

11 - 15 DECEMBER ANTWERP BELGIUM

www.javapolis.com

Swing Application Framework

JSR-296

Hans Muller
JSR-296 Specification Lead
Sun Microsystems

11 - 15 DECEMBER ANTWERP BELGIUM

An in depth tour of the prototype JSR-296
Swing Application Framework

11 - 15 DECEMBER ANTWERP BELGIUM

Speaker’s Qualifications

Hans Muller is an engineer at Sun
Microsystems
He led the original Swing team and has
been involved for with desktop Java for as
long as we've had them.
Hans has worked on client APIs for J2ME
and J2EE, and has served as Sun's
desktop CTO
Uses NetBeans, still loves Emacs

11 - 15 DECEMBER ANTWERP BELGIUM

This Slide Gains Your Audience’s Attention

11 - 15 DECEMBER ANTWERP BELGIUM

This Slide Gains Your Audience’s Attention

11 - 15 DECEMBER ANTWERP BELGIUM

What's the Problem?

Swing: available for nearly a decade
Jillions of apps have been written without a

standard desktop application framework
Experienced developers oftentimes actually

enjoy building domain specific application
frameworks

But what about novices?
The Java API is pretty big
How do they feel it?
Laboratory results

11 - 15 DECEMBER ANTWERP BELGIUM

Lab Results

11 - 15 DECEMBER ANTWERP BELGIUM

Why a Framework is Needed

Too many possible paths: developers
freeze
For many developers, particularly new ones,

the absence of any advice about how to
structure an application is an obstacle in and of
itself

Developers should focus on their problem
domain, not on the application architecture
domain

Pave a standard road to start out on

11 - 15 DECEMBER ANTWERP BELGIUM

Why a Framework is Needed

Today's tool support: minimalist
public class YourDesktopApp {
 public static void main(String[] args) {
 // Good Luck!
 }
}

Tool support could be much better

11 - 15 DECEMBER ANTWERP BELGIUM

But, Aren't Application Frameworks
Giant Scary Monsters?

Can be too much frame, not enough work

11 - 15 DECEMBER ANTWERP BELGIUM

Not Scary

Swing Application Framework goals
As small and simple as possible (not more so)
Explain it all in one hour
Work very well for small/medium apps

No integral docking framework, generic
data model, scripting language, GUI
markup schema

11 - 15 DECEMBER ANTWERP BELGIUM

Disclaimer

This is a review of my prototype
The details will almost certainly change
The fundamentals could change too

11 - 15 DECEMBER ANTWERP BELGIUM

What the Framework does

Lifecycle
Resources
Actions
Tasks
Session state

11 - 15 DECEMBER ANTWERP BELGIUM

Framework Architecture Overview

Application
 launch()
 startup()
 exit()
 shutdown()

ApplicationContext
 singleton

ResourceManager
 ResourceMap
 ResourceConverter
 @Resource

ActionManager
 ApplicationActionMap
 ApplicationAction
 @Action

TaskService, Task,
 TaskMonitor

LocalStorage SessionStorage

11 - 15 DECEMBER ANTWERP BELGIUM

The Application Class

Application Class
Resources
Actions
Tasks
Sessions

11 - 15 DECEMBER ANTWERP BELGIUM

The Application Class: Lifecycle

startup()

shutdown()

exit()

launch()

ready()

Call startup() on the Event Dispatching Thread.
A static method, usually called from main().

Create the initial GUI and show it.
All apps will override this method.

Any work that must wait until the GUI is visible
and ready for input.

Call shutdown, if the exitListeners don't veto.
Main frame's WindowListener calls exit().

Take the GUI down, final cleanup.

11 - 15 DECEMBER ANTWERP BELGIUM

Will my App subclass Application?

Probably not
Plan to provide some useful subclasses
For common GUI archetypes
 It's likely you'll extend one of those instead

Application

SingleFrameApplication MultiFrameApplication etc...

11 - 15 DECEMBER ANTWERP BELGIUM

Application Framework: Hello World

public class MyApp extends SingleFrameApplication {
 @Override protected void startup(String[] args) {

JLabel label = new JLabel("Hello World");
JFrame mainFrame = new JFrame("Hello");
mainFrame.add(label);
show(mainFrame);

 }
 public static void main(String[] args) {
 Application.launch(MyApp.class, args);
 }
}

11 - 15 DECEMBER ANTWERP BELGIUM

How the show method works
protected void show(JFrame f) {
 f.addWindowListener(new FrameListener());
 f.setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);
 ApplicationContext c = ApplicationContext.getInstance();
 ResourceMap r = c.getResourceMap(getClass());
 r.injectComponents(f);
 f.pack();
 f.setLocationRelativeTo(null); // center the frame
 f.setVisible(true);
}

private class FrameListener extends WindowAdapter {
 public void windowClosing(WindowEvent e) {
 exit(); // exitListeners, then shutdown()
 }
}

11 - 15 DECEMBER ANTWERP BELGIUM

May I exit? Application exit listeners

The exit() method checks exitListeners first
 public interface ExitListener extends EventListener {

boolean canExit();
 }

If they all return false:
call Application.shutdown()
System.exit()

11 - 15 DECEMBER ANTWERP BELGIUM

Resources

Application Class
Resources
Actions
Tasks
Sessions

11 - 15 DECEMBER ANTWERP BELGIUM

Application Framework Resources

Based on ResourceBundle
Organized in resources subpackges
Used to initialize properties specific to:
 locale
platform
 [TBD] look and feel
a few related values ...

11 - 15 DECEMBER ANTWERP BELGIUM

Good old ResourceBundles

Initial, read-only values
Typically just strings
Typically defined in .properties files
Merge
 locale-specific resources
 locale-independent resources

11 - 15 DECEMBER ANTWERP BELGIUM

ResourceMaps

Automatically parent-chained
package-wide resources
application-wide resources

Support string to type resource conversion
extensible

Encapsulate list of ResourceBundles
whose names are based on a class:
generic ResourceBundle; just the class name
per OS platform, class_os e.g. MyForm_OSX

11 - 15 DECEMBER ANTWERP BELGIUM

Using ResourceMaps: example
resources/MyForm.properties
 aString = Just a string
 aMessage = Hello {0}
 anInteger = 123
 aBoolean = True
 anIcon = myIcon.png
 aFont = Arial-PLAIN-12
 colorRGBA = 5, 6, 7, 8
color0xRGB = #556677

ApplicationContext c = ApplicationContext.getInstance();
ResourceMap r = c.getResourceMap(MyForm.class);

r.getString("aMessage", "World") => "Hello World"
r.getColor("colorRBGA") => new Color(5, 6, 7, 8)
r.getFont("aFont") => new Font("Arial", Font.PLAIN, 12)

11 - 15 DECEMBER ANTWERP BELGIUM

Resource Injection

ResourceMap.injectComponents()
Set the properties of named components
Convert types as needed

 ResourceMap r = c.getResourceMap(getClass());
 r.injectComponents(mainFrame);

Recall this, from the
SingleFrameApplication.show() example:

11 - 15 DECEMBER ANTWERP BELGIUM

Resource Injection Example

resourceMap.injectComponents(myPanel):

resources/MyPanel.properties
 label.text = Choose one:
 label.font = Lucida-PLAIN-18
button1.icon = smiley.gif
button2.icon = scared.gif
button3.icon = sad.gif

button1 button2 button3labelcomponent.getName():

11 - 15 DECEMBER ANTWERP BELGIUM

Resource Injection Advantages

Localizable by default
No need to explicitly lookup/set resources
Easy to
 reconfigure visual app properties
 review visual app properties

But:
not intended to be a “styles” mechanism
not intended for general purpose GUI markup

11 - 15 DECEMBER ANTWERP BELGIUM

But ... what about Actions?

11 - 15 DECEMBER ANTWERP BELGIUM

Actions: review

Encapsulation of an ActionListener and:
some purely visual properties
enabled and selected boolean properties
// define sayHello Action – pops up a message Dialog
Action sayHello = new AbstractAction("Hello") {
 public void actionPerformed(ActionEvent e) {
 String s = textField.getText();
 JOptionPane.showMessageDialog(s);
 }
};

// use sayHello – set the action property
textField.setAction(sayHello);
button.setAction(sayHello);

11 - 15 DECEMBER ANTWERP BELGIUM

The sayHello Action in Action

Disable the sayHello Action:
sayHello.setEnabled(false);

11 - 15 DECEMBER ANTWERP BELGIUM

Actions: what we like

Encapsulation of default GUI + behavior
The enabled and selected properties
Reusability

11 - 15 DECEMBER ANTWERP BELGIUM

What we're not so happy about

Overhead: creating Action objects is a pain
Visual properties should be localized!
Asynchronous Actions are difficult
Proxy linkages can be messy
It's tempting to make a little spaghetti:
backend logic that depends on Actions: find all

the actions you need to enable/disable

11 - 15 DECEMBER ANTWERP BELGIUM

The @Action Annotation

ActionEvent argument is optional
public methods only (for now)
Used to define a “sayHello” ActionMap entry

// define sayHello Action – pops up a message Dialog
@Action public void sayHello() {
 String s = textField.getText();
 JOptionPane.showMessageDialog(s);
}

// use sayHello – set the action property
Action sayHello = getAction("sayHello");
textField.setAction(sayHello);
button.setAction(sayHello);

11 - 15 DECEMBER ANTWERP BELGIUM

@Actions, Class => ActionMap

ApplicationContext.getActionMap()
creates an Action for each @Action method
default key is the action's method name
creates and caches an ActionMap

You don't really need getAction() ...

// private utility method: look up an action for this class
Action getAction(String name) {
 ApplicationContext c = ApplicationContext.getInstance();
 ActionMap actionMap = c.getActionMap(getClass(), this);
 return actionMap.get(name);
}

11 - 15 DECEMBER ANTWERP BELGIUM

@Action resources

Loaded from the class's ResourceMap
Component's action property can be
injected too ...
resources/MyForm.properties

sayHello.Action.text = Say &Hello
sayHello.Action.icon = hello.png
sayHello.Action.accelerator = control H
sayHello.Action.shortDescription = Say hello modally

textField.action = sayHello
button.action = sayHello

11 - 15 DECEMBER ANTWERP BELGIUM

@Action enabled/selected linkage

@Action parameter names bound property
The rest of the app depends on the property,

not the Action object
You can use simple property expressions

@Action(enabledProperty = “name”)
@Action(selectedProperty = “name”)

11 - 15 DECEMBER ANTWERP BELGIUM

@Action enabledProperty example
// Defines 3 Actions: revert, save, delete
public class MyForm extends JPanel {
 @Action(enabledProperty = "changesPending")
 public void revert() { ... }

 @Action(enabledProperty = "changesPending")
 public void save() { ... }

 @Action(enabledProperty = "!selectionEmpty")
 public void delete() { ... }

 // These properties are bound, when they change
 // PropertyChangeEvents are fired
 public boolean getChangesPending() { ... }
 public boolean isSelectionEmpty() { ... }

 // ...
}

11 - 15 DECEMBER ANTWERP BELGIUM

One @Action, Multiple Looks

Override Action's visual properties
action resource is set first
other resources override action's visuals

Common case: Menu/Toolbar/Button

resources/MyForm.properties
sayHello.Action.text = Say Hello
sayHello.Action.icon = hello.png
button1.action = sayHello
button2.action = sayHello
button2.text = ${null}
button3.action = sayHello
button3.icon = ${null}

button1 button2 button3

11 - 15 DECEMBER ANTWERP BELGIUM

Tasks

Application Class
Resources
Actions
Tasks
Sessions

11 - 15 DECEMBER ANTWERP BELGIUM

Don't block the EDT

Use a background thread for
computationally intensive tasks
 tasks that might block, like network or file IO

Background thread monitoring
starting, interrupting, finishing
progress
messages
descriptive information

SwingWorker: most of what we need

11 - 15 DECEMBER ANTWERP BELGIUM

Asynchronous @Actions: Tasks

Task isa SwingWorker isa Future
Futures compute a value on thread
They can be canceled/interrupted

SwingWorker adds:
EDT done() and PropertyChange methods
publish/process for incremental results
progress property – percent complete

Tasks: more support for monitoring

11 - 15 DECEMBER ANTWERP BELGIUM

Tasks: tell me about yourself

Task title, description properties
For users
 Initialized from ResourceMap

Task message property, method
 myTask.setMessage(“loading ” + nThings)
 myTask.message(“loadingMessage”, nThings)

(resource) loadingMessage = loading {0} things

Task start/done time properties
Task useCanCancel property

11 - 15 DECEMBER ANTWERP BELGIUM

Asynchronous @Action Example
// Say hello repeatedly
@Action public Task sayHello() {
 return new SayHelloTask();
}

private class SayHelloTask extends Task<Void, Void> {
 @Override protected Void doInBackground() {
 for(int i = 0; i <= 10; i++) {
 progress(i, 0, 10); // calls setProgress()
 message("hello", i); // resource defines format
 Thread.sleep(150L);
 }
 return null;
 }
 @Override protected void done() {
 message(isCancelled() ? "canceled" : "done");
 }
}

11 - 15 DECEMBER ANTWERP BELGIUM

Asynchronous @Actions that Block

@Action annotation block parameter:
 @Action(block = Block.NONE) – default
 @Action(block = Block.ACTION)
 @Action(block = Block.COMPONENT)
 @Action(block = Block.WINDOW)
 @Action(block = Block.APPLICATION)

Resources for blocking (modal) dialogs
stop.Action.BlockingDialog.title = Blocking Application
stop.Action.BlockingDialog.message = Please wait ...
stop.Action.BlockingDialog.icon = wait.png

11 - 15 DECEMBER ANTWERP BELGIUM

TaskServices

Defines how a Task is executed, e.g.
serially
by a thread pool
etc..

TaskService isa ExecutorService
named, constructed lazily
@Action(taskService = “database”)

Application.getTaskServices()

11 - 15 DECEMBER ANTWERP BELGIUM

Monitoring Tasks: TaskMonitor

Desktop apps often run many threads
TaskMonitor provides a summary
Bound properties, same as Task
Foreground task: first one started

Handy for StatusBar implementations

11 - 15 DECEMBER ANTWERP BELGIUM

Action and Tasks Summary

Define Actions with @Actions, resources
Link enabled/selected to a property
 @Action(enabledProperty = “name”)
 @Action(selectedProperty = “name)

Asynchronous @Actions return Tasks
Provide title/description resources
Use message/progress methods/properties
Use the block parameter and resources

Connect your status bar to a TaskMonitor

11 - 15 DECEMBER ANTWERP BELGIUM

Sessions

Application Class
Resources
Actions
Tasks
Sessions

11 - 15 DECEMBER ANTWERP BELGIUM

Session State

Make sure the application remembers
where you left things.
Most applications should do this
but they don't
what state to save?
where to store it (and what if you're unsigned)?
how to safely restore the GUI

11 - 15 DECEMBER ANTWERP BELGIUM

SessionStorage

ApplicationContext.getSessionStorage()
save(rootComponent, filename)

• Supported types, named components only
• Window bounds, JTable column widths, etc
• archived with XMLEncoder

 restore(rootComponent, filename)
• conservative
• restored with XMLDecoder

LocalStorage abstracts per-user files

11 - 15 DECEMBER ANTWERP BELGIUM

~\Application Data\Sun\MyApp\session.xml

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0-rc" class="java.beans.XMLDecoder">
 <object class="java.util.HashMap">
 <void method="put">
 <string>mainFrame</string>
 <object class="application.SessionStorage$WindowState">
 <void property="bounds">
 <object class="java.awt.Rectangle">
 <int>436</int>
 <int>173</int>
 <int>408</int>
 <int>424</int>
 </object>
 </void>
 <void property="graphicsConfigurationBounds">
 <object class="java.awt.Rectangle">
 <int>0</int>
 <int>0</int>
 <int>1280</int>
 <int>800</int> ...

www.javapolis.com

DEMO

11 - 15 DECEMBER ANTWERP BELGIUM

Summary

Swing Application Framework supports
actions, resources, tasks, sessions
Application and ApplicationContext singletons
you have to subclass Application

JSR-296 expert group is responsible
 for defining the framework's final form
 finishing in time for Java 7

11 - 15 DECEMBER ANTWERP BELGIUM

Watch javadesktop.org for announcements
about the prototype code being available.

Build a Java Desktop Application.

Break free from the browser's chains!

www.javapolis.com

Q&A

