id attribute, use that value.

■ Otherwise, call the createUniqueId() method of the UIViewRoot at the
root of the component tree for this view, and use that value.

■ If this UIComponent custom action is creating a facet (that is, we are nested inside
an <f:facet> custom action), determine if there is a facet of the component
associated with our parent UIComponent custom action, with the specified facet
name, and proceed as follows:

■ If such a facet already exists, take no additional action.

■ If no such facet already exists, create a new UIComponent (by calling the
createComponent() method on the Application instance for this web
application, passing the value returned by getComponentType(), set the
component identifier to the specified value, call setProperties() passing
Chapter 9 Integration with JSP 9-5

the new component instance, and add the new component as a facet of the
component associated with our parent UIComponent custom action, under the
specified facet name.

■ If this UIComponent custom action is not creating a facet (that is, we are not
nested inside an <f:facet> custom action), determine if there is a child
component of the component associated with our parent UIComponent custom
action, with the specified component identifier, and proceed as follows:

■ If such a child already exists, take no additional action.

■ If no such child already exists, create a new UIComponent (by calling the
createComponent() method on the Application instance for this web
application, passing the value returned by getComponentType(), set the
component identifier to the specified value, call setProperties() passing
the new component instance, and add the new component as a child of the
component associated with our parent UIComponent custom action.

9.2.4 Deleting Components on Redisplay
In addition to the support for dynamically creating new components, as described
above, UIComponent custom actions will also delete child components (and facets)
that are already present in the component tree, but are not rendered on this display
of the page. For example, consider a UIComponent custom action that is nested
inside a JSTL <c:if> custom action whose condition is true when the page is
initially rendered. As described in this section, a new UIComponent will have been
created and added as a child of the UIComponent corresponding to our parent
UIComponent custom action. If the page is re-rendered, but this time the <c:if>
condition is false, the previous child component will be removed.
9-6 JavaServer Faces Specification • February 2004

9.2.5 Representing Component Hierarchies
Nested structures of UIComponent custom actions will generally mirror the
hierarchical relationships of the corresponding UIComponent instances in the view
that is associated with each JSP page. For example, assume that a UIForm
component (whose component id is logonForm) contains a UIPanel component
used to manage the layout. You might specify the contents of the form like this:

9.2.6 Registering Converters, Event Listeners, and
Validators
Each JSF implementation is required to provide the core tag library (see Section 9.4
“JSF Core Tag Library”), which includes custom actions that (when executed) create
instances of a specified Converter, ValueChangeListener, ActionListener or
Validator implementation class, and register the created instance with the
UIComponent associated with the most immediately surrounding UIComponent
custom action.

<h:form id=”logonForm”>
<h:panelGrid columns=”2”>

<h:outputLabel for=”username”>
<h:outputText value=”Username:”/>

</h:outputLabel>
<h:inputText id=”username”

value=”#{logonBean.username}”/>
<h:outputLabel for=”password”>

<h:outputText value=”Password:”/>
</h:outputLabel>
<h:inputSecret id=”password”

value=”#{logonBean.password}”/>
<h:commandButton id=”submitButton” type=”SUBMIT”

action=”#{logonBean.logon}”/>
<h:commandButton id=”resetButton” type=”RESET”/>

</h:panelGrid>
</h:form>
Chapter 9 Integration with JSP 9-7

Using these facilities, the page author can manage all aspects of creating and
configuring values associated with the view, without having to resort to Java code.
For example:

associates a validation check (that the value entered by the user must contain at least
six characters) with the username UIInput component being described.

Following are usage examples for the valueChangeListener and
actionListener custom actions.

This example causes a Converter and a ValueChangeListener of the user
specified type to be instantiated and added as to the enclosing UIInput
component, and an ActionListener is instantiated and added to the enclosing
UICommand component. If the user specified type does not implement the proper
listener interface a JSPException must be thrown.

<h:inputText id=”username” value=”#{logonBean.username}”>
<f:validateLength minimum=”6”/>

</h:inputText>

<h:inputText id=”maxUsers”>
<f:convertNumber integerOnly=”true”/>
<f:valueChangeListener

type="custom.MyValueChangeListener"/>
</h:inputText>
<h:commandButton label="Login">

<f:actionListener type="custom.MyActionListener"/>
</h:commandButton>
9-8 JavaServer Faces Specification • February 2004

9.2.7 Using Facets
A Facet is a subordinate UIComponent that has a special relationship to its parent
UIComponent, as described in Section 3.1.9 “Facet Management”. Facets can be
defined in a JSP page using the <f:facet> custom action. Each facet action must
have one and only one child UIComponent custom action4. For example:

9.2.8 Interoperability with JSP Template Text and Other
Tag Libraries
It is permissible to use other tag libraries, such as the JSP Standard Tag Library
(JSTL) in the same JSP page with UIComponent custom actions that correspond to
JSF components, subject to certain restrictions. When JSF component actions are
nested inside custom actions from other libraries, or combined with template text,
the following behaviors must be supported:

■ JSF component custom actions nested inside a custom action that conditionally
renders its body (such as JSTL’s <c:if> or <c:choose>) must contain a
manually assigned id attribute.

■ JSF component custom actions may not be nested inside a custom action that
iterates over its body (such as JSTL’s <c:forEach>). Instead, you should use a
Renderer that performs its own iteration (such as the Table renderer used by
<h:dataTable>).

<h:dataTable ...>
<f:facet name=”header”>

<h:outputText value=”Customer List”/>
</f:facet>
<h:column>

<f:facet name=”header”>
<h:outputText value=”Account Id”/>

</f:facet>
<h:outputText id=”accountId” value=

”#{customer.accountId}”/>
</h:column>
...

</h:dataTable>

4. If you need multiple components in a facet, nest them inside a <h:panelGroup> custom action that is the
value of the facet.
Chapter 9 Integration with JSP 9-9

■ Components that are added to the component tree programmatically (as opposed
to by being represented by UIComponent custom actions) will not be rendered,
unless they are children of a UIComponent, or its corresponding Renderer,
returns true from the getRendersChildren() method, and takes
responsibility for performing the corresponding rendering.

■ Nesting JSP template text and non-UIComponent custom actions (or
UIComponent custom actions that buffer their output) inside a UIComponent
custom action for which the rendersChildren property (of the renderer or the
component) is true is not allowed. For most scenarios where this would be
desirable, the <f:verbatim> custom action from the JSF Core Tag Library (see
Section 9.4.17 “<f:verbatim>”) may be used

■ Interoperation with the JSTL Internationalization-Capable Formatting library
(typically used with the “fmt” prefix) is restricted as follows:

■ The <fmt:parseDate> and <fmt:parseNumber> custom actions should not
be used. The corresponding JSF facility is to use an <h:inputText>
component custom action with an appropriate DateTimeConverter or
NumberConverter.

■ The <fmt:requestEncoding> custom action should not be used. By the time
it is executed, the request parameters will have already been parsed, so any
change in the setting here will have no impact. JSF handles character set issues
automatically in most cases. To use a fixed character set in exceptional
circumstances, use the a “<%@ page contentType=”[content-
type];[charset]” %>” directive.

■ The <fmt:setLocale/> custom action should not be used. Even though it
might work in some circumstances, it would result in JSF and JSTL assuming
different locales. If the two locales use different character sets, the results will
be undefined. Applications should use JSF facilities for setting the locale
property on the UIViewRoot component to change locales for a particular
user.

9.2.9 Composing Pages from Multiple Sources
JSP pages can be composed from multiple sources using several mechanisms:

■ The <%@include%> directive performs a compile-time inclusion of a specified
source file into the page being compiled5. From the perspective of JSF, such
inclusions are transparent—the page is compiled as if the inclusions had been
performed before compilation was initiated.

■ Several mechanisms (including the <jsp:include> standard action, the JSTL
<c:import> custom action when referencing a resource in the same webapp, and
a call to RequestDispatcher.include() for a resource in the same webapp)

5. In a JSP 2.0 or later environment, the same effect can be accomplished by using <include-prelude> and
<include-coda> elements in the <jsp-config> element in the web application deployment descriptor.
9-10 JavaServer Faces Specification • February 2004

perform a runtime dynamic inclusion of the results of including the response
content of the requested page resource in place of the include action. Any JSF
components created by execution of JSF component custom actions in the
included resource will be grafted onto the component tree, just as if the source
text of the included page had appeared in the calling page at the position of the
include action.

■ For mechanisms that aggregate content by other means (such as use of an
HttpURLConnection, a RequestDispatcher.include() on a resource from a
different web application, or accessing an external resource with the JSTL
<c:import> custom action on a resource from a different web application, only
the response content of the aggregation request is available. Therefore, any use of
JSF components in the generation of such a response are not combined with the
component tree for the current page.

9.3 UIComponent Custom Action
Implementation Requirements
The custom action implementation classes for UIComponent custom actions must
conform to all of the requirements defined in the JavaServer Pages Specification. In
addition, they must meet the following JSF-specific requirements:

■ Extend the UIComponentTag or UIComponentBodyTag base class, so that JSF
implementations can recognize UIComponent custom actions versus others.

■ Provide a public getComponentType() method that returns a String-valued
component type registered with the Application instance for this web
application. The value returned by this method will be passed to
Application.createComponent() when a new UIComponent instance
associated with this custom action is to be created.

■ Provide a public getRendererType() method that returns a String-valued
renderer type registered with the RenderKit instance for the currently selected
RenderKit, or null if there should be no associated Renderer. The value
returned by this method will be used to set the rendererType property of any
UIComponent created by this custom action.

■ Provide setter methods taking a String-valued parameter for all set-able (from a
custom action) properties of the corresponding UIComponent class, and all
additional set-able (from a custom action) attributes supported by the
corresponding Renderer.

■ Provide a protected setProperties() method of type void that takes a
UIComponent instance as parameter. The implementation of this method must
perform the following tasks:
Chapter 9 Integration with JSP 9-11

■ Call super.setProperties(), passing the same UIComponent instance
received as a parameter.

■ For each non-null custom action attribute that corresponds to a property based
attribute to be set on the underlying component, call either
setValueBinding() or getAttributes().put(), depending on whether
or not a value binding expression was specified as the custom action attribute
value (performing any required type conversion). For example, assume that
title is the name of a render-dependent attribute for this component:

■ For each non-null custom action attribute that corresponds to a method based
attribute to be set on the underlying component, the value of the attribute must
be a method reference expression. Call setMethodBinding(), or throw a

protected void setProperties(UIComponent component) {
super.setProperties(component);
if (title != null) {

if (isValueReference(title)) {
ValueBinding vb =

getFacesContext().getApplication().
createValueBinding(title);

component.setValueBinding(“title”, vb);
} else {

component.getAttributes().put(“title”, title);
}

}
...

}

9-12 JavaServer Faces Specification • February 2004

FacesException if the value of the attribute is not a method reference
exception For example, assume that valueChangeListener is the name of an
attribute for this component:

■ Non-null custom action attributes that correspond to a writable property to be
set on the underlying component are handled in a similar fashion. For
example, assume a custom action for the UIData component is being created
that needs to deal with the rows property (which is of type int):

protected void setProperties(UIComponent component) {
super.setProperties(component);
if (valueChangeListener != null) {

if (isValueReference(valueChangeListener)) {
Class args[] = { ValueChangeEvent.class };
MethodBinding vb =
FacesContext.getCurrentInstance().getApplication().createV

alueBinding(valueChangeListener, args);
input.setValueChangeListener(vb);

} else {
Object params [] = {valueChangeListener};
throw new

javax.faces.FacesException(Util.getExceptionMessage(Util
.INVALID_EXPRESSION_ID, params));

}
}
...

}

protected void setProperties(UIComponent component) {
super.setProperties(component);
if (rows != null) {

if (isValueReference(rows)) {
ValueBinding vb =

FacesContext.getCurrentInstance().getApplication().
createValueBinding(rows);

component.setValueBinding(“rows”, vb);
} else {

((UIData) component).setRows(Integer.parseInt(rows));
}

}
...

}

Chapter 9 Integration with JSP 9-13

■ Optionally, provide a public release() method of type void, taking no
parameters, to be called when the JSP page handler releases this custom action
instance. If implemented, the method must perform the following tasks:

■ Call super.release() to invoke the superclass’s release functionality.

■ Clear the instance variables representing the values for set-able custom action
attributes (for example, by setting String values to null).

■ Optionally provide overridden implementations for the following methods to fine
tune the behavior of your UIComponent custom action implementation class:
encodeBegin(), encodeChildren(), encodeEnd(), getDoEndValue(), and
getDoStartValue().

It is technically possible to override other public and protected methods of the
UIComponentTag or UIComponentBodyTag base class; however, it is likely that
overriding these methods will interfere with the functionality that other portions of
the JSF implementation are assuming to be present, so overriding these methods is
strongly discouraged.

The definition of each UIComponent custom action in the corresponding tag library
descriptor (TLD) must conform to the following requirements:

■ The <body-content> element for the custom action itself must specify JSP.

■ The <rtexprvalue> element for each custom action attribute that is destined to
be passed through to the underlying UIComponent (as a property or a component
attribute) must be set to false.

9.4 JSF Core Tag Library
All JSF implementations must provide a tag library containing core actions
(described below) that are independent of a particular RenderKit. The
corresponding tag library descriptor must meet the following requirements:

■ Must declare a tag library version (<tlib-version>) value of 1.0.
■ Must declare a JSP version dependency (<jsp-version>) value of 1.2.
■ Must declare a URI (<uri>) value of http://java.sun.com/jsf/core.
■ Must be included in the META-INF directory of a JAR file containing the

corresponding implementation classes, suitable for inclusion with a web
application, such that the tag library descriptor will be located automatically by
the algorithm described in Section 7.3 of the JavaServer Pages Specification (version
1.2).

Each custom action included in the JSF Core Tag Library is documented in a
subsection below, with the following outline for each action:

■ Name—The name of this custom action, as used in a JSP page.
9-14 JavaServer Faces Specification • February 2004

■ Short Description—A summary of the behavior implemented by this custom
action.

■ Syntax—One or more examples of using this custom action, with the required
and optional sets of attributes that may be used together.

■ Body Content—The type of nested content for this custom action, using one of
the standard values empty, JSP, or tagdependent as described in the JSP
specification. This section also describes restrictions on the types of content
(template text, JSF core custom actions, JSF UIComponent custom actions, and/or
other custom actions) that can be nested in the body of this custom action.

■ Attributes—A table containing one row for each defined attribute for this custom
action. The following columns provide descriptive information about each
attribute:

■ Name—Name of this attribute, as it must be used in the page. If the name of the
attribute is in italics, it is required.

■ Expr—The type of dynamic expression (if any) that can be used in this attribute
value. Legal values are stephane.bastian@otrix.com (this may be a literal or a
value binding expression), MB (this may be a method binding expression), or
NONE (this attribute accepts literal values only).

■ Type—Fully qualified Java class or primitive type of this attribute.
■ Description—The functional meaning of this attribute’s value.

■ Constraints—Additional constraints enforced by this action, such as
combinations of attributes that may be used together.

■ Description—Details about the functionality provided by this custom action.
Chapter 9 Integration with JSP 9-15

9.4.1 <f:actionListener>
Register an ActionListener instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

<f:actionListener type=”fully-qualified-classname”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a UIComponent custom action.
■ The corresponding UIComponent implementation class must implement

ActionSource, and therefore define a public addActionListener() method
that accepts an ActionListener parameter.

■ The specified listener class must implement
javax.faces.event.ActionListener.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, instantiate an instance of the specified class, and
register it by calling addActionListener().

As an alternative, you may also register a method in a backing bean class to receive
ActionEvent notifications, by using the actionListener attribute on the
corresponding UIComponent custom action.

Name Expr Type Description

type VB String Fully qualified Java class name of an
ActionListener to be created and
registered
9-16 JavaServer Faces Specification • February 2004

9.4.2 <f:attribute>
Add an attribute on the UIComponent associated with the closest parent
UIComponent custom action.

Syntax

<f:attribute name=”attribute-name” value=”attribute-value”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a UIComponent custom action.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the associated component
does not already have a component attribute with a name specified by this custom
action’s name attribute, create a component attribute with the name and value
specified by this custom action’s attributes.

The implementation class for this action must be, or extend,
javax.faces.webapp.AttributeTag.

Name Expr Type Description

name VB String Name of the component attribute to be set

value VB Object Value of the component attribute to be set
Chapter 9 Integration with JSP 9-17

9.4.3 <f:convertDateTime>
Register a DateTimeConverter instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

<f:convertDateTime

[dateStyle=”{default|short|medium|long|full}”]

[locale=”{locale” | string}]

[pattern=”pattern”]

[timeStyle=”{default|short|medium|long|full}”]

[timeZone=”{timeZone| string}”]

[type=”{date|time|both}”]/>

Body Content

empty.
9-18 JavaServer Faces Specification • February 2004

Attributes

Constraints

■ Must be nested inside a UIComponent custom action whose component class
implements ValueHolder, and whose value is a java.util.Date (or
appropriate subclass).

Name Expr Type Description

date-
Style

VB String Predefined formatting style which
determines how the date component
of a date string is to be
formatted and parsed. Applied only
if type is “date” or “both”.

locale VB Locale
or
String

Locale whose predefined styles for
dates and times are used during
formatting or parsing. If not
specified, the Locale returned by
FacesContext.getViewRoot().getLocal
e() will be used. Value must be
either a VB expression that
evaluates to a java.util.Locale
instance, or a String that is valid
to pass as the first argument to
the constructor
java.util.Locale(String language,
String country). The empty string
is passed as the second argument.

pattern VB String Custom formatting pattern which
determines how the date/time string
should be formatted and parsed.

time-
Style

VB String Predefined formatting style which
determines how the time component
of a date string is to be
formatted and parsed. Applied only
if type is “time” or “both”.

time-
Zone

VB timezon
e or
String

Time zone in which to interpret any
time information in the date
string. Value must be either a VB
expression that evaluates to a
java.util.TimeVone instance, or a
String that is a timezone ID as
described in the javadocs for
java.util.TimeZone.getTimeZone().

type VB String Specifies whether the string value
will contain a date, time, or both.
Chapter 9 Integration with JSP 9-19

■ If pattern is specified, the pattern syntax must use the pattern syntax specified
by java.text.SimpleDateFormat.

■ If pattern is not specified, formatted strings will contain a date value, a time
value, or both depending on the specified type. When date or time values are
included, they will be formatted according to the specified dateStyle and
timeStyle, respectively.

■ if type is not specified:
■ if dateStyle is set and timeStyle is not, type defaults to date
■ if timeStyle is set and dateStyle is not, type defaults to time
■ if both dateStyle and timeStyle are set, type defaults to both

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createConverter() and register the
returned Converter instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ConverterTag.
■ The createConverter() method must call the createConverter() method

of the Application instance for this application, passing converter id
“javax.faces.DateTime”. It must then cast the returned instance to
javax.faces.convert.DateTimeConverter and configure its properties
based on the specified attributes for this custom action, and return the configured
instance.

■ If the type attribute is not specified, it defaults as follows:

■ If dateStyle is specified but timeStyle is not specified, default to date.

■ If dateStyle is not specified but timeStyle is specified, default to time.

■ If both dateStyle and timeStyle are specified, default to both.

■ It is an error if
9-20 JavaServer Faces Specification • February 2004

9.4.4 <f:convertNumber>
Register a NumberConverter instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

<f:convertNumber

[currencyCode=”currencyCode”]

[currencySymbol=”currencySymbol”]

[groupingUsed=”{true|false}”]

[integerOnly=”{true|false}”]

[locale=”locale”]

[maxFractionDigits=”maxFractionDigits”]

[maxIntegerDigits=”maxIntegerDigits”]

[minFractionDigits=”minFractionDigits”]

[minIntegerDigits=”minIntegerDigits”]

[pattern=”pattern”]

[type=”{number|currency|percent}”]/>

Body Content

empty.
Chapter 9 Integration with JSP 9-21

Attributes

Constraints

■ Must be nested inside a UIComponent custom action whose component class
implements ValueHolder, and whose value is a numeric wrapper class or
primitive.

■ If pattern is specified, the pattern syntax must use the pattern syntax specified
by java.text.DecimalFormat.

Name Expr Type Description

currenc
yCode

VB String ISO 4217 currency code, applied
only when formatting currencies.

currenc
ySymbol

VB String Currency symbol, applied only when
formatting currencies.

groupin
gUsed

VB boolean Specifies whether formatted output
will contain grouping separators.

integer
Only

VB boolean Specifies whether only the integer
part of the value will be parsed.

locale VB java.ut
il.Loca
le

Locale whose predefined styles for
numbers are used during formatting
or parsing. If not specified, the
Locale returned by
FacesContext.getViewRoot().getLocal
e() will be used.

maxFrac
tionDig
its

VB int Maximum number of digits that will
be formatted in the fractional
portion of the output.

maxInte
gerDigi
ts

VB int Maximum number of digits that will
be formatted in the in.teger
portion of the output

minFrac
tionDig
its

VB int Minimum number of digits that will
be formatted in the fractional
portion of the output.

minInte
gerDigi
ts

VB int Minimum number of digits that will
be formatted in the integer portion
of the output.

pattern VB String Custom formatting pattern which
determines how the number string
should be formatted and parsed.

type VB String Specifies whether the value will be
parsed and formatted as a number,
currency, or percentage.
9-22 JavaServer Faces Specification • February 2004

■ If pattern is not specified, formatting and parsing will be based on the specified
type.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createConverter() and register the
returned Converter instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ConverterTag.
■ The createConverter() method must call the createConverter() method

of the Application instance for this application, passing converter id
“javax.faces.Number”. It must then cast the returned instance to
javax.faces.convert.NumberConverter and configure its properties based
on the specified attributes for this custom action, and return the configured
instance.
Chapter 9 Integration with JSP 9-23

9.4.5 <f:converter>
Register a named Converter instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

<f:converter converterId=”converterId”/>

Body Content

empty

Attributes

Constraints

■ Must be nested inside a UIComponent custom action whose component class
implements ValueHolder.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createConverter() and register the
returned Converter instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ConverterTag.

■ The createConverter() method must call the createConverter() method
of the Application instance for this application, passing converter id specified
by their converterId attribute.

The implementation class for this action must be, or extend,
javax.faces.webapp.ConverterTag.

Name Expr Type Description

convert
erId

VB String Converter identifier of the converter to be
created.
9-24 JavaServer Faces Specification • February 2004

9.4.6 <f:facet>
Register a named facet (see Section 3.1.9 “Facet Management”) on the UIComponent
associated with the closest parent UIComponent custom action.

Syntax

<f:facet name=”facet-name”/>

Body Content

JSP. However, only a single UIComponent custom action (and any related nested JSF
custom actions) is allowed; no template text or other custom actions may be present.

Attributes

Constraints

■ Must be nested inside a UIComponent custom action.
■ Exactly one UIComponent custom action must be nested inside this custom

action (although the nested component custom action could itself have nested
children).

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the associated component
does not already have a facet with a name specified by this custom action’s name
attribute, create a facet with this name from the UIComponent custom action that is
nested within this custom action.

The implementation class must be, or extend, javax.faces.webapp.FacetTag.

Name Expr Type Description

name NONE String Name of the facet to be created
Chapter 9 Integration with JSP 9-25

9.4.7 <f:loadBundle>
Load a resource bundle localized for the locale of the current view, and expose it (as
a Map) in the request attributes for the current request.

Syntax

<f:loadBundle basename=”resource-bundle-name” var=”attributeKey”/>

Body Content

empty

Attributes

Constraints

■ Must be nested inside an <f:view> custom action.

Description

Load the resource bundle specified by the basename attribute, localized for the
Locale of the UIViewRoot component of the current view, and expose its key-values
pairs as a Map under the attribute key specified by the var attribute. In this way,
value binding expressions may be used to conveniently retrieve localized values.

If the get() method for the Map instance exposed by this custom action is passed a
key value that is not present (that is, there is no underlying resource value for that
key), the literal string “???foo???” (where “foo” is replaced by the key the String
representation of the key that was requested) must be returned, rather than the
standard Map contract return value of null.

Name Expr Type Description

basenam
e

VB String Base name of the resource bundle to be
loaded.

var NONE String Name of a request scope attribute under
which the resource bundle will be exposed as
a Map.
9-26 JavaServer Faces Specification • February 2004

9.4.8 <f:param>
Add a child UIParameter component to the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

Syntax 1: Unnamed value
<f:param [id=”componentId”] value=”parameter-value”

[binding=”componentReference”]/>

Syntax 2: Named value
<f:param [id=”componentId”]

[binding=”componentReference”]

name=”parameter-name” value=”parameter-value”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a UIComponent custom action.

Name Expr Type Description

binding VB ValueBind
ing

Value binding expression to a backing bean
property bound to the component instance for
the UIComponent created by this custom
action

id NONE String Component identifier of a UIParameter
component

name VB String Name of the parameter to be set

value VB String Value of the parameter to be set
Chapter 9 Integration with JSP 9-27

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create a new UIParameter component, and attach it
as a child of the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.UIComponentTag.
■ The getComponentType() method must return “Parameter”.
■ The getRendererType() method must return null.
9-28 JavaServer Faces Specification • February 2004

9.4.9 <f:selectItem>
Add a child UISelectItem component to the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

Syntax 1: Directly Specified Value
<f:selectItem [id=”componentId”]

[binding=”componentReference”]

[itemDisabled=”{true|false}”]

itemValue=”itemValue”

itemLabel=”itemLabel”

[itemDescription=”itemDescription”]/>

Syntax 2: Indirectly Specified Value
<f:selectItem [id=”componentId”]

[binding=”componentReference”]

value=”selectItemValue”/>

Body Content

empty
Chapter 9 Integration with JSP 9-29

Attributes

Constraints

■ Must be nested inside a UIComponent custom action that creates a
UISelectMany or UISelectOne component instance.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create a new UISelectItem component, and attach it
as a child of the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.UIComponentTag.
■ The getComponentType() method must return “SelectItem”.
■ The getRendererType() method must return null.

Name Expr Type Description

binding VB ValueBind
ing

Value binding expression to a backing bean
property bound to the component instance for
the UIComponent created by this custom
action.

id NONE String Component identifier of a UISelectItem
component.

itemDes
criptio
n

VB String Description of this option (for use in
development tools).

itemDisa
bled

VB boolean Flag indicating whether the option created by
this component is disabled.

itemLabe
l

VB String Label to be displayed to the user for this
option.

itemValu
e

VB Object Value to be returned to the server if this
option is selected by the user.

value VB javax.face
s.model.S
electItem

Value binding pointing at a SelectItem
instance containing the information for this
option.
9-30 JavaServer Faces Specification • February 2004

9.4.10 <f:selectItems>
Add a child UISelectItems component to the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

<f:selectItems [id=”componentId”]

[binding=”componentReference”]

value=”selectItemsValue”/>

Body Content

empty

Attributes

Constraints

■ Must be nested inside a UIComponent custom action that creates a
UISelectMany or UISelectOne component instance.

Name Expr Type Description

binding VB ValueBind
ing

Value binding expression to a backing bean
property bound to the component instance for
the UIComponent created by this custom
action.

id NONE String Component identifier of a UISelectItem
component.

value VB javax.face
s.model.S
electItem,
see
descriptio
n for
specific
details

Value binding expression pointing at one of
the following instances:
1. an individual javax.faces.model.SelectItem
2. a java language array of

javax.faces.model.SelectItem
3. a java.util.Collection of

javax.faces.model.SeleccItem
4. A java.util.Map where the keys are

converted to Strings and used as labels, and
the corresponding values are converted to
Strings and used as values for newly
created javax.faces.model.SelectItem
instances. The instances are created in the
order of the iterator over the keys provided
by the Map.
Chapter 9 Integration with JSP 9-31

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create a new UISelectItems component, and attach
it as a child of the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.UIComponentTag.
■ The getComponentType() method must return

“javax.faces.SelectItems”.
■ The getRendererType() method must return null.
9-32 JavaServer Faces Specification • February 2004

9.4.11 <f:subview>
Container action for all JSF core and component custom actions used on a nested
page included via <jsp:include> or any custom action that dynamically includes
another page from the same web application, such as JSTL’s <c:import>.

Syntax

Body Content

JSP. May contain any combination of template text, other JSF custom actions, and
custom actions from other custom tag libraries.

Attributes

Constraints

■ Must be nested inside a <f:view> custom action (although this custom action
might be in a page that is including the page containing the <f:subview>
custom action.

■ Must not contain an <f:view> custom action.

■ Must have an id attribute whose value is unique within the scope of the parent
naming container.

■ May be placed in a parent page (with <jsp:include> or <c:import> nested
inside), or within the nested page.

<f:subview id=”componentId”

[binding=”componentReference”]

[rendered=”{true|false}”]>

Nested template text and custom actions
</f:subview>

Name Expr Type Description

binding VB ValueBind
ing

Value binding expression to a backing bean
property bound to the component instance for
the UIComponent created by this custom
action.

id NONE String Component identifier of a
UINamingContainer component

rendere
d

VB Boolean Whether or not this subview should be
rendered.
Chapter 9 Integration with JSP 9-33

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create a new UINamingContainer component, and
attach it as a child of the associated UIComponent. Such a component provides a
scope within which child component identifiers must still be unique, but allows
child components to have the same simple identifier as child components nested in
some other naming container. This is useful in several scenarios:

“main.jsp”
<f:view>

<c:import url=”foo.jsp”/>
<c:import url=”bar.jsp”/>

</f:view>

“foo.jsp”
<f:subview id=”aaa”>

... components and other content ...
</f:subview>

“bar.jsp”
<f:subview id=”bbb”>

... components and other content ...
</f:subview>
9-34 JavaServer Faces Specification • February 2004

In this scenario, <f:subview> custom actions in imported pages establish a naming
scope for components within those pages. Identifiers for <f:subview> custom
actions nested in a single <f:view> custom action must be unique, but it is difficult
for the page author (and impossible for the JSP page compiler) to enforce this
restriction.

In this scenario, the <f:subview> custom actions are in the including page, rather
than the included page. As in the previous scenario, the “id” values of the two
subviews must be unique; but it is much easier to verify using this style.

It is also possible to use this approach to include the same page more than once, but
maintain unique identifiers:

In all of the above examples, note that foo.jsp and bar.jsp may not contain
<f:view>.

“main.jsp”
<f:view>

<f:subview id=”aaa”>
<c:import url=”foo.jsp”/>

</f:subview>
<f:subview id=”bbb”>

<c:import url=”bar.jsp”/>
</f:subview>

</f:view>

“foo.jsp”
... components and other content ...

“bar.jsp”
... components and other content ...

“main.jsp”
<f:view>

<f:subview id=”aaa”>
<c:import url=”foo.jsp”/>

</f:subview>
<f:subview id=”bbb”>

<c:import url=”foo.jsp”/>
</f:subview>

</f:view>

“foo.jsp”
... components and other content ...
Chapter 9 Integration with JSP 9-35

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.UIComponentTag.
■ The getComponentType() method must return “NamingContainer”.
■ The getRendererType() method must return null.
9-36 JavaServer Faces Specification • February 2004

9.4.12 <f:validateDoubleRange>
Register a DoubleRangeValidator instance on the UIComponent associated with
the closest parent UIComponent custom action.

Syntax

Syntax 1: Maximum only specified
<f:validateDoubleRange maximum=”543.21”/>

Syntax 2: Minimum only specified
<f:validateDoubleRange minimum=”123.45”/>

Syntax 3: Both maximum and minimum are specified
<f:validateDoubleRange maximum=”543.21” minimum=”123.45”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a EditableValueHolder custom action whose value is
(or is convertible to) a double.

■ Must specify either the maximum attribute, the minimum attribute, or both.
■ If both limits are specified, the maximum limit must be greater than the minimum

limit.

Name Expr Type Description

maximum VB double Maximum value allowed for this component

minimum VB double Minimum value allowed for this component
Chapter 9 Integration with JSP 9-37

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createValidator() and register the
returned Validator instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ValidatorTag.
■ The createValidator() method must call the createValidator() method

of the Application instance for this application, passing validator id
“javax.faces.DoubleRange”. It must then cast the returned instance to
javax.faces.validator.DoubleRangeValidator and configure its
properties based on the specified attributes for this custom action, and return the
configured instance.
9-38 JavaServer Faces Specification • February 2004

9.4.13 <f:validateLength>
Register a LengthValidator instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

Syntax 1: Maximum only specified
<f:validateLength maximum=”16”/>

Syntax 2: Minimum only specified
<f:validateLength minimum=”3”/>

Syntax 3: Both maximum and minimum are specified
<f:validateLength maximum=”16” minimum=”3”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a EditableValueHolder custom action whose value is a
String.

■ Must specify either the maximum attribute, the minimum attribute, or both.
■ If both limits are specified, the maximum limit must be greater than the minimum

limit.

Name Expr Type Description

maximum VB int Maximum length allowed for this component

minimum VB int Minimum length allowed for this component
Chapter 9 Integration with JSP 9-39

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createValidator() and register the
returned Validator instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ValidatorTag.
■ The createValidator() method must call the createValidator() method

of the Application instance for this application, passing validator id
“javax.faces.Length”. It must then cast the returned instance to
javax.faces.validator.LengthValidator and configure its properties
based on the specified attributes for this custom action, and return the configured
instance.
9-40 JavaServer Faces Specification • February 2004

9.4.14 <f:validateLongRange>
Register a LongRangeValidator instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

Syntax 1: Maximum only specified
<f:validateLongRange maximum=”543”/>

Syntax 2: Minimum only specified
<f:validateLongRange minimum=”123”/>

Syntax 3: Both maximum and minimum are specified
<f:validateLongRange maximum=”543” minimum=”123”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a EditableValueHolder custom action whose value is
(or is convertible to) a long.

■ Must specify either the maximum attribute, the minimum attribute, or both.
■ If both limits are specified, the maximum limit must be greater than the minimum

limit.

Name Expr Type Description

maximum VB long Maximum value allowed for this component

minimum VB long Minimum value allowed for this component
Chapter 9 Integration with JSP 9-41

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createValidator() and register the
returned Validator instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ValidatorTag.
■ The createValidator() method must call the createValidator() method

of the Application instance for this application, passing validator id
“javax.faces.LongRange”. It must then cast the returned instance to
javax.faces.validator.LongRangeValidator and configure its properties
based on the specified attributes for this custom action, and return the configured
instance.
9-42 JavaServer Faces Specification • February 2004

9.4.15 <f:validator>
Register a named Validator instance on the UIComponent associated with the
closest parent UIComponent custom action.

Syntax

<f:validator validatorId=”validatorId”/>

Body Content

empty

Attributes

Constraints

■ Must be nested inside a UIComponent custom action whose component class
implements EditableValueHolder.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, create, call createValidator() and register the
returned Validator instance on the associated UIComponent.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.webapp.ValidatorTag.
■ The createValidator() method must call the createValidator() method

of the Application instance for this application, passing validator id specified
by the validatorId attribute, and return the configured instance.

Name Expr Type Description

validat
orId

VB String Validator identifier of the validator to be
created.
Chapter 9 Integration with JSP 9-43

9.4.16 <f:valueChangeListener>
Register a ValueChangeListener instance on the UIComponent associated with
the closest parent UIComponent custom action.

Syntax

<f:valueChangeListener type=”fully-qualified-classname”/>

Body Content

empty.

Attributes

Constraints

■ Must be nested inside a UIComponent custom action.
■ The corresponding UIComponent implementation class must implement

EditableValueHolder, and therefore define a public
addValueChangeListener() method that accepts an ValueChangeListener
parameter.

■ The specified listener class must implement
javax.faces.event.ValueChangeListener.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, instantiate an instance of the specified class, and
register it by calling addValueChangeListener().

As an alternative, you may also register a method in a backing bean class to receive
ValueChangeEvent notifications, by using the valueChangeListener attribute
on the corresponding UIComponent custom action.

Name Expr Type Description

type VB String Fully qualified Java class name of a
ValueChangeListener to be created and
registered
9-44 JavaServer Faces Specification • February 2004

9.4.17 <f:verbatim>
Register a child UIOutput instance on the UIComponent associated with the closest
parent UIComponent custom action which renders nested body content.

Syntax

<f:verbatim [escape=”{true|false}”]/>

Body Content

JSP. However, no UIComponent custom actions, or custom actions from the JSF Core
Tag Library, may be nested inside this custom action.

Attributes

Constraints

■ Must be implemented as a UIComponentBodyTag.

Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentTag.getParentUIComponentTag(). If the getCreated() method
of this instance returns true, creates a new UIOutput component, and add it as a
child of the UIComponent associated with the located instance. The rendererType
property of this UIOutput component must be set to “javax.faces.Text”, and the
transient property must be set to true. Also, the value (or value binding, if it is
an expression) of the escape attribute must be passed on to the renderer as the
value the escape attribute on the UIOutput component.

Name Expr Type Description

escape VB boolean If true, generated markup is escaped in a
manner appropriate for the markup language
being rendered. Default value is false.
Chapter 9 Integration with JSP 9-45

9.4.18 <f:view>
Container for all JSF core and component custom actions used on a page.

Syntax

Body Content

JSP. May contain any combination of template text, other JSF custom actions, and
custom actions from other custom tag libraries.

Attributes

Constraints

■ Any JSP-created response using actions from the JSF Core Tag Library, as well as
actions extending javax.faces.webapp.UIComponentTag from other tag
libraries, must be nested inside an occurrence of the <f:view> action.

■ JSP page fragments included via the standard <%@ include %> directive need
not have their JSF actions embedded in a <f:view> action, because the included
template text and custom actions will be processed as part of the outer page as it
is compiled, and the <f:view> action on the outer page will meet the nesting
requirement.

■ JSP pages included via <jsp:include> or any custom action that dynamically
includes another page from the same web application, such as JSTL’s
<c:import>, must use an <f:subview> (either inside the included page itself,
or surrounding the <jsp:include> or custom action that is including the page).

■ If the locale attribute is present, its value overrides the Locale stored in
UIViewRoot, normally set by the ViewHandler, and the doStartTag()
method must store it by calling UIViewRoot.setLocale().

■ The doStartTag() method must call
javax.servlet.jsp.jstl.core.Config.set(), passing the
ServletRequest instance for this request, the constant
javax.servlet.jsp.jstl.core.Config.FMT_LOCALE, and the Locale
returned by calling UIViewRoot.getLocale().

<f:view [locale=”locale”>
Nested template text and custom actions

</f:view>

Name Expr Type Description

locale VB String
or
Locale

Name of a Locale to use for localizing this
page (such as en_uk), or value binding
expression that returns a Locale instance
9-46 JavaServer Faces Specification • February 2004

Description

Provides the JSF implementation a convenient place to perform state saving during
the render response phase of the request processing lifecycle, if the implementation
elects to save state as part of the response.

The implementation class for this action must meet the following requirements:

■ Must extend javax.faces.UIComponentBodyTag.

■ The getComponentType() method must return “ViewRoot”.

■ The getRendererType() method must return null.

Please refer to the javadocs for javax.faces.application.StateManager for
details on what the tag handler for this tag must do to implement state saving.
Chapter 9 Integration with JSP 9-47

9.5 Standard HTML RenderKit Tag Library
All JSF implementations must provide a tag library containing actions that
correspond to each valid combination of a supported component class (see Chapter 4
“Standard User Interface Components”) and a Renderer from the Standard HTML
RenderKit (see Section 8.5 “Standard HTML RenderKit Implementation”) that
supports that component type. The tag library descriptor for this tag library must
meet the following requirements:

■ Must declare a tag library version (<tlib-version>) value of 1.0.
■ Must declare a JSP version dependency (<jsp-version>) value of 1.2.
■ Must declare a URI (<uri>) value of http://java.sun.com/jsf/html.
■ Must be included in the META-INF directory of a JAR file containing the

corresponding implementation classes, suitable for inclusion with a web
application, such that the tag library descriptor will be located automatically by
the algorithm described in Section 7.3 of the JavaServer Pages Specification (version
1.2).

The custom actions defined in this tag library must specify the following return
values for the getComponentType() and getRendererType() methods,
respectively:.

TABLE 9-2 Standard HTML RenderKit Tag Library

getComponentType() getRendererType() custom action name

javax.faces.Column (null)* column

javax.faces.HtmlComma
ndButton

javax.faces.Button commandButton

javax.faces.HtmlComma
ndLink

javax.faces.Link commandLink

javax.faces.HtmlDataTab
le

javax.faces.Table dataTable

javax.faces.HtmlForm javax.faces.Form form

javax.faces.HtmlGraphicI
mage

javax.faces.Image graphicImage

javax.faces.HtmlInputHi
dden

javax.faces.Hidden inputHidden

javax.faces.HtmlInputSec
ret

javax.faces.Secret inputSecret

javax.faces.HtmlInputTe
xt

javax.faces.Text inputText
9-48 JavaServer Faces Specification • February 2004

The tag library descriptor for this tag library (and the corresponding tag handler
implementation classes) must meet the following requirements:

javax.faces.HtmlInputTe
xtarea

javax.faces.Textarea inputTextarea

javax.faces.HtmlMessage javax.faces.Message message

javax.faces.HtmlMessage
s

javax.faces.Messages messages

javax.faces.HtmlOutputF
ormat

javax.faces.Format outputFormat

javax.faces.HtmlOutputL
abel

javax.faces.Label outputLabel

javax.faces.HtmlOutputL
ink

javax.faces.Link outputLink

javax.faces.HtmlOutputT
ext

javax.faces.Text outputText

javax.faces.HtmlPanelGri
d

javax.faces.Grid panelGrid

javax.faces.HtmlPanelGr
oup

javax.faces.Group panelGroup

javax.faces.HtmlSelectBo
oleanCheckbox

javax.faces.Checkbox selectBooleanCheckbox

javax.faces.HtmlSelectM
anyCheckbox

javax.faces.Checkbox selectManyCheckbox

javax.faces.HtmlSelectM
anyListbox

javax.faces.Listbox selectManyListbox

javax.faces.HtmlSelectM
anyMenu

javax.faces.Menu selectManyMenu

javax.faces.HtmlSelectOn
eListbox

javax.faces.Listbox selectOneListbox

javax.faces.HtmlSelectOn
eMenu

javax.faces.Menu selectOneMenu

javax.faces.HtmlSelectOn
eRadio

javax.faces.Radio selectOneRadio

* This component has no associated Renderer, so the getRendererType() method must return null
instead of a renderer type.

TABLE 9-2 Standard HTML RenderKit Tag Library

getComponentType() getRendererType() custom action name
Chapter 9 Integration with JSP 9-49

■ The tag library descriptor must provide attribute declarations, and a the tag
handler implementation class must provide a public setter method taking a
String parameter, for the render-independent properties of the corresponding
components, and render-dependent properties of the corresponding renderers.

■ The tag library descriptor entry for each attribute must specify an
<rtexprvalue> of false.

■ For a non-null action attribute on custom actions related to UICommand
components (commandButton, commandLink), the setProperties() method
of the tag handler implementation class must:

■ If the specified String value is not a value binding expression, create a
MethodBinding instance that will return this value when its invoke()
method is called, and store it as the value of the action attribute on the
underlying component.

■ Otherwise, create a MethodBinding instance for the specified expression, and
store that instance as the value of the action attribute on the underlying
component.

■ For other non-null attributes that correspond to MethodBinding attributes on
the underlying components (actionListener, validator,
valueChangeListener), the setProperties() method of the tag handler
implementation class must:

■ Throw an exception if the specified String value is not a value binding
expression.

■ Create a MethodBinding instance for the specified expression, and store that
instance as the value of the corresponding component property.

■ For any non-null id, scope, or var attribute, the setProperties() method of
the tag handler implementation class must simply set the value of the
corresponding component attribute.

■ For all other non-null attributes, the setProperties() of the tag handler
implementation class method must:

■ If the specified String value is not a value binding expression, set the
corresponding attribute on the underlying component (after performing any
necessary type conversion).

■ If the specified String value is a value binding expression, create a
ValueBinding instance for that expression, and call the
setValueBinding() method on the underlying component, passing the
attribute name and the ValueBinding instance as parameters.
9-50 JavaServer Faces Specification • February 2004

CHAPTER1010

Using JSF in Web Applications

This specification provides JSF implementors significant freedom to differentiate
themselves through innovative implementation techniques, as well as value-added
features. However, to ensure that web applications based on JSF can be executed
unchanged across different JSF implementations, the following additional
requirements, defining how a JSF-based web application is assembled and
configured, must be supported by all JSF implementations.

10.1 Web Application Deployment Descriptor
JSF-based applications are web applications that conform to the requirements of the
Java Servlet Specification (version 2.3 or later), and also use the facilities defined in
this specification. Conforming web applications are packaged in a web application
archive (WAR), with a well-defined internal directory structure. A key element of a
WAR is the web application deployment descriptor, an XML document that describes the
configuration of the resources in this web application. This document is included in
the WAR file itself, at resource path /WEB-INF/web.xml.

Portable JSF-based web applications must include the following configuration
elements, in the appropriate portions of the web application deployment descriptor.
Element values that are rendered in italics represent values that the application
developer is free to choose. Element values rendered in bold represent values that
must be utilized exactly as shown.

Executing the request processing lifecycle via other mechanisms is also allowed (for
example, an MVC-based application framework can incorporate calling the correct
phase implementations in the correct order); however, all JSF implementations must
support the functionality described in this chapter to ensure application portability.
10-1

10.1.1 Servlet Definition
JSF implementations must provide request processing lifecycle services through a
standard servlet, defined by this specification. This servlet must be defined, in the
deployment descriptor of an application that wishes to employ this portable
mechanism, as follows:

The servlet name, denoted as faces-servlet-name above, may be any desired
value; however, the same value must be used in the servlet mapping (see
Section 10.1.2 “Servlet Mapping”).

In addition to FacesServlet, JSF implementations may support other ways to
invoke the JavaServer Faces request processing lifecycle, but applications that rely
on these mechanisms will not be portable.

10.1.2 Servlet Mapping
All requests to a web application are mapped to a particular servlet based on
matching a URL pattern (as defined in the Java Servlet Specification) against the
portion of the request URL after the context path that selected this web application.
JSF implementations must support web application that define a <servlet-
mapping> that maps any valid url-pattern to the FacesServlet. Prefix or
extension mapping may be used. When using prefix mapping, the following
mapping is recommended, but not required:

<servlet>
<servlet-name> faces-servlet-name </servlet-name>
<servlet-class>

javax.faces.webapp.FacesServlet
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name> faces-servlet-name </servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>
10-2 JavaServer Faces Specification • February 2004

When using extension mapping the following mapping is recommended, but not
required:

In addition to FacesServlet, JSF implementations may support other ways to
invoke the JavaServer Faces request processing lifecycle, but applications that rely
on these mechanisms will not be portable.

10.1.3 Application Configuration Parameters
Servlet containers support application configuration parameters that may be
customized by including <context-param> elements in the web application
deployment descriptor. All JSF implementations are required to support the
following application configuration parameter names:

■ javax.faces.CONFIG_FILES -- Comma-delimited list of context-relative
resource paths under which the JSF implementation will look for application
configuration resources (see Section 10.3.3 “Application Configuration Resource
Format”), before loading a configuration resource named “/WEB-INF/faces-
config.xml” (if such a resource exists).

■ javax.faces.DEFAULT_SUFFIX -- The default suffix for extension-mapped
resources that contain JSF components. If not specified, the default value “.jsp”
must be used.

■ javax.faces.LIFECYCLE_ID -- Lifecycle identifier of the Lifecycle instance
to be used when processing JSF requests for this web application. If not specified,
the JSF default instance, identified by
LifecycleFactory.DEFAULT_LIFECYCLE, must be used.

■ javax.faces.STATE_SAVING_METHOD -- The location where state information
is saved. Valid values are “server” (typically saved in HttpSession) and “client
(typically saved as a hidden field in the subsequent form submit). If not specified,
the default value “server” must be used.

JSF implementations may choose to support additional configuration parameters, as
well as additional mechanisms to customize the JSF implementation; however,
applications that rely on these facilities will not be portable to other JSF
implementations.

<servlet-mapping>
<servlet-name> faces-servlet-name </servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>
Chapter 10 Using JSF in Web Applications 10-3

10.2 Included Classes and Resources
A JSF-based application will rely on a combination of APIs, and corresponding
implementation classes and resources, in addition to its own classes and resources.
The web application archive structure identifies two standard locations for classes
and resources that will be automatically made available when a web application is
deployed:

■ /WEB-INF/classes -- A directory containing unpacked class and resource files.

■ /WEB-INF/lib -- A directory containing JAR files that themselves contain class
files and resources.

In addition, servlet and portlet containers typically provide mechanisms to share
classes and resources across one or more web applications, without requiring them
to be included inside the web application itself.

The following sections describe how various subsets of the required classes and
resources should be packaged, and how they should be made available.

10.2.1 Application-Specific Classes and Resources
Application-specific classes and resources should be included in /WEB-
INF/classes or /WEB-INF/lib, so that they are automatically made available
upon application deployment.

10.2.2 Servlet and JSP API Classes (javax.servlet.*)
These classes will typically be made available to all web applications using the
shared class facilities of the servlet container. Therefore, these classes should not be
included inside the web application archive.

10.2.3 JSP Standard Tag Library (JSTL) API Classes
(javax.servlet.jsp.jstl.*)
These classes describe the APIs for the JSP Standard Tag Library. They are generally
packaged in a JAR file named jstl.jar (although this name is not required). The
JSTL API classes should be installed using the shared class facility of your servlet
container; however, they may also be included inside the web application archive (in
the /WEB-INF/lib directory).
10-4 JavaServer Faces Specification • February 2004

At some future time, JSP Standard Tag Library might become part of the Java2
Enterprise Edition (J2EE) platform, at which time the container will be required to
provide these classes through a shared class facility.

10.2.4 JSP Standard Tag Library (JSTL) Implementation
Classes
These classes and resources comprise the implementation of the JSTL APIs that is
provided by a JSTL implementor. Typically, such classes will be provided in the form
of one or more JAR files, which can be either installed with the container’s shared
class facility, or included inside the web application archive (in the /WEB-INF/lib
directory).

10.2.5 JavaServer Faces API Classes (javax.faces.*)
These classes describe the fundamental APIs provided by all JSF implementations.
They are generally packaged in a JAR file named jsf-api.jar (although this name
is not required). The JSF API classes should be installed using the shared classes
facility of your servlet container; however, they may also be included inside the web
application archive (in the /WEB-INF/lib directory).

At some future time, JavaServer Faces might become part of the Java2 Enterprise
Edition (J2EE) platform, at which time the container will be required to provide
these classes through a shared class facility.

10.2.6 JavaServer Faces Implementation Classes
These classes and resources comprise the implementation of the JSF APIs that is
provided by a JSF implementor. Typically, such classes will be provided in the form of
one or more JAR files, which can be either installed with the container’s shared class
facility, or included in the /WEB-INF/lib directory of a web application archive.

10.2.6.1 FactoryFinder

javax.faces.FactoryFinder implements the standard discovery algorithm for
all factory objects specified in the JavaServer Faces APIs. For a given factory class
name, a corresponding implementation class is searched for based on the following
algorithm. Items are listed in order of decreasing search precedence:
Chapter 10 Using JSF in Web Applications 10-5

1. If a default JavaServer Faces configuration file (/WEB-INF/faces-config.xml) is
bundled into the web application, and it contains a factory entry of the
given factory class name, that factory class is used.

2. If the JavaServer Faces configuration resource(s) named by the
javax.faces.CONFIG_FILES ServletContext init parameter (if any) contain
any factory entries of the given factory class name, those factories are used, with
the last one taking precedence.

3. If there are any META-INF/faces-config.xml resources bundled any JAR files in
the web ServletContext’s resource paths, the factory entries of the given
factory class name in those files are used, with the last one taking precedence.

4. If a META-INF/services/{factory-class-name} resource is visible to the
web application class loader for the calling application (typically as a result of
being present in the manifest of a JAR file), its first line is read and assumed to be
the name of the factory implementation class to use.

5. If none of the above steps yield a match, the JavaServer Faces implementation
specific class is used.

If any of the factories found on any of the steps above happen to have a one-
argument constructor, with argument the type being the abstract factory class, that
constructor is invoked, and the previous match is passed to the constructor. For
example, say the container vendor provided an implementation of
FacesContextFactory, and identified it in META-
INF/services/javax.faces.context.FacesContextFactory in a jar on the
webapp ClassLoader. Also say this implementation provided by the container
vendor had a one argument constructor that took a FacesContextFactory
instance. The FactoryFinder system would call that one-argument constructor,
passing the implementation of FacesContextFactory provided by the JavaServer
Faces implementation.

If a Factory implementation does not provide a proper one-argument constructor, it
must provide a zero-arguments constructor in order to be successfully instantiated.

Once the name of the factory implementation class is located, the web application
class loader for the calling application is requested to load this class, and a
corresponding instance of the class will be created. A side effect of this rule is that
each web application will receive its own instance of each factory class, whether the
JavaServer Faces implementation is included within the web application or is made
visible through the container's facilities for shared libraries.

Create (if necessary) and return a per-web-application instance of the appropriate
implementation class for the specified JavaServer Faces factory class, based on the
discovery algorithm described above.

public static Object getFactory(String factoryName);
10-6 JavaServer Faces Specification • February 2004

JSF implementations must also include implementations of the several factory
classes. In order to be dynamically instantiated according to the algorithm defined
above, the factory implementation class must include a public, no-arguments
constructor. Factory class implementations must be provided for the following
factory names:

■ javax.faces.application.ApplicationFactory
(FactoryFinder.APPLICATION_FACTORY)—Factory for Application
instances.

■ javax.faces.context.FacesContextFactory
(FactoryFinder.FACES_CONTEXT_FACTORY)—Factory for FacesContext
instances.

■ javax.faces.lifecycle.LifecycleFactory
(FactoryFinder.LIFECYCLE_FACTORY)—Factory for Lifecycle instances.

■ javax.faces.render.RenderKitFactory
(FactoryFinder.RENDER_KIT_FACTORY)—Factory for RenderKit instances.

10.2.6.2 FacesServlet

FacesServlet is an implementation of javax.servlet.Servlet that accepts
incoming requests and passes them to the appropriate Lifecycle implementation
for processing. This servlet must be declared in the web application deployment
descriptor, as described in Section 10.1.1 “Servlet Definition”, and mapped to a
standard URL pattern as described in Section 10.1.2 “Servlet Mapping”.

Acquire and store references to the FacesContextFactory and Lifecycle
instances to be used in this web application.

Release the FacesContextFactory and Lifecycle references that were acquired
during execution of the init() method.

For each incoming request, the following processing is performed:

■ Using the FacesContextFactory instance stored during the init() method,
call the getFacesContext() method to acquire a FacesContext instance with
which to process the current request.

public void init(ServletConfig config) throws ServletException;

public void destroy();

public void service(ServletRequest request, ServletResponse
response) throws IOException, ServletException;
Chapter 10 Using JSF in Web Applications 10-7

■ Call the execute() method of the saved Lifecycle instance, passing the
FacesContext instance for this request as a parameter. If the execute()
method throws a FacesException, re-throw it as a ServletException with
the FacesException as the root cause.

■ Call the render() method of the saved Lifecycle instance, passing the
FacesContext instance for this request as a parameter. If the render() method
throws a FacesException, re-throw it as a ServletException with the
FacesException as the root cause.

■ Call the release() method on the FacesContext instance, allowing it to be
returned to a pool if the JSF implementation uses one.

The FacesServlet implementation class must also declare two static public final
String constants whose value is a context initialization parameter that affects the
behavior of the servlet:
■ CONFIG_FILES_ATTR -- the context initialization attribute that may optionally

contain a comma-delimited list of context relative resources (in addition to /WEB-
INF/faces-config.xml which is always processed if it is present) to be
processed. The value of this constant must be “javax.faces.CONFIG_FILES”.

■ LIFECYCLE_ID_ATTR -- the lifecycle identifier of the Lifecycle instance to be
used for processing requests to this application, if an instance other than the
default is required. The value of this constant must be
“javax.faces.LIFECYCLE_ID”.

10.2.6.3 UIComponentTag

UIComponentTag is an implementation of javax.servlet.jsp.tagext.Tag,
and must be the base class for any JSP custom action that corresponds to a JSF
UIComponent. See Chapter 9 “Integration with JSP, and the Javadocs for
UIComponentTag, for more information about using this class as the base class for
your own UIComponent custom action classes.

10.2.6.4 UIComponentBodyTag

UIComponentBodyTag is a subclass of UIComponentTag, so it inherits all of the
functionality described in the preceding section. In addition, this class implements
the standard functionality provided by javax.servlet.jsp.BodyTagSupport,
so it is useful as the base class for JSF custom action implementations that must
process their body content. See Chapter 9 “Integration with JSP, and the Javadocs for
UIComponentBodyTag, for more information about using this class as the base class
for your own UIComponent custom action classes
10-8 JavaServer Faces Specification • February 2004

10.2.6.5 AttributeTag

JSP custom action that adds a named attribute (if necessary) to the UIComponent
associated with the closest parent UIComponent custom action. See Section 9.4.2
“<f:attribute>”.

10.2.6.6 ConverterTag

JSP custom action (and convenience base class) that creates and registers a
Converter instance on the UIComponent associated with the closest parent
UIComponent custom action. See Section 9.4.3 “<f:convertDateTime>”, Section 9.4.4
“<f:convertNumber>”, and Section 9.4.5 “<f:converter>”.

10.2.6.7 FacetTag

JSP custom action that adds a named facet (see Section 3.1.9 “Facet Management”) to
the UIComponent associated with the closest parent UIComponent custom action.
See Section 9.4.6 “<f:facet>”.

10.2.6.8 ValidatorTag

JSP custom action (and convenience base class) that creates and registers a
Validator instance on the UIComponent associated with the closest parent
UIComponent custom action. See Section 9.4.12 “<f:validateDoubleRange>”,
Section 9.4.13 “<f:validateLength>”, Section 9.4.14 “<f:validateLongRange>”, and
Section 9.4.15 “<f:validator>”.

10.3 Application Configuration Resources
This section describes the JSF support for portable application configuration
resources used to configure application components.
Chapter 10 Using JSF in Web Applications 10-9

10.3.1 Overview
JSF defines a portable configuration resource format (as an XML document) for
standard configuration information. One or more such application resources will be
loaded automatically, at application startup time, by the JSF implementation. The
information parsed from such resources will augment the information provided by
the JSF implementation, as described below.

In addition to their use during the execution of a JSF-based web application,
configuration resources provide information that is useful to development tools
created by Tool Providers. The mechanism by which configuration resources are
made available to such tools is outside the scope of this specification.

10.3.2 Application Startup Behavior
At application startup time, before any requests are processed, the JSF
implementation must process zero or more application configuration resources,
located according to the following algorithm:

■ Search for all resources named “META-INF/faces-config.xml” in the
ServletContext resource paths for this web application, and load each as a JSF
configuration resource (in reverse order of the order in which they are returned
by getResources()).

■ Check for the existence of a context initialization parameter named
javax.faces.CONFIG_FILES. If it exists, treat it as a comma-delimited list of
context relative resource paths (starting with a “/”), and load each of the specfied
resources.

■ Check for the existence of a web application configuration resource named
“/WEB-INF/faces-config.xml”, and load it if the resource exists.

This algorithm provides considerable flexibility for developers that are assembling
the components of a JSF-based web application. For example, an application might
include one or more custom UIComponent implementations, along with associated
Renderers, so it can declare them in an application resource named “/WEB-
INF/faces-config.xml” with no need to programmatically register them with
Application instance. In addition, the application might choose to include a
component library (packaged as a JAR file) that includes a “META-INF/faces-
config.xml” resource. The existence of this resource causes components, renderers,
and other JSF implementation classes that are stored in this library JAR file to be
automatically registered, with no action required by the application.
10-10 JavaServer Faces Specification • February 2004

XML parsing errors detected during the loading of an application resource file are
fatal to application startup, and must cause the application to not be made available
by the container. Whether or not a validating parse is performed is up to the JSF
implementation; it is recommended that the JSF implementation provide a
configuration parameter to control whether or not validation occurs.

10.3.3 Application Configuration Resource Format
Application configuration resources must conform to the XML document description
shown below. In addition, they must include the one of the following DOCTYPE
declarations:

The only difference between the 1.0 and 1.1 DTDs is the presence of facet support in
1.1. 1.1 is backwards compatible with 1.0. The actual Document Type Description
that corresponds to the 1.1 DOCTYPE declaration is as follows. Please see the binary
distribution for the 1.0 DTD:

<!--

 Copyright 2004 Sun Microsystems, Inc. All rights reserved.

 SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

-->

<!--

 DTD for the JavaServer Faces Application Configuration File
(Version 1.1)

<!DOCTYPE faces-config PUBLIC
“-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN”
“http://java.sun.com/dtd/web-facesconfig_1_0.dtd”>

<!DOCTYPE faces-config PUBLIC
“-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN”
“http://java.sun.com/dtd/web-facesconfig_1_1.dtd”>
Chapter 10 Using JSF in Web Applications 10-11

 To support validation of your configuration file(s),
include the following

 DOCTYPE element at the beginning (after the “xml”
declaration):

 <!DOCTYPE faces-config PUBLIC

 “-//Sun Microsystems, Inc.//DTD JavaServer Faces Config
1.1//EN”

 “http://java.sun.com/dtd/web-facesconfig_1_1.dtd”>

 $Id: web-facesconfig_1_1.dtd,v 1.2 2004/04/09 18:11:35
eburns Exp $

-->

<!-- ==================== Defined Types =======================
============ -->

<!--

 An “Action” is a String that represents a method binding

 expression that points at a method with no arguments that
returns a

 String. It must be bracketed with “#{}”, for example,

 “#{cardemo.buyCar}”.

-->

<!ENTITY % Action “CDATA”>
10-12 JavaServer Faces Specification • February 2004

<!--

 A “ClassName” is the fully qualified name of a Java class
that is

 instantiated to provide the functionality of the enclosing
element.

-->

<!ENTITY % ClassName “CDATA”>

<!--

 An “Identifier” is a string of characters that conforms to
the variable

 naming conventions of the Java programming language (JLS
Section ?.?.?).

-->

<!ENTITY % Identifier “CDATA”>

<!--

 A “JavaType” is either the fully qualified name of a Java
class that is

 instantiated to provide the functionality of the enclosing
element, or

 the name of a Java primitive type (such as int or char).
The class name

 or primitive type may optionally be followed by “[]” to
indicate that

 the underlying data must be an array, rather than a scalar
variable.

-->

<!ENTITY % JavaType “CDATA”>
Chapter 10 Using JSF in Web Applications 10-13

<!--

 A “Language” is a lower case two-letter code for a language
as defined

 by ISL-639.

-->

<!ENTITY % Language “CDATA”>

<!--

 A “ResourcePath” is the relative or absolute path to a
resource file

 (such as a logo image).

-->

<!ENTITY % ResourcePath “CDATA”>

<!--

 A “Scope” is the well-known name of a scope in which
managed beans may

 optionally be defined to be created in.

-->

<!ENTITY % Scope “(request|session|application)”>

<!--

 A “ScopeOrNone” element defines the legal values for the
10-14 JavaServer Faces Specification • February 2004

 <managed-bean-scope> element’s body content, which includes

 all of the scopes respresented by the “Scope” type, plus
the

 “none” value indicating that a created bean should not be

 stored into any scope.

-->

<!ENTITY % ScopeOrNone “(request|session|application|none)”>

<!--

 A “ViewIdPattern” is a pattern for matching view
identifiers in

 order to determine whether a particular navigation rule
should be

 fired. It must contain one of the following values:

 - The exact match for a view identifier that is recognized

 by the the ViewHandler implementation being used (such as

 “/index.jsp” if you are using the default ViewHandler).

 - A proper prefix of a view identifier, plus a trailing “*”

 character. This pattern indicates that all view
identifiers that

 match the portion of the pattern up to the asterisk will
match the

 surrounding rule. When more than one match exists, the
match with

 the longest pattern is selected.

 - An “*” character, which means that this pattern applies
to all
Chapter 10 Using JSF in Web Applications 10-15

 view identifiers.

-->

<!ENTITY % ViewIdPattern “CDATA”>

<!-- ==================== Top Level Elements ==================
============ -->

<!--

 The “faces-config” element is the root of the configuration
information

 hierarchy, and contains nested elements for all of the
other configuration

 settings.

-->

<!ELEMENT faces-config
((application|factory|component|converter|managed-
bean|navigation-rule|referenced-bean|render-
kit|lifecycle|validator)*)>

<!ATTLIST faces-config

 xmlns CDATA #FIXED
“http://java.sun.com/JSF/Configuration”>

<!-- ==================== Definition Elements =================
============ -->

<!--
10-16 JavaServer Faces Specification • February 2004

 The “application” element provides a mechanism to define
the various

 per-application-singleton implementation artifacts for a
particular web

 application that is utilizing JavaServer Faces. For nested
elements

 that are not specified, the JSF implementation must provide
a suitable

 default.

-->

<!ELEMENT application ((action-listener|default-render-kit-
id|message-bundle|navigation-handler|view-handler|state-
manager|property-resolver|variable-resolver|locale-config)*)>

<!--

 The “factory” element provides a mechanism to define the
various

 Factories that comprise parts of the implementation of
JavaServer

 Faces. For nested elements that are not specified, the JSF

 implementation must provide a suitable default.

-->

<!ELEMENT factory ((application-factory|faces-context-
factory|lifecycle-factory|render-kit-factory)*)>

<!--

 The “attribute” element represents a named, typed, value
associated with

 the parent UIComponent via the generic attributes
mechanism.
Chapter 10 Using JSF in Web Applications 10-17

 Attribute names must be unique within the scope of the
parent (or related)

 component.

-->

<!ELEMENT attribute (description*, display-name*, icon*,
attribute-name, attribute-class, default-value?, suggested-
value?, attribute-extension*)>

<!--

 Extension element for attribute. May contain
implementation

 specific content.

-->

<!ELEMENT attribute-extension ANY>

<!--

 The “component” element represents a concrete UIComponent
implementation

 class that should be registered under the specified type
identifier,

 along with its associated properties and attributes.
Component types must

 be unique within the entire web application.

 Nested “attribute” elements identify generic attributes
that are recognized

 by the implementation logic of this component. Nested
“property” elements

 identify JavaBeans properties of the component class that
may be exposed
10-18 JavaServer Faces Specification • February 2004

 for manipulation via tools.

-->

<!ELEMENT component (description*, display-name*, icon*,
component-type, component-class, facet*, attribute*, property*,
component-extension*)>

<!--

 Extension element for component. May contain
implementation

 specific content.

-->

<!ELEMENT component-extension ANY>

<!--

 Define the name and other design-time information for a
facet that is

 associated with a renderer or a component.

-->

<!ELEMENT facet (description*, display-name*, icon*,
facet-name, facet-extension*)>

<!--

 Extension element for facet. May contain implementation

 specific content.

-->

<!ELEMENT facet-extension ANY>

<!--
Chapter 10 Using JSF in Web Applications 10-19

 The “facet-name” element represents the facet name under
which a

 UIComponent will be added to its parent. It must be of
type

 “Identifier”.

-->

<!ELEMENT facet-name (#PCDATA)>

<!--

 The “converter” element represents a concrete Converter
implementation

 class that should be registered under the specified
converter identifier.

 Converter identifiers must be unique within the entire web
application.

 Nested “attribute” elements identify generic attributes
that may be

 configured on the corresponding UIComponent in order to
affect the

 operation of the Converter. Nested “property” elements
identify JavaBeans

 properties of the Converter implementation class that may
be configured

 to affect the operation of the Converter.

-->

<!ELEMENT converter (description*, display-name*, icon*,
(converter-id | converter-for-class), converter-class,
attribute*, property*)>

<!--
10-20 JavaServer Faces Specification • February 2004

 The “icon” element contains “small-icon” and “large-icon”
elements that

 specify the resoruce paths for small and large GIF or JPG
icon images

 used to represent the parent element in a GUI tool.

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!ATTLIST icon xml:lang %Language;
#IMPLIED>

<!--

 The “lifecycle” element provides a mechanism to specify

 modifications to the behaviour of the default Lifecycle

 implementation for this web application.

-->

<!ELEMENT lifecycle (phase-listener*)>

<!--

 The “locale-config” element allows the app developer to
declare the

 supported locales for this application.

-->

<!ELEMENT locale-config (default-locale?, supported-locale*)>

<!--

 The “managed-bean” element represents a JavaBean, of a
particular class,

 that will be dynamically instantiated at runtime (by the
default

 VariableResolver implementation) if it is referenced as the
first element
Chapter 10 Using JSF in Web Applications 10-21

 of a value binding expression, and no corresponding bean
can be

 identified in any scope. In addition to the creation of
the managed bean,

 and the optional storing of it into the specified scope,
the nested

 managed-property elements can be used to initialize the
contents of

 settable JavaBeans properties of the created instance.

-->

<!ELEMENT managed-bean (description*, display-name*, icon*,
managed-bean-name, managed-bean-class, managed-bean-scope,
(managed-property* | map-entries | list-entries))>

<!--

 The “managed-property” element represents an individual
property of a

 managed bean that will be configured to the specified value
(or value set)

 if the corresponding managed bean is automatically created.

-->

<!ELEMENT managed-property (description*, display-name*, icon*,
property-name, property-class?, (map-entries|null-
value|value|list-entries))>

<!--

 The “map-entry” element reprsents a single key-entry pair
that

 will be added to the computed value of a managed property
of type

 java.util.Map.
10-22 JavaServer Faces Specification • February 2004

-->

<!ELEMENT map-entry (key, (null-value|value))>

<!--

 The “map-entries’ element represents a set of key-entry
pairs that

 will be added to the computed value of a managed property
of type

 java.util.Map. In addition, the Java class types of the
key and entry

 values may be optionally declared.

-->

<!ELEMENT map-entries (key-class?, value-class?, map-entry*)>

<!--

 The base name of a resource bundle representing the message
resources

 for this application. See the JavaDocs for the
“java.util.ResourceBundle”

 class for more information on the syntax of resource bundle
names.

-->

<!ELEMENT message-bundle (#PCDATA)>

<!--

 The “navigation-case” element describes a particular
combination of
Chapter 10 Using JSF in Web Applications 10-23

 conditions that must match for this case to be executed,
and the

 view id of the component tree that should be selected next.

-->

<!ELEMENT navigation-case (description*, display-name*, icon*,
from-action?, from-outcome?, to-view-id, redirect?)>

<!--

 The “navigation-rule” element represents an individual
decision rule

 that will be utilized by the default NavigationHandler

 implementation to make decisions on what view should be
displayed

 next, based on the view id being processed.

-->

<!ELEMENT navigation-rule (description*, display-name*, icon*,
from-view-id?, navigation-case*)>

<!--

 The “property” element represents a JavaBean property of
the Java class

 represented by our parent element.

 Property names must be unique within the scope of the Java
class

 that is represented by the parent element, and must
correspond to

 property names that will be recognized when performing
introspection
10-24 JavaServer Faces Specification • February 2004

 against that class via java.beans.Introspector.

-->

<!ELEMENT property (description*, display-name*, icon*,
property-name, property-class, default-value?, suggested-value?,
property-extension*)>

<!--

 Extension element for property. May contain implementation

 specific content.

-->

<!ELEMENT property-extension ANY>

<!--

 The “referenced-bean” element represents at design time the
promise

 that a Java object of the specified type will exist at
runtime in some

 scope, under the specified key. This can be used by design
time tools

 to construct user interface dialogs based on the properties
of the

 specified class. The presence or absence of a referenced
bean

 element has no impact on the JavaServer Faces runtime
environment

 inside a web application.

-->

<!ELEMENT referenced-bean (description*, display-name*, icon*,
referenced-bean-name, referenced-bean-class)>
Chapter 10 Using JSF in Web Applications 10-25

<!--

 The “render-kit” element represents a concrete RenderKit
implementation

 that should be registered under the specified render-kit-
id. If no

 render-kit-id is specified, the identifier of the default
RenderKit

 (RenderKitFactory.DEFAULT_RENDER_KIT) is assumed.

-->

<!ELEMENT render-kit (description*, display-name*, icon*,
render-kit-id?, render-kit-class?, renderer*)>

<!--

 The “renderer” element represents a concrete Renderer
implementation

 class that should be registered under the specified
component family

 and renderer type identifiers, in the RenderKit associated
with the

 parent “render-kit” element. Combinations of component
family and renderer

 type must be unique within the RenderKit associated with
the parent

 “render-kit” element.

 Nested “attribute” elements identify generic component
attributes that

 are recognized by this renderer.

-->

<!ELEMENT renderer (description*, display-name*, icon*,
component-family, renderer-type, renderer-class, facet*,
attribute*, renderer-extension*)>
10-26 JavaServer Faces Specification • February 2004

<!--

 Extension element for renderer. May contain implementation

 specific content.

-->

<!ELEMENT renderer-extension ANY>

<!--

 The “validator” element represents a concrete Validator
implementation

 class that should be registered under the specified
validator identifier.

 Validator identifiers must be unique within the entire web
application.

 Nested “attribute” elements identify generic attributes
that may be

 configured on the corresponding UIComponent in order to
affect the

 operation of the Validator. Nested “property” elements
identify JavaBeans

 properties of the Validator implementation class that may
be configured

 to affect the operation of the Validator.

-->

<!ELEMENT validator (description*, display-name*, icon*,
validator-id, validator-class, attribute*, property*)>

<!--
Chapter 10 Using JSF in Web Applications 10-27

 The “list-entries” element represents a set of
initialization

 elements for a managed property that is a java.util.List or
an

 array. In the former case, the “value-class” element can
optionally

 be used to declare the Java type to which each value should
be

 converted before adding it to the Collection.

-->

<!ELEMENT list-entries (value-class?, (null-value|value)*)>

<!-- ==================== Subordinate Elements ================
============ -->

<!--

 The “action-listener” element contains the fully qualified
class name

 of the concrete ActionListener implementation class that
will be called

 during the Invoke Application phase of the request
processing lifecycle.

 It must be of type “ClassName”.

-->

<!ELEMENT action-listener (#PCDATA)>

<!--

 The “application-factory” element contains the fully
qualified class
10-28 JavaServer Faces Specification • February 2004

 name of the concrete ApplicationFactory implementation
class that

 will be called when
FactoryFinder.getFactory(APPLICATION_FACTORY) is

 called. It must be of type “ClassName”.

-->

<!ELEMENT application-factory (#PCDATA)>

<!--

 The “attribute-class” element represents the Java type of
the value

 associated with this attribute name. It must be of type
“ClassName”.

-->

<!ELEMENT attribute-class (#PCDATA)>

<!--

 The “attribute-name” element represents the name under
which the

 corresponding value will be stored, in the generic
attributes of the

 UIComponent we are related to.

-->

<!ELEMENT attribute-name (#PCDATA)>

<!--

 The “component-class” element represents the fully
qualified class name
Chapter 10 Using JSF in Web Applications 10-29

 of a concrete UIComponent implementation class. It must be
of

 type “ClassName”.

-->

<!ELEMENT component-class (#PCDATA)>

<!--

 The “component-family” element represents the component
family for

 which the Renderer represented by the parent “renderer”
element will be

 used.

-->

<!ELEMENT component-family (#PCDATA)>

<!--

 The “component-type” element represents the name under
which the

 corresponding UIComponent class should be registered.

-->

<!ELEMENT component-type (#PCDATA)>

<!--

 The “converter-class” element represents the fully
qualified class name

 of a concrete Converter implementation class. It must be
of

 type “ClassName”.
10-30 JavaServer Faces Specification • February 2004

-->

<!ELEMENT converter-class (#PCDATA)>

<!--

 The “converter-for-class” element represents the fully
qualified class name

 for which a Converter class will be registered. It must
be of

 type “ClassName”.

-->

<!ELEMENT converter-for-class (#PCDATA)>

<!--

 The “converter-id” element represents the identifier under
which the

 corresponding Converter class should be registered.

-->

<!ELEMENT converter-id (#PCDATA)>

<!--

 The “default-render-kit-id” element allows the application
to define

 a renderkit to be used other than the standard one.

-->

<!ELEMENT default-render-kit-id (#PCDATA)>

<!--
Chapter 10 Using JSF in Web Applications 10-31

 The “default-locale” element declares the default locale
for this

 application instance. It must be specified as

 :language:[_:country:[_:variant:]] without the colons, for
example

 “ja_JP_SJIS”. The separators between the segments may be
‘-’ or

 ‘_’.

-->

<!ELEMENT default-locale (#PCDATA)>

<!--

 The “default-value” contains the value for the property or
attribute

 in which this element resides. This value differs from the

 “suggested-value” in that the property or attribute must
take the

 value, whereas in “suggested-value” taking the value is
optional.

-->

<!ELEMENT default-value (#PCDATA)>

<!--

 The “description” element contains a textual description of
the element

 it is nested in, optionally flagged with a language code
using the

 “xml:lang” attribute.

-->

<!ELEMENT description ANY>
10-32 JavaServer Faces Specification • February 2004

<!ATTLIST description xml:lang %Language;
#IMPLIED>

<!--

 The “display-name” element is a short descriptive name
describing the

 entity associated with the element it is nested in,
intended to be

 displayed by tools, and optionally flagged with a language
code using

 the “xml:lang” attribute.

-->

<!ELEMENT display-name (#PCDATA)>

<!ATTLIST display-name xml:lang %Language;
#IMPLIED>

<!--

 The “faces-context-factory” element contains the fully
qualified

 class name of the concrete FacesContextFactory
implementation class

 that will be called when

 FactoryFinder.getFactory(FACES_CONTEXT_FACTORY) is called.
It must

 be of type “ClassName”.

-->

<!ELEMENT faces-context-factory (#PCDATA)>

<!--
Chapter 10 Using JSF in Web Applications 10-33

 The “from-action” element contains an action reference
expression

 that must have been executed (by the default ActionListener
for handling

 application level events) in order to select this
navigation rule. If

 not specified, this rule will be relevant no matter which
action reference

 was executed (or if no action reference was executed).

 This value must be of type “Action”.

-->

<!ELEMENT from-action (#PCDATA)>

<!--

 The “from-outcome” element contains a logical outcome
string returned

 by the execution of an application action method selected
via an

 “actionRef” property (or a literal value specified by an
“action”

 property) of a UICommand component. If specified, this
rule will be

 relevant only if the outcome value matches this element’s
value. If

 not specified, this rule will be relevant no matter what
the outcome

 value was.

-->

<!ELEMENT from-outcome (#PCDATA)>
10-34 JavaServer Faces Specification • February 2004

<!--

 The “from-view-id” element contains the view identifier of
the view

 for which the containing navigation rule is relevant. If
no

 “from-view” element is specified, this rule applies to
navigation

 decisions on all views. If this element is not specified,
a value

 of “*” is assumed, meaning that this navigation rule
applies to all

 views.

 This value must be of type “ViewIdPattern”.

-->

<!ELEMENT from-view-id (#PCDATA)>

<!--

 The “key” element is the String representation of a map key
that

 will be stored in a managed property of type java.util.Map.

-->

<!ELEMENT key (#PCDATA)>

<!--

 The “key-class” element defines the Java type to which each
“key”
Chapter 10 Using JSF in Web Applications 10-35

 element in a set of “map-entry” elements will be converted
to. It

 must be of type “ClassName”. If omitted,
“java.lang.String”

 is assumed.

-->

<!ELEMENT key-class (#PCDATA)>

<!--

 The “large-icon” element contains the resource path to a
large (32x32)

 icon image. The image may be in either GIF or JPG format.

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

 The “lifecycle-factory” element contains the fully
qualified class name

 of the concrete LifecycleFactory implementation class that
will be called

 when FactoryFinder.getFactory(LIFECYCLE_FACTORY) is called.
It must be

 of type “ClassName”.

-->

<!ELEMENT lifecycle-factory (#PCDATA)>

<!--

 The “managed-bean-class” element represents the fully
qualified class
10-36 JavaServer Faces Specification • February 2004

 name of the Java class that will be used to instantiate a
new instance

 if creation of the specified managed bean is requested. It
must be of

 type “ClassName”.

 The specified class must conform to standard JavaBeans
conventions.

 In particular, it must have a public zero-arguments
constructor, and

 zero or more public property setters.

-->

<!ELEMENT managed-bean-class (#PCDATA)>

<!--

 The “managed-bean-name” element represents the attribute
name under

 which a managed bean will be searched for, as well as
stored (unless

 the “managed-bean-scope” value is “none”). It must be of
type

 “Identifier”.

-->

<!ELEMENT managed-bean-name (#PCDATA)>

<!--

 The “managed-bean-scope” element represents the scope into
which a newly
Chapter 10 Using JSF in Web Applications 10-37

 created instance of the specified managed bean will be
stored (unless

 the value is “none”). It must be of type “ScopeOrNone”.

-->

<!ELEMENT managed-bean-scope (#PCDATA)>

<!--

 The “navigation-handler” element contains the fully
qualified class name

 of the concrete NavigationHandler implementation class that
will be called

 during the Invoke Application phase of the request
processing lifecycle,

 if the default ActionListener (provided by the JSF
implementation) is used.

 It must be of type “ClassName”.

-->

<!ELEMENT navigation-handler (#PCDATA)>

<!--

The “phase-listener” element contains the fully qualified class

name of the concrete PhaseListener implementation class that
will be

registered on the Lifecycle. It must be of type “ClassName”.

-->

<!ELEMENT phase-listener (#PCDATA)>

<!--

 The “redirect” element indicates that navigation to the
specified
10-38 JavaServer Faces Specification • February 2004

 “to-view-id” should be accomplished by performing an HTTP
redirect

 rather than the usual ViewHandler mechanisms.

-->

<!ELEMENT redirect EMPTY>

<!--

 The “suggested-value” contains the value for the property
or

 attribute in which this element resides. This value is
advisory

 only and is intended for tools to use when populating
pallettes.

-->

<!ELEMENT suggested-value (#PCDATA)>

<!--

 The “view-handler” element contains the fully qualified
class name

 of the concrete ViewHandler implementation class that will
be called

 during the Restore View and Render Response phases of the
request

 processing lifecycle. The faces implementation must
provide a

 default implementation of this class

-->

<!ELEMENT view-handler (#PCDATA)>
Chapter 10 Using JSF in Web Applications 10-39

<!--

 The “state-manager” element contains the fully qualified
class name

 of the concrete StateManager implementation class that will
be called

 during the Restore View and Render Response phases of the
request

 processing lifecycle. The faces implementation must
provide a

 default implementation of this class

-->

<!ELEMENT state-manager (#PCDATA)>

<!--

 The “null-value” element indicates that the managed
property in which we

 are nested will be explicitly set to null if our managed
bean is

 automatically created. This is different from omitting the
managed

 property element entirely, which will cause no property
setter to be

 called for this property.

 The “null-value” element can only be used when the
associated

 “property-class” identifies a Java class, not a Java
primitive.

-->

<!ELEMENT null-value EMPTY>
10-40 JavaServer Faces Specification • February 2004

<!--

 The “property-class” element represents the Java type of
the value

 associated with this property name. It must be of type
“JavaType”.

 If not specified, it can be inferred from existing classes;
however,

 this element should be specified if the configuration file
is going

 to be the source for generating the corresponding classes.

-->

<!ELEMENT property-class (#PCDATA)>

<!--

 The “property-name” element represents the JavaBeans
property name

 under which the corresponding value may be stored.

-->

<!ELEMENT property-name (#PCDATA)>

<!--

 The “property-resolver” element contains the fully
qualified class name

 of the concrete PropertyResolver implementation class that
will be used

 during the processing of value binding expressions.

 It must be of type “ClassName”.

-->
Chapter 10 Using JSF in Web Applications 10-41

<!ELEMENT property-resolver (#PCDATA)>

<!--

 The “referenced-bean-class” element represents the fully
qualified class

 name of the Java class (either abstract or concrete) or
Java interface

 implemented by the corresponding referenced bean. It must
be of type

 “ClassName”.

-->

<!ELEMENT referenced-bean-class (#PCDATA)>

<!--

 The “referenced-bean-name” element represents the attribute
name under

 which the corresponding referenced bean may be assumed to
be stored,

 in one of the scopes defined by the “Scope” type. It must
be of type

 “Identifier”.

-->

<!ELEMENT referenced-bean-name (#PCDATA)>

<!--

 The “render-kit-id” element represents an identifier for
the

 RenderKit represented by the parent “render-kit” element.
10-42 JavaServer Faces Specification • February 2004

-->

<!ELEMENT render-kit-id (#PCDATA)>

<!--

 The “render-kit-class” element represents the fully
qualified class name

 of a concrete RenderKit implementation class. It must be
of

 type “ClassName”.

-->

<!ELEMENT render-kit-class (#PCDATA)>

<!--

 The “renderer-class” element represents the fully qualified
class name

 of a concrete Renderer implementation class. It must be of

 type “ClassName”.

-->

<!ELEMENT renderer-class (#PCDATA)>

<!--

 The “render-kit-factory” element contains the fully
qualified class name

 of the concrete RenderKitFactory implementation class that
will be called

 when FactoryFinder.getFactory(RENDER_KIT_FACTORY) is
called. It must be

 of type “ClassName”.
Chapter 10 Using JSF in Web Applications 10-43

-->

<!ELEMENT render-kit-factory (#PCDATA)>

<!--

 The “renderer-type” element represents a renderer type
identifier for the

 Renderer represented by the parent “renderer” element.

-->

<!ELEMENT renderer-type (#PCDATA)>

<!--

 The “small-icon” element contains the resource path to a
large (16x16)

 icon image. The image may be in either GIF or JPG format.

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

 The “supported-locale” element allows authors to declare
which

 locales are supported in this application instance.

 It must be specified as :language:[_:country:[_:variant:]]
without

 the colons, for example “ja_JP_SJIS”. The separators
between the

 segments may be ‘-’ or ‘_’.

-->

<!ELEMENT supported-locale (#PCDATA)>
10-44 JavaServer Faces Specification • February 2004

<!--

 The “to-view” element contains the view identifier of the
next view

 that should be displayed if this navigation rule is
matched. It

 must be of type “ViewId”.

-->

<!ELEMENT to-view-id (#PCDATA)>

<!--

 The “validator-class” element represents the fully
qualified class name

 of a concrete Validator implementation class. It must be
of

 type “ClassName”.

-->

<!ELEMENT validator-class (#PCDATA)>

<!--

 The “validator-id” element represents the identifier under
which the

 corresponding Validator class should be registered.

-->

<!ELEMENT validator-id (#PCDATA)>

<!--
Chapter 10 Using JSF in Web Applications 10-45

 The “value” element is the String representation of a
literal

 value to which a scalar managed property will be set, or a
value

 binding expression (“#{...}”) that will be used to
calculate the

 required value. It will be converted as specified for the
actual

 property type.

-->

<!ELEMENT value (#PCDATA)>

<!--

 The “value-class” element defines the Java type to which
each

 “value” element’s value will be converted to, prior to
adding it to

 the “list-entries” list for a managed property that is a

 java.util.List, or a “map-entries” map for a managed
property that

 is a java.util.Map. It must be of type “ClassName”. If
omitted,

 “java.lang.String” is assumed.

-->

<!ELEMENT value-class (#PCDATA)>

<!--

 The “variable-resolver” element contains the fully
qualified class name

 of the concrete VariableResolver implementation class that
will be used
10-46 JavaServer Faces Specification • February 2004

 during the processing of value binding expressions.

 It must be of type “ClassName”.

-->

<!ELEMENT variable-resolver (#PCDATA)>

<!-- ============================ Identifier Attributes =======
============= -->

<!ATTLIST action-listener id ID #IMPLIED>

<!ATTLIST application id ID #IMPLIED>

<!ATTLIST application-factory id ID #IMPLIED>

<!ATTLIST attribute id ID #IMPLIED>

<!ATTLIST attribute-class id ID #IMPLIED>

<!ATTLIST attribute-extension id ID #IMPLIED>

<!ATTLIST attribute-name id ID #IMPLIED>

<!ATTLIST component id ID #IMPLIED>

<!ATTLIST component-class id ID #IMPLIED>

<!ATTLIST component-extension id ID #IMPLIED>

<!ATTLIST component-family id ID #IMPLIED>

<!ATTLIST component-type id ID #IMPLIED>

<!ATTLIST converter id ID #IMPLIED>

<!ATTLIST converter-class id ID #IMPLIED>

<!ATTLIST converter-for-class id ID #IMPLIED>

<!ATTLIST converter-id id ID #IMPLIED>

<!ATTLIST default-locale id ID #IMPLIED>

<!ATTLIST default-render-kit-id id ID #IMPLIED>
Chapter 10 Using JSF in Web Applications 10-47

<!ATTLIST default-value id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST faces-config id ID #IMPLIED>

<!ATTLIST faces-context-factory id ID #IMPLIED>

<!ATTLIST facet id ID #IMPLIED>

<!ATTLIST facet-extension id ID #IMPLIED>

<!ATTLIST facet-name id ID #IMPLIED>

<!ATTLIST factory id ID #IMPLIED>

<!ATTLIST from-action id ID #IMPLIED>

<!ATTLIST from-outcome id ID #IMPLIED>

<!ATTLIST from-view-id id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST key id ID #IMPLIED>

<!ATTLIST key-class id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST lifecycle id ID #IMPLIED>

<!ATTLIST lifecycle-factory id ID #IMPLIED>

<!ATTLIST list-entries id ID #IMPLIED>

<!ATTLIST locale-config id ID #IMPLIED>

<!ATTLIST managed-bean id ID #IMPLIED>

<!ATTLIST managed-bean-class id ID #IMPLIED>

<!ATTLIST managed-bean-name id ID #IMPLIED>

<!ATTLIST managed-bean-scope id ID #IMPLIED>

<!ATTLIST managed-property id ID #IMPLIED>

<!ATTLIST map-entries id ID #IMPLIED>

<!ATTLIST map-entry id ID #IMPLIED>

<!ATTLIST message-bundle id ID #IMPLIED>
10-48 JavaServer Faces Specification • February 2004

<!ATTLIST navigation-case id ID #IMPLIED>

<!ATTLIST navigation-handler id ID #IMPLIED>

<!ATTLIST navigation-rule id ID #IMPLIED>

<!ATTLIST null-value id ID #IMPLIED>

<!ATTLIST phase-listener id ID #IMPLIED>

<!ATTLIST property id ID #IMPLIED>

<!ATTLIST property-class id ID #IMPLIED>

<!ATTLIST property-extension id ID #IMPLIED>

<!ATTLIST property-name id ID #IMPLIED>

<!ATTLIST property-resolver id ID #IMPLIED>

<!ATTLIST redirect id ID #IMPLIED>

<!ATTLIST referenced-bean id ID #IMPLIED>

<!ATTLIST referenced-bean-class id ID #IMPLIED>

<!ATTLIST referenced-bean-name id ID #IMPLIED>

<!ATTLIST render-kit id ID #IMPLIED>

<!ATTLIST render-kit-class id ID #IMPLIED>

<!ATTLIST render-kit-factory id ID #IMPLIED>

<!ATTLIST render-kit-id id ID #IMPLIED>

<!ATTLIST renderer id ID #IMPLIED>

<!ATTLIST renderer-class id ID #IMPLIED>

<!ATTLIST renderer-extension id ID #IMPLIED>

<!ATTLIST renderer-type id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST state-manager id ID #IMPLIED>

<!ATTLIST suggested-value id ID #IMPLIED>

<!ATTLIST supported-locale id ID #IMPLIED>

<!ATTLIST to-view-id id ID #IMPLIED>

<!ATTLIST validator id ID #IMPLIED>
Chapter 10 Using JSF in Web Applications 10-49

<!ATTLIST validator-class id ID #IMPLIED>

<!ATTLIST validator-id id ID #IMPLIED>

<!ATTLIST value id ID #IMPLIED>

<!ATTLIST value-class id ID #IMPLIED>

<!ATTLIST variable-resolver id ID #IMPLIED>

<!ATTLIST view-handler id ID #IMPLIED>

10.3.4 Configuration Impact on JSF Runtime
The following XML elements1 in application configuration resources cause
registration of JSF objects into the corresponding factories or properties. It is an error
if the value of any of these elements cannot be correctly parsed, loaded, set, or
otherwise used by the implementation.

■ /faces-config/component -- Create or replace a component type / component
class pair with the Application instance for this web application.

■ /faces-config/converter -- Create or replace a converter id / converter class or
target class / converter class pair with the Application instance for this web
application.

■ /faces-config/render-kit -- Create and register a new RenderKit instance with
the RenderKitFactory, if one does not already exist for the specified render-
kit-id.

■ /faces-config/render-kit/renderer -- Create or replace a component family +
renderer id / renderer class pair with the RenderKit associated with the render-
kit element we are nested in.

■ /faces-config/validator -- Create or replace a validator id / validator class pair
with the Application instance for this web application.

For components, converters, and validators, it is legal to replace the implementation
class that is provided (by the JSF implementation) by default. This is accomplished
by specifying the standard value for the <component-type>, <converter-id>, or
<validator-id> that you wish to replace, and specifying your implementation
class. To avoid class cast exceptions, the replacement implementation class must be a
subclass of the standard class being replaced. For example, if you declare a custom

1. Identified by XPath selection expressions.
10-50 JavaServer Faces Specification • February 2004

Converter implementation class for the standard converter identifier
javax.faces.Integer, then your replacement class must be a subclass of
javax.faces.convert.IntegerConverter.

For replacement Renderers, your implementation class must extend
javax.faces.render.Renderer. However, to avoid unexpected behavior, your
implementation should recognize all of the render-dependent attributes supported
by the Renderer class you are replacing, and provide equivalent decode and encode
behavior.

The following XML elements cause the replacement of the default implementation
class for the corresponding functionality, provided by the JSF implementation. See
Section 10.3.5 “Delegating Implementation Support” for more information about the
classes referenced by these elements:

■ /faces-config/application/action-listener -- Replace the default ActionListener
used to process ActionEvent events with an instance with the class
specified. The contents of this element must be a fully qualified Java class name
that, when instantiated, is an ActionListener.

■ /faces-config/application/navigation-handler -- Replace the default
NavigationHandler instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
NavigationHandler.

■ /faces-config/application/property-resolver -- Replace the default
PropertyResolver instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
PropertyResolver.

■ /faces-config/application/state-manager -- Replace the default StateManager
instance with the one specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is a StateManager.

■ /faces-config/application/variable-resolver -- Replace the default
VariableResolver instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
VariableResolver.

■ /faces-config/application/view-manager -- Replace the default ViewManager
instance with the one specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is a ViewManager.

The following XML elements cause the replacement of the default implementation
class for the corresponding functionality, provided by the JSF implementation. Each
of the referenced classes must have a public zero-arguments constructor:

■ /faces-config/factory/application-factory -- Replace the default
ApplicationFactory instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is an
ApplicationFactory.
Chapter 10 Using JSF in Web Applications 10-51

■ /faces-config/factory/faces-context-factory -- Replace the default
FacesContextFactory instance with the one specified. The contents of this
element must be a fully qualified Java class name that, when instantiated, is a
FacesContextFactory.

■ /faces-config/factory/lifecycle-factory -- Replace the default LifecycleFactory
instance with the one specified. The contents of this element must be a fully
qualified Java class name that, when instantiated, is a LifecycleFactory.

■ /faces-config/factory/render-kit-factory -- Replace the default
RenderKitFactory instance with the one specified. The contents of this element
must be a fully qualified Java class name that, when instantiated, is a
RenderKitFactory.

The following XML elements cause the addition of event listeners to standard JSF
implementation objects, as follows. Each of the referenced classes must have a public
zero-arguments constructor.

■ /faces-config/lifecycle/phase-listener -- Instantiate a new instance of the specified
class, which must implement PhaseListener, and register it with the
Lifecycle instance for the current web application.

In addition, the following XML elements influence the runtime behavior of the JSF
implementation, even though they do not cause registration of objects that are
visible to a JSF-based application.

■ /faces-config/managed-bean -- Make the characteristics of a managed bean with
the specified managed-bean-name available to the default VariableResolver
implementation.

■ /faces-config/navigation-rule -- Make the characteristics of a navigation rule
available to the default NavigationHandler implementation.

10.3.5 Delegating Implementation Support
When providing a replacement for the default PropertyResolver,
VariableResolver, ActionListener, NavigationHandler, ViewHandler, or
StateManager, the decorator design pattern is leveraged, so that if you provide a
constructor that takes a single argument of the appropriate type, the custom
implementation receives a reference to the implementation that was previously
fulfilling the role. In this way, the custom implementation is able to override just a
subset of the functionality (or provide only some additional functionality) and
delegate the rest to the existing implementation.
10-52 JavaServer Faces Specification • February 2004

For example, say you wanted to provide a custom ViewHandler that was the same
as the default one, but provided a different implementation of the
calculateLocale() method. Consider this code excerpt from a custom
ViewHandler:

The second constructor will get called as the application is initially configured by the
JSF implementation, and the previously registered ViewHandler will get passed to
it.

public class MyViewHandler extends ViewHandler {

public MyViewHandler() { }

public MyViewHandler(ViewHandler handler) {
super();
oldViewHandler = handler;

}

private ViewHandler oldViewHandler = null;

// Delegate the renderView() method to the old handler
public void renderView(FacesContext context, UIViewRoot view)

throws IOException, FacesException {
oldViewHandler.renderView(context, view);

}

// Delegate other methods in the same manner

// Overridden version of calculateLocale()
public Locale calculateLocale(FacesContext context) {

Locale locale = ... // Custom calculation
return locale;

}

}

Chapter 10 Using JSF in Web Applications 10-53

10.3.6 Example Application Configuration Resource
The following example application resource file defines a custom UIComponent of
type Date, plus a number of Renderers that know how to decode and encode such
a component:

<?xml version=”1.0”?>
<!DOCTYPE faces-config PUBLIC

“-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN”
“http://java.sun.com/dtd/web-facesconfig_1_1.dtd”>

<faces-config>

<!-- Define our custom component -->
<component>

<description>
A custom component for rendering user-selectable dates in
various formats.

</description>
<display-name>My Custom Date</display-name>
<component-type>Date</component-type>
<component-class>

com.example.components.DateComponent
</component-class>

</component>

<!-- Define two renderers that know how to deal with dates -->
<render-kit>

<!-- No render-kit-id, so add them to default RenderKit -->
<renderer>

<display-name>Calendar Widget</display-name>
<component-family>MyComponent</component-family>
<renderer-type>MyCalendar</renderer-type>
<renderer-class>

com.example.renderers.MyCalendarRenderer
</renderer-class>

</renderer>
<renderer>

<display-name>Month/Day/Year</display-name>
<renderer-type>MonthDayYear</renderer-type>
<renderer-class>

com.example.renderers.MonthDayYearRenderer
</renderer-class>

</renderer>
</render-kit>

</faces-config>
10-54 JavaServer Faces Specification • February 2004

Additional examples of configuration elements that might be found in application
configuration resources are in Section 5.3.1.4 “Managed Bean Configuration
Example” and Section 7.4.3 “Example NavigationHandler Configuration”.
Chapter 10 Using JSF in Web Applications 10-55

10-56 JavaServer Faces Specification • February 2004

CHAPTER 11

Lifecycle Management

In Chapter 2 “Request Processing Lifecycle,” the required functionality of each phase
of the request processing lifecycle was described. This chapter describes the standard
APIs used by JSF implementations to manage and execute the lifecycle. Each of these
classes and interfaces is part of the javax.faces.lifecycle package.

Page authors, component writers, and application developers, in general, will not
need to be aware of the lifecycle management APIs—they are primarily of interest to
tool providers and JSF implementors.

11.1 Lifecycle
Upon receipt of each JSF-destined request to this web application, the JSF
implementation must acquire a reference to the Lifecycle instance for this web
application, and call its execute() and render() methods to perform the request
processing lifecycle. The Lifecycle instance invokes appropriate processing logic
to implement the required functionality for each phase of the request processing
lifecycle, as described in Section 2.2 “Standard Request Processing Lifecycle Phases”.

The execute() method performs phases up to, but not including, the Render
Response phase. The render() method performs the Render Response phase. This
division of responsibility makes it easy to support JavaServer Faces processing in a
portlet-based environment.

As each phase is processed, registered PhaseListener instances are also notified.
The general processing for each phase is as follows:

public void execute(FacesContext context) throws FacesException;

public void render(FacesContext context) throws FacesException;
11-1

■ From the set of registered PhaseListener instances, select the relevant ones for
the current phase, where “relevant” means that calling getPhaseId() on the
PhaseListener instance returns the phase identifier of the current phase, or the
special value PhaseId.ANY_PHASE.

■ Call the beforePhase() method of each relevant listener, in the order that the
listeners were registered.

■ If no called listener called the FacesContext.renderResponse() or
FacesContext.responseComplete() method, execute the functionality
required for the current phase.

■ Call the afterPhase() method of each relevant listener, in the reverse of the
order that the listeners were registered.

■ If the FacesContext.responseComplete() method has been called during the
processing of the current request, or we have just completed the Render Response
phase, perform no further phases of the request processing lifecycle.

■ If the FacesContext.renderResponse() method has been called during the
processing of the current request, and we have not yet executed the Render
Response phase of the request processing lifecycle, ensure that the next executed
phase will be Render Response

These methods register or deregister a PhaseListener that wishes to be notified
before and after the processing of each standard phase of the request processing
lifecycle. The webapp author can declare a PhaseListener to be added using the
phase-listener element of the application configuration resources file. Please see
Section 11.3 “PhaseListener”.

11.2 PhaseEvent
This class represents the beginning or ending of processing for a particular phase of
the request processing lifecycle, for the request encapsulated by the FacesContext
instance passed to our constructor.

public void addPhaseListener(PhaseListener listener);

public void removePhaseListener(PhaseListener listener);

public PhaseEvent(FacesContext context, PhaseId phaseId);
11-2 JavaServer Faces Specification • February 2004

Construct a new PhaseEvent representing the execution of the specified phase of
the request processing lifecycle, on the request encapsulated by the specified
FacesRequest instance.

Return the properties of this event instance. The specified FacesContext instance
will also be returned if getSource() (inherited from the base EventObject class)
is called.

11.3 PhaseListener
This interface must be implemented by objects that wish to be notified before and
after the processing for a particular phase of the request processing lifecycle, on a
particular request. Implementations of PhaseListener must be programmed in a
thread-safe manner.

The PhaseListener instance indicates for which phase of the request processing
lifecycle this listener wishes to be notified. If PhaseId.ANY_PHASE is returned, this
listener will be notified for all standard phases of the request processing lifecycle.

The beforePhase() method is called before the standard processing for a particular
phase is performed, while the afterPhase() method is called after the standard
processing has been completed. The JSF implementation must guarantee that, if
beforePhase() has been called on a particular instance, then afterPhase() will
also be called.

PhaseListener implementations may affect the remainder of the request
processing lifecycle in several ways, including:

public FacesContext getFacesContext();

public PhaseId getPhaseId();

public PhaseId getPhaseId();

public void beforePhase(PhaseEvent event);

public void afterPhase(PhaseEvent event);
Chapter 11 Lifecycle Management 11-3

■ Calling renderResponse() on the FacesContext instance for the current
request, which will cause control to transfer to the Render Response phase of the
request processing lifecycle, once processing of the current phase is complete.

■ Calling responseComplete() on the FacesContext instance for the current request,
which causes processing of the request processing lifecycle to terminate once the
current phase is complete.

11.4 LifecycleFactory
A single instance of javax.faces.lifecycle.LifecycleFactory must be
made available to each JSF-based web application running in a servlet or portlet
container. The factory instance can be acquired by JSF implementations or by
application code, by executing:

The LifecycleFactory implementation class supports the following methods:

Register a new Lifecycle instance under the specified lifecycle identifier, and
make it available via calls to the getLifecycle method for the remainder of the
current web application’s lifetime.

The LifecycleFactory implementation class provides this method to create (if
necessary) and return a Lifecycle instance. All requests for the same lifecycle
identifier from within the same web application will return the same Lifecycle
instance, which must be programmed in a thread-safe manner.

LifecycleFactory factory = (LifecycleFactory)
FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);

public void addLifecycle(String lifecycleId, Lifecycle lifecycle);

public Lifecycle getLifecycle(String lifecycleId);
11-4 JavaServer Faces Specification • February 2004

Every JSF implementation must provide a Lifecycle instance for a default lifecycle
identifier that is designated by the String constant
LifecycleFactory.DEFAULT_LIFECYCLE. For advanced uses, a JSF
implementation may support additional lifecycle instances, named with unique
lifecycle identifiers.

This method returns an iterator over the set of lifecycle identifiers supported by this
factory. This set must include the value specified by
LifecycleFactory.DEFAULT_LIFECYCLE.

public Iterator getLifecycleIds();
Chapter 11 Lifecycle Management 11-5

11-6 JavaServer Faces Specification • February 2004

	JavaServer™ Faces Specification
	Contents
	Preface
	What’s Changed Since the Last Release
	Major changes/features in this release
	General changes
	Standard HTML RenderKit changes
	Spec document changes

	Other Java™ Platform Specifications
	Related Documents and Specifications
	Terminology
	Providing Feedback
	Acknowledgements

	Overview
	1.1 Solving Practical Problems of the Web
	1.2 Specification Audience
	1.2.1 Page Authors
	1.2.2 Component Writers
	1.2.3 Application Developers
	1.2.4 Tool Providers
	1.2.5 JSF Implementors

	1.3 Introduction to JSF APIs
	1.3.1 package javax.faces
	1.3.2 package javax.faces.application
	1.3.3 package javax.faces.component
	1.3.4 package javax.faces.component.html
	1.3.5 package javax.faces.context
	1.3.6 package javax.faces.convert
	1.3.7 package javax.faces.el
	1.3.8 package javax.faces.lifecycle
	1.3.9 package javax.faces.event
	1.3.10 package javax.faces.render
	1.3.11 package javax.faces.validator
	1.3.12 package javax.faces.webapp

	Request Processing Lifecycle
	2.1 Request Processing Lifecycle Scenarios
	2.1.1 Non-Faces Request Generates Faces Response
	2.1.2 Faces Request Generates Faces Response
	2.1.3 Faces Request Generates Non-Faces Response

	2.2 Standard Request Processing Lifecycle Phases
	2.2.1 Restore View
	2.2.2 Apply Request Values
	2.2.3 Process Validations
	2.2.4 Update Model Values
	2.2.5 Invoke Application
	2.2.6 Render Response

	2.3 Common Event Processing
	2.4 Common Application Activities
	2.4.1 Acquire Faces Object References
	2.4.1.1 Acquire and Configure Lifecycle Reference
	2.4.1.2 Acquire and Configure FacesContext Reference

	2.4.2 Create And Configure A New View
	2.4.2.1 Create A New View
	2.4.2.2 Configure the Desired RenderKit
	2.4.2.3 Configure The View’s Components
	2.4.2.4 Store the new View in the FacesContext

	2.5 Concepts that impact several lifecycle phases
	2.5.1 Value Handling
	2.5.1.1 Apply Request Values Phase
	2.5.1.2 Process Validators Phase
	2.5.1.3 Executing Validation
	2.5.1.4 Update Model Values Phase

	2.5.2 Localization and Internationalization (L10N/I18N)
	2.5.2.1 Determining the active Locale
	2.5.2.2 Determining the Character Encoding
	2.5.2.3 Localized Text
	2.5.2.4 Localized Application Messages

	2.5.3 State Management
	2.5.3.1 State Management Considerations for the Custom Component Author
	2.5.3.2 State Management Considerations for the JSF Implementor

	User Interface Component Model
	3.1 UIComponent and UIComponentBase
	3.1.1 Component Identifiers
	3.1.2 Component Type
	3.1.3 Component Family
	3.1.4 Value Binding Expressions
	3.1.5 Component Bindings
	3.1.6 Client Identifiers
	3.1.7 Component Tree Manipulation
	3.1.8 Component Tree Navigation
	3.1.9 Facet Management
	3.1.10 Generic Attributes
	3.1.11 Render-Independent Properties
	3.1.12 Component Specialization Methods
	3.1.13 Lifecycle Management Methods
	3.1.14 Utility Methods

	3.2 Component Behavioral Interfaces
	3.2.1 ActionSource
	3.2.1.1 Properties
	3.2.1.2 Methods
	3.2.1.3 Events

	3.2.2 NamingContainer
	3.2.3 StateHolder
	3.2.3.1 Properties
	3.2.3.2 Methods
	3.2.3.3 Events

	3.2.4 ValueHolder
	3.2.4.1 Properties
	3.2.4.2 Methods
	3.2.4.3 Events

	3.2.5 EditableValueHolder
	3.2.5.1 Properties
	3.2.5.2 Methods
	3.2.5.3 Events

	3.3 Conversion Model
	3.3.1 Overview
	3.3.2 Converter
	3.3.3 Standard Converter Implementations

	3.4 Event and Listener Model
	3.4.1 Overview
	3.4.2 Event Classes
	3.4.3 Listener Classes
	3.4.4 Phase Identifiers
	3.4.5 Listener Registration
	3.4.6 Event Queueing
	3.4.7 Event Broadcasting

	3.5 Validation Model
	3.5.1 Overview
	3.5.2 Validator Classes
	3.5.3 Validation Registration
	3.5.4 Validation Processing
	3.5.5 Standard Validator Implementations

	Standard User Interface Components
	4.1 Standard User Interface Components
	4.1.1 UIColumn
	4.1.1.1 Component Type
	4.1.1.2 Properties
	4.1.1.3 Methods
	4.1.1.4 Events

	4.1.2 UICommand
	4.1.2.1 Component Type
	4.1.2.2 Properties
	4.1.2.3 Methods
	4.1.2.4 Events

	4.1.3 UIData
	4.1.3.1 Component Type
	4.1.3.2 Properties
	4.1.3.3 Methods
	4.1.3.4 Events

	4.1.4 UIForm
	4.1.4.1 Component Type
	4.1.4.2 Properties
	4.1.4.3 Methods.
	4.1.4.4 Events

	4.1.5 UIGraphic
	4.1.5.1 Component Type
	4.1.5.2 Properties
	4.1.5.3 Methods
	4.1.5.4 Events

	4.1.6 UIInput
	4.1.6.1 Component Type
	4.1.6.2 Properties
	4.1.6.3 Methods
	4.1.6.4 Events

	4.1.7 UIMessage
	4.1.7.1 Component Type
	4.1.7.2 Properties
	4.1.7.3 Methods.
	4.1.7.4 Events

	4.1.8 UIMessages
	4.1.8.1 Component Type
	4.1.8.2 Properties
	4.1.8.3 Methods.
	4.1.8.4 Events

	4.1.9 UIOutput
	4.1.9.1 Component Type
	4.1.9.2 Properties
	4.1.9.3 Methods
	4.1.9.4 Events

	4.1.10 UIPanel
	4.1.10.1 Component Type
	4.1.10.2 Properties
	4.1.10.3 Methods
	4.1.10.4 Events

	4.1.11 UIParameter
	4.1.11.1 Component Type
	4.1.11.2 Properties
	4.1.11.3 Methods
	4.1.11.4 Events

	4.1.12 UISelectBoolean
	4.1.12.1 Component Type
	4.1.12.2 Properties
	4.1.12.3 Methods
	4.1.12.4 Events

	4.1.13 UISelectItem
	4.1.13.1 Component Type
	4.1.13.2 Properties
	4.1.13.3 Methods
	4.1.13.4 Events

	4.1.14 UISelectItems
	4.1.14.1 Component Type
	4.1.14.2 Properties
	4.1.14.3 Methods
	4.1.14.4 Events

	4.1.15 UISelectMany
	4.1.15.1 Component Type
	4.1.15.2 Properties
	4.1.15.3 Methods
	4.1.15.4 Events

	4.1.16 UISelectOne
	4.1.16.1 Component Type
	4.1.16.2 Properties
	4.1.16.3 Methods
	4.1.16.4 Events

	4.1.17 UIViewRoot
	4.1.17.1 Component Type
	4.1.17.2 Properties
	4.1.17.3 Methods
	4.1.17.4 Events

	4.2 Standard UIComponent Model Beans
	4.2.1 DataModel
	4.2.1.1 Properties
	4.2.1.2 Methods
	4.2.1.3 Events
	4.2.1.4 Concrete Implementations

	4.2.2 SelectItem
	4.2.2.1 Properties
	4.2.2.2 Methods
	4.2.2.3 Events

	4.2.3 SelectItemGroup
	4.2.3.1 Properties
	4.2.3.2 Methods
	4.2.3.3 Events

	Value Binding and Method Binding Expression Evaluation
	5.1 Value Binding Expressions
	5.1.1 Overview
	5.1.2 Value Binding Expression Syntax
	5.1.3 Get Value Semantics
	5.1.4 Set Value Semantics

	5.2 Method Binding Expressions
	5.2.1 Method Binding Expression Syntax
	5.2.2 Method Binding Expression Semantics

	5.3 Expression Evaluation APIs
	5.3.1 VariableResolver
	5.3.1.1 Overview
	5.3.1.2 Default VariableResolver Implementation
	5.3.1.3 The Managed Bean Facility
	5.3.1.4 Managed Bean Configuration Example

	5.3.2 PropertyResolver
	5.3.3 ValueBinding
	5.3.4 MethodBinding
	5.3.5 Expression Evaluation Exceptions

	Per-Request State Information
	6.1 FacesContext
	6.1.1 Application
	6.1.2 ExternalContext
	6.1.3 ViewRoot
	6.1.4 Message Queue
	6.1.5 RenderKit
	6.1.6 ResponseStream and ResponseWriter
	6.1.7 Flow Control Methods
	6.1.8 Access To The Current FacesContext Instance

	6.2 FacesMessage
	6.3 ResponseStream
	6.4 ResponseWriter
	6.5 FacesContextFactory

	Application Integration
	7.1 Application
	7.1.1 ActionListener Property
	7.1.2 DefaultRenderKitId Property
	7.1.3 NavigationHandler Property
	7.1.4 PropertyResolver Property
	7.1.5 StateManager Property
	7.1.6 VariableResolver Property
	7.1.7 ViewHandler Property
	7.1.8 Acquiring ValueBinding Instances
	7.1.9 Acquiring MethodBinding Instances
	7.1.10 Object Factories
	7.1.11 Internationalization Support

	7.2 ApplicationFactory
	7.3 Application Actions
	7.4 NavigationHandler
	7.4.1 Overview
	7.4.2 Default NavigationHandler Implementation
	7.4.3 Example NavigationHandler Configuration

	7.5 ViewHandler
	7.5.1 Overview
	7.5.2 Default ViewHandler Implementation

	7.6 StateManager
	7.6.1 Overview
	7.6.2 State Saving Alternatives and Implications
	7.6.3 State Saving Methods.
	7.6.4 State Restoring Methods

	Rendering Model
	8.1 RenderKit
	8.2 Renderer
	8.3 ResponseStateManager
	8.4 RenderKitFactory
	8.5 Standard HTML RenderKit Implementation
	8.6 The Concrete HTML Component Classes

	Integration with JSP
	9.1 UIComponent Custom Actions
	9.2 Using UIComponent Custom Actions in JSP Pages
	9.2.1 Declaring the Tag Libraries
	9.2.2 Including Components in a Page
	9.2.3 Creating Components and Overriding Attributes
	9.2.4 Deleting Components on Redisplay
	9.2.5 Representing Component Hierarchies
	9.2.6 Registering Converters, Event Listeners, and Validators
	9.2.7 Using Facets
	9.2.8 Interoperability with JSP Template Text and Other Tag Libraries
	9.2.9 Composing Pages from Multiple Sources

	9.3 UIComponent Custom Action Implementation Requirements
	9.4 JSF Core Tag Library
	9.4.1 <f:actionListener>
	9.4.2 <f:attribute>
	9.4.3 <f:convertDateTime>
	9.4.4 <f:convertNumber>
	9.4.5 <f:converter>
	9.4.6 <f:facet>
	9.4.7 <f:loadBundle>
	9.4.8 <f:param>
	9.4.9 <f:selectItem>
	9.4.10 <f:selectItems>
	9.4.11 <f:subview>
	9.4.12 <f:validateDoubleRange>
	9.4.13 <f:validateLength>
	9.4.14 <f:validateLongRange>
	9.4.15 <f:validator>
	9.4.16 <f:valueChangeListener>
	9.4.17 <f:verbatim>
	9.4.18 <f:view>

	9.5 Standard HTML RenderKit Tag Library

	Using JSF in Web Applications
	10.1 Web Application Deployment Descriptor
	10.1.1 Servlet Definition
	10.1.2 Servlet Mapping
	10.1.3 Application Configuration Parameters

	10.2 Included Classes and Resources
	10.2.1 Application-Specific Classes and Resources
	10.2.2 Servlet and JSP API Classes (javax.servlet.*)
	10.2.3 JSP Standard Tag Library (JSTL) API Classes (javax.servlet.jsp.jstl.*)
	10.2.4 JSP Standard Tag Library (JSTL) Implementation Classes
	10.2.5 JavaServer Faces API Classes (javax.faces.*)
	10.2.6 JavaServer Faces Implementation Classes
	10.2.6.1 FactoryFinder
	10.2.6.2 FacesServlet
	10.2.6.3 UIComponentTag
	10.2.6.4 UIComponentBodyTag
	10.2.6.5 AttributeTag
	10.2.6.6 ConverterTag
	10.2.6.7 FacetTag
	10.2.6.8 ValidatorTag

	10.3 Application Configuration Resources
	10.3.1 Overview
	10.3.2 Application Startup Behavior
	10.3.3 Application Configuration Resource Format
	10.3.4 Configuration Impact on JSF Runtime
	10.3.5 Delegating Implementation Support
	10.3.6 Example Application Configuration Resource

	Lifecycle Management
	11.1 Lifecycle
	11.2 PhaseEvent
	11.3 PhaseListener
	11.4 LifecycleFactory

